ABSTRACT
Since the first COVID-19 reports back in December of 2019, this viral infection caused by SARS-CoV-2 has claimed millions of lives. To control the COVID-19 pandemic, the Food and Drug Administration (FDA) and/or European Agency of Medicines (EMA) have granted Emergency Use Authorization (EUA) to nine therapeutic antibodies. Nonetheless, the natural evolution of SARS-CoV-2 has generated numerous variants of concern (VOCs) that have challenged the efficacy of the EUA antibodies. Here, we review the most relevant characteristics of these therapeutic antibodies, including timeline of approval, neutralization profile against the VOCs, selection methods of their variable regions, somatic mutations, HCDR3 and LCDR3 features, isotype, Fc modifications used in the therapeutic format, and epitope recognized on the receptor-binding domain (RBD) of SARS-CoV-2. One of the conclusions of the review is that the EUA therapeutic antibodies that still retain efficacy against new VOCs bind an epitope formed by conserved residues that seem to be evolutionarily conserved as thus, critical for the RBD:hACE-2 interaction. The information reviewed here should help to design new and more efficacious antibodies to prevent and/or treat COVID-19, as well as other infectious diseases.
Subject(s)
COVID-19 Drug Treatment , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Epitopes , Humans , Membrane Glycoproteins/metabolism , Neutralization Tests , Pandemics , SARS-CoV-2 , United States , Viral Envelope Proteins/geneticsABSTRACT
The effectiveness of therapeutic monoclonal antibodies (mAbs) against variants of the SARS-CoV-2 virus is highly variable. As target recognition of mAbs relies on tight binding affinity, we assessed the affinities of five therapeutic mAbs to the receptor binding domain (RBD) of wild type (A), Delta (B.1.617.2), and Omicron BA.1 SARS-CoV-2 (B.1.1.529.1) spike using microfluidic diffusional sizing (MDS). Four therapeutic mAbs showed strongly reduced affinity to Omicron BA.1 RBD, whereas one (sotrovimab) was less impacted. These affinity reductions correlate with reduced antiviral activities suggesting that affinity could serve as a rapid indicator for activity before time-consuming virus neutralization assays are performed. We also compared the same mAbs to serological fingerprints (affinity and concentration) obtained by MDS of antibodies in sera of 65 convalescent individuals. The affinities of the therapeutic mAbs to wild type and Delta RBD were similar to the serum antibody response, indicating high antiviral activities. For Omicron BA.1 RBD, only sotrovimab retained affinities within the range of the serum antibody response, in agreement with high antiviral activity. These results suggest that serological fingerprints provide a route to evaluating affinity and antiviral activity of mAb drugs and could guide the development of new therapeutics.
Subject(s)
COVID-19 Drug Treatment , Spike Glycoprotein, Coronavirus , Humans , Neutralization Tests , Spike Glycoprotein, Coronavirus/chemistry , Antibodies, Viral , Viral Envelope Proteins , Antiviral Agents/pharmacology , Membrane Glycoproteins/chemistry , SARS-CoV-2 , Antibodies, MonoclonalABSTRACT
BACKGROUND: Triggering receptor expressed on myeloid cells 2 (Trem2) plays a protective role in neurodegenerative diseases. By contrast, Trem2 functions can exacerbate tissue damage during respiratory viral or liver infections. We, therefore, investigated the role of Trem2 in a viral encephalomyelitis model associated with prominent Th1 mediated antiviral immunity leading to demyelination. METHODS: Wild-type (WT) and Trem2 deficient (Trem2-/-) mice were infected with a sublethal glia tropic murine coronavirus (MHV-JHM) intracranially. Disease progression and survival were monitored daily. Leukocyte accumulation and pathological features including demyelination and axonal damage in spinal cords (SC) were determined by flow cytometry and tissue section immunofluorescence analysis. Expression of select inflammatory cytokines and chemokines was measured by RT-PCR and global myeloid cell gene expression in SC-derived microglia and infiltrated bone-marrow-derived macrophages (BMDM) were determined using the Nanostring nCounter platform. RESULTS: BMDM recruited to SCs in response to infection highly upregulated Trem2 mRNA compared to microglia coincident with viral control. Trem2 deficiency did not alter disease onset or severity, but impaired clinical recovery after onset of demyelination. Disease progression in Trem2-/- mice could not be attributed to altered virus control or an elevated proinflammatory response. A prominent difference was increased degenerated myelin not associated with the myeloid cell markers IBA1 and/or CD68. Gene expression profiles of SC-derived microglia and BMDM further revealed that Trem2 deficiency resulted in impaired upregulation of phagocytosis associated genes Lpl and Cd36 in microglia, but a more complex pattern in BMDM. CONCLUSIONS: Trem2 deficiency during viral-induced demyelination dysregulates expression of other select genes regulating phagocytic pathways and lipid metabolism, with distinct effects on microglia and BMDM. The ultimate failure to remove damaged myelin is reminiscent of toxin or autoimmune cell-induced demyelination models and supports that Trem2 function is regulated by sensing tissue damage including a dysregulated lipid environment in very distinct inflammatory environments.
Subject(s)
Brain , Demyelinating Diseases , Animals , Mice , Brain/metabolism , Phagocytosis/genetics , Microglia/metabolism , Demyelinating Diseases/chemically induced , Disease Progression , Gene Expression , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolismABSTRACT
The COVID-19 pandemic has boosted significant research in developing monoclonal antibodies (mAbs) to treat and prevent SARS-CoV-2 infection. Clinical trials have shown that mAbs are safe and effective in preventing hospitalization and death in patients with mild to moderate COVID-19 risk factors for progression. mAbs have also been effective for treating severe disease in seronegative patients and preventing COVID-19. So far, studies have been carried out in a largely unvaccinated population at a time when the omicron variant was not described. Future research should address these limitations and provide information on specific population groups, including immunosuppressed and previously infected individuals.
Subject(s)
Antibodies, Neutralizing , COVID-19 , Humans , Antibodies, Neutralizing/therapeutic use , Neutralization Tests , SARS-CoV-2 , Antibodies, Viral/therapeutic use , Pandemics , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins , Membrane Glycoproteins , Antibodies, Monoclonal/therapeutic useABSTRACT
BACKGROUND: The continual emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern, in particular the newly emerged Omicron (B.1.1.529) variant and its BA.X lineages, has rendered ineffective a number of previously FDA emergency use authorized SARS-CoV-2 neutralizing antibody therapies. Furthermore, those approved antibodies with neutralizing activity against Omicron BA.1 are reportedly ineffective against the subset of Omicron subvariants that contain a R346K substitution, BA.1.1, and the more recently emergent BA.2, demonstrating the continued need for discovery and characterization of candidate therapeutic antibodies with the breadth and potency of neutralizing activity required to treat newly diagnosed COVID-19 linked to recently emerged variants of concern. METHODS: Following a campaign of antibody discovery based on the vaccination of Harbor H2L2 mice with defined SARS-CoV-2 spike domains, we have characterized the activity of a large collection of spike-binding antibodies and identified a lead neutralizing human IgG1 LALA antibody, STI-9167. FINDINGS: STI-9167 has potent, broad-spectrum neutralizing activity against the current SARS-COV-2 variants of concern and retained activity against each of the tested Omicron subvariants in both pseudotype and live virus neutralization assays. Furthermore, STI-9167 nAb administered intranasally or intravenously provided protection against weight loss and reduced virus lung titers to levels below the limit of quantitation in Omicron-infected K18-hACE2 transgenic mice. CONCLUSIONS: With this established activity profile, a cGMP cell line has been developed and used to produce cGMP drug product intended for intravenous or intranasal use in human clinical trials. FUNDING: Funded by CRIPT (no. 75N93021R00014), DARPA (HR0011-19-2-0020), and NCI Seronet (U54CA260560).
Subject(s)
Antibodies, Neutralizing , COVID-19 Drug Treatment , Administration, Intranasal , Animals , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Humans , Immunoglobulin G , Membrane Glycoproteins , Mice , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope ProteinsABSTRACT
SARS-CoV-2 worldwide spread and evolution has resulted in variants containing mutations resulting in immune evasive epitopes that decrease vaccine efficacy. We acquired SARS-CoV-2 positive clinical samples and compared the worldwide emerged spike mutations from Variants of Concern/Interest, and developed an algorithm for monitoring the evolution of SARS-CoV-2 in the context of vaccines and monoclonal antibodies. The algorithm partitions logarithmic-transformed prevalence data monthly and Pearson's correlation determines exponential emergence of amino acid substitutions (AAS) and lineages. The SARS-CoV-2 genome evaluation indicated 49 mutations, with 44 resulting in AAS. Nine of the ten most worldwide prevalent (>70%) spike protein changes have Pearson's coefficient r > 0.9. The tenth, D614G, has a prevalence >99% and r-value of 0.67. The resulting algorithm is based on the patterns these ten substitutions elucidated. The strong positive correlation of the emerged spike protein changes and algorithmic predictive value can be harnessed in designing vaccines with relevant immunogenic epitopes. Monitoring, next-generation vaccine design, and mAb clinical efficacy must keep up with SARS-CoV-2 evolution, as the virus is predicted to remain endemic.
Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Algorithms , Antibodies, Monoclonal , COVID-19/epidemiology , COVID-19/prevention & control , Epitopes , Humans , Membrane Glycoproteins/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/geneticsABSTRACT
The emergence of Omicron variant raises great concerns because of its rapid transmissibility and its numerous mutations in spike protein (S-protein). S-protein can act as a pathogen-associated molecular pattern and complement activator as well as antigen. We compared some immune characteristics of trimer S-proteins for wild type (WT-S) and B.1.1.529 Omicron (Omicron-S) to investigate whether the mutations have affected its pathogenicity and antigenic shift. The results indicated that WT-S and Omicron-S directly activated nuclear factor-κB (NF-κB) and induced the release of pro-inflammatory cytokines in macrophages, but the actions of Omicron-S were weaker. These inflammatory reactions could be abrogated by a Toll-like receptor 4 antagonist TAK-242. Two S-proteins failed to induce the production of antiviral molecular interferon-ß. In contrast to pro-inflammatory effects, the ability of two S-proteins to activate complement was comparable. We also compared the binding ability of two S-proteins to a high-titer anti-WT-receptor-binding domain antibody. The data showed that WT-S strongly bound to this antibody, while Omicron-S was completely off-target. Collectively, the mutations of Omicron have a great impact on the pro-inflammatory ability and epitopes of S-protein, but little effect on its ability to activate complement. Addressing these issues can be helpful for more adequate understanding of the pathogenicity of Omicron and the vaccine breakthrough infection.
Subject(s)
COVID-19 , Vaccines , Antiviral Agents , Cytokines , Epitopes , Humans , Interferon-beta/genetics , Membrane Glycoproteins/genetics , NF-kappa B , Pathogen-Associated Molecular Pattern Molecules , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Toll-Like Receptor 4/genetics , Viral Envelope Proteins/geneticsABSTRACT
COVID-19 vaccines are playing a vital role in controlling the COVID-19 pandemic. As SARS-CoV-2 variants encoding mutations in the surface glycoprotein, Spike, continue to emerge, there is increased need to identify immunogens and vaccination regimens that provide the broadest and most durable immune responses. We compared the magnitude and breadth of the neutralizing antibody response, as well as levels of Spike-reactive memory B cells, in individuals receiving a second dose of BNT162b2 at a short (3-4 week) or extended interval (8-12 weeks) and following a third vaccination approximately 6-8 months later. We show that whilst an extended interval between the first two vaccinations can greatly increase the breadth of the immune response and generate a higher proportion of Spike reactive memory B cells, a third vaccination leads to similar levels between the two groups. Furthermore, we show that the third vaccine dose enhances neutralization activity against omicron lineage members BA.1, BA.2 and BA.4/BA.5 and this is further increased following breakthrough infection during the UK omicron wave. These findings are relevant for vaccination strategies in populations where COVID-19 vaccine coverage remains low.
Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Membrane Glycoproteins/genetics , Pandemics , SARS-CoV-2/genetics , VaccinationABSTRACT
The SARS-CoV-2 Omicron variant (B.1.1.529 lineage) escapes antibodies that neutralize the ancestral virus. We tested human serum panels from participants with differing infection and vaccination status using a multiplex surrogate virus neutralization assay targeting 20 sarbecoviruses. We found that bat and pangolin sarbecoviruses showed significantly less neutralization escape than the Omicron variant. We propose that SARS-CoV-2 variants have emerged under immune selection pressure and are evolving differently from animal sarbecoviruses.
Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/genetics , Neutralization Tests , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins , Antibodies, Viral , Membrane GlycoproteinsABSTRACT
Understanding immune responses after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) breakthrough infection will facilitate the development of next-generation vaccines. Here, we profiled spike (S)-specific B cell responses after Omicron/BA.1 infection in messenger RNA-vaccinated donors. The acute antibody response was characterized by high levels of somatic hypermutation and a bias toward recognition of ancestral SARS-CoV-2 strains, suggesting the early activation of vaccine-induced memory B cells. BA.1 breakthrough infection induced a shift in B cell immunodominance hierarchy from the S2 subunit, which is highly conserved across SARS-CoV-2 variants of concern (VOCs), and toward the antigenically variable receptor binding domain (RBD). A large proportion of RBD-directed neutralizing antibodies isolated from BA.1 breakthrough infection donors displayed convergent sequence features and broadly recognized SARS-CoV-2 VOCs. Together, these findings provide insights into the role of preexisting immunity in shaping the B cell response to heterologous SARS-CoV-2 variant exposure.
Subject(s)
B-Lymphocytes , COVID-19 , Immunologic Memory , Antibodies, Viral , B-Lymphocytes/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Cross Reactions , Humans , Membrane Glycoproteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope ProteinsABSTRACT
Given that COVID-19 continues to wreak havoc around the world, it is imperative to search for a conserved region involved in viral infection so that effective vaccines can be developed to prevent the virus from rapid mutations. We have established a twelve-fragment library of recombinant proteins covering the entire region of spike protein of both SARS-CoV-2 and SARS-CoV from Escherichia coli. IgGs from murine antisera specifically against 6 spike protein fragments of SARS-CoV-2 were produced, purified, and characterized. We found that one specific IgG against the fusion process region, named COVID19-SF5, serologically cross-reacted with all twelve S-protein fragments. COVID19-SF5, with amino acid sequences from 880 to 1084, specifically bound to VERO-E6 and BEAS-2B cells, with Kd values of 449.1 ± 21.41 and 381.9 ± 31.53 nM, and IC50 values of 761.2 ± 28.2 nM and 862.4 ± 32.1 nM, respectively. In addition, COVID19-SF5 greatly enhanced binding of the full-length CHO cell-derived spike protein to the host cells in a concentration-dependent manner. Furthermore, COVID19-SF5 and its IgGs inhibited the infection of the host cells by pseudovirus. The combined data from our studies reveal that COVID19-SF5, a novel cell-binding fragment, may contain a common region(s) for mediating viral binding during infection. Our studies also provide valuable insights into how virus variants may evade host immune recognition. Significantly, the observation that the IgGs against COVID19-SF5 possesses cross reactivity to all other fragments of S protein, suggesting that it is possible to develop universal neutralizing monoclonal antibodies to curb rapid mutations of COVID-19.
Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal , Antibodies, Viral , Immune Sera , Immunoglobulin G , Membrane Glycoproteins/chemistry , Mice , Recombinant Proteins/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope ProteinsABSTRACT
The worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the repeated emergence of variants of concern. For the Omicron variant, sub-lineages BA.1 and BA.2, respectively, contain 33 and 29 nonsynonymous and indel spike protein mutations. These amino acid substitutions and indels are implicated in increased transmissibility and enhanced immune evasion. By reverting individual spike mutations of BA.1 or BA.2, we characterize the molecular effects of the Omicron spike mutations on expression, ACE2 receptor affinity, and neutralizing antibody recognition. We identified key mutations enabling escape from neutralizing antibodies at a variety of epitopes. Stabilizing mutations in the N-terminal and S2 domains of the spike protein can compensate for destabilizing mutations in the receptor binding domain, enabling the record number of mutations in Omicron. Our results provide a comprehensive account of the mutational effects in the Omicron spike protein and illustrate previously uncharacterized mechanisms of host evasion.
Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/genetics , Antibodies, Neutralizing/genetics , Antibodies, Viral , Epitopes , Humans , Membrane Glycoproteins , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope ProteinsABSTRACT
A new detection strategy was developed to improve the sensitivity of a lateral flow immunoassay platform utilizing a delayed hydrophobic barrier fabricated with trimethylsilyl cellulose (TMSC). The SARS-CoV-2 spike receptor-binding domain (SARS-CoV-2 SP RBD) antigen was chosen as a model analyte to demonstrate the superior detectability of this scheme. The novel device consists of 2 separate layers, so-called delayed lateral flow immunoassay (d-LFIA). The upper layer is intended for the analyte or sample flow path, where the test solution flows freely straight to the detection zone to bind with the primary antibody. The lower layer, located just underneath, is designed for the SARS-CoV-2 spike receptor-binding domain-conjugated gold nanoparticles (SARS-CoV-2 SP RBD-AuNPs) used for producing a colorimetric signal. This layer is fabricated with a TMSC barrier to time-delay the movement of SARS-CoV-2 SP RBD-AuNPs, thus allowing the antigen to bind with the primary antibody more efficiently. This platform exhibited a 2.6-fold enhancement in the sensitivity and 9.1-fold improvement in the limit of detection (LOD) as compared with the conventional LFIA. In addition, this d-LFIA device was satisfactorily applied to accurate screening of COVID-19 patients.
Subject(s)
COVID-19 , Metal Nanoparticles , Antibodies , COVID-19/diagnosis , Cellulose , Gold , Humans , Immunoassay , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolismABSTRACT
Since late 2019, the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resultant spread of COVID-19 have given rise to a worldwide health crisis that is posing great challenges to public health and clinical treatment, in addition to serving as a formidable threat to the global economy. To obtain an effective tool to prevent and diagnose viral infections, we attempted to obtain human antibody fragments that can effectively neutralize viral infection and be utilized for rapid virus detection. To this end, several human monoclonal antibodies were isolated by bio-panning a phage-displayed human antibody library, Tomlinson I. The selected clones were demonstrated to bind to the S1 domain of the spike glycoprotein of SARS-CoV-2. Moreover, clone A7 in Fab and IgG formats were found to effectively neutralize the binding of S protein to angiotensin-converting enzyme 2 in the low nM range. In addition, this clone was successfully converted to quench-based fluorescent immunosensors (Quenchbodies) that allowed antigen detection within a few minutes, with the help of a handy fluorometer.
Subject(s)
Bacteriophages , Biosensing Techniques , COVID-19 , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Bacteriophages/metabolism , COVID-19/diagnosis , Humans , Immunoassay , Immunoglobulin Fragments , Immunoglobulin G , Membrane Glycoproteins/metabolism , Peptide Library , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins/metabolismABSTRACT
The SARS-CoV-2 Omicron variant is characterized by substantial changes in the antigenic structure of the Spike (S) protein. Therefore, antibodies induced by primary Omicron infection lack neutralizing activity against earlier variants. In this study, we analyzed whether these antigenic changes impact the sensitivity of commercial anti-SARS-CoV-2 antibody assays. Sera from 37 unvaccinated, convalescent individuals after putative primary Omicron infection were tested with a panel of 20 commercial anti-SARS-CoV-2 immunoassays. As controls, we used samples from 43 individuals after primary infection with the SARS-CoV-2 ancestral wild-type strain. In addition, variant-specific live-virus neutralization assays were used as a reference for the presence of SARS-CoV-2-specific antibodies in the samples. Notably, in Omicron convalescents, there was a statistically significant reduction in the sensitivity of all antibody assays containing S or its receptor-binding-domain (RBD) as antigens. Furthermore, antibody levels quantified by these assays displayed a weaker correlation with Omicron-specific neutralizing antibody titers than with those against the wild type. In contrast, the sensitivity of nucleocapsid-protein-specific immunoassays was similar in wild-type and Omicron-infected subjects. In summary, the antigenic changes in the Omicron S lead to reduced immunoreactivity in the current commercial S- and RBD-specific antibody assays, impairing their diagnostic performance. IMPORTANCE This study demonstrates that the antigenic changes of the SARS-CoV-2 Omicron variant affect test results from commercial Spike- and RBD-specific antibody assays, significantly diminishing their sensitivities and diagnostic abilities to assess neutralizing antibodies.
Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Neutralization Tests , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , SARS-CoV-2 , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , COVID-19/diagnosis , Antibodies, Viral , Antibodies, NeutralizingABSTRACT
Natural ligand-receptor interactions that play pivotal roles in biological events are ideal models for design and assembly of artificial recognition molecules. Herein, aiming at the structural characteristics of the spike trimer and infection mechanism of SARS-CoV-2, we have designed a DNA framework-guided spatial-patterned neutralizing aptamer trimer for SARS-CoV-2 neutralization. The â¼5.8 nm tetrahedral DNA framework affords precise spatial organization and matched valence as four neutralizing aptamers (MATCH-4), which matches with nanometer precision the topmost surface of SARS-CoV-2 spike trimer, enhancing the interaction between MATCH-4 and spike trimer. Moreover, the DNA framework provides a dimensionally complementary nanoscale barrier to prevent the spike trimer-ACE2 interaction and the conformational transition, thereby inhibiting SARS-CoV-2-host cell fusion and infection. As a result, the spatial- and valence-matched MATCH-4 ensures improved binding affinity and neutralizing activity against SARS-CoV-2 and its varied mutant strains, particularly the current Omicron variant, that are evasive of the majority of existing neutralizing antibodies. In addition, because neutralizing aptamers specific to other targets can be evolved and assembled, the present design has the potential to inhibit other wide-range and emerging pathogens.
Subject(s)
COVID-19 , Nanostructures , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , Antibodies, Viral , DNA , Humans , Ligands , Membrane Glycoproteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/chemistryABSTRACT
The SARS-CoV-2 Omicron variant has rapidly replaced the Delta variant of concern. This new variant harbors worrisome mutations on the spike protein, which are able to escape the immunity elicited by vaccination and/or natural infection. To evaluate the impact and susceptibility of different serum samples to the Omicron variant BA.1, samples from COVID-19 patients and vaccinated individuals were tested for their ability to bind and neutralize the original SARS-CoV-2 virus and the Omicron variant BA.1. COVID-19 patients show the most drastic reduction in Omicron-specific antibody response in comparison with the response to the wild-type virus. Antibodies elicited by a triple homologous/heterologous vaccination regimen or following natural SARS-CoV-2 infection combined with a two-dose vaccine course, result in highest neutralization capacity against the Omicron variant BA.1. Overall, these findings confirm that vaccination of COVID-19 survivors and booster dose to vaccinees with mRNA vaccines is the correct strategy to enhance the antibody cross-protection against Omicron variant BA.1.
Subject(s)
COVID-19 , SARS-CoV-2 , Antibody Formation , COVID-19/prevention & control , Humans , Membrane Glycoproteins/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Viral Envelope Proteins/geneticsABSTRACT
Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection.
Subject(s)
COVID-19 , Genome-Wide Association Study , COVID-19/epidemiology , COVID-19/genetics , Humans , Japan/epidemiology , Lectins, C-Type/genetics , Membrane Glycoproteins/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Receptors, Immunologic/geneticsABSTRACT
Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants, the effects in vivo remain largely unknown. Here, we report on the protective efficacy against three SARS-CoV-2 Omicron lineage strains (BA.1, BA.1.1, and BA.2) of two monoclonal antibody therapeutics (S309 [Vir Biotechnology] monotherapy and AZD7442 [AstraZeneca] combination), which correspond to ones used to treat or prevent SARS-CoV-2 infections in humans. Despite losses in neutralization potency in cell culture, S309 or AZD7442 treatments reduced BA.1, BA.1.1, and BA.2 lung infection in susceptible mice that express human ACE2 (K18-hACE2) in prophylactic and therapeutic settings. Correlation analyses between in vitro neutralizing activity and reductions in viral burden in K18-hACE2 or human FcγR transgenic mice suggest that S309 and AZD7442 have different mechanisms of protection against Omicron variants, with S309 utilizing Fc effector function interactions and AZD7442 acting principally by direct neutralization. Our data in mice demonstrate the resilience of S309 and AZD7442 mAbs against emerging SARS-CoV-2 variant strains and provide insight into the relationship between loss of antibody neutralization potency and retained protection in vivo.
Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing , Antibodies, Viral/therapeutic use , Drug Combinations , Humans , Membrane Glycoproteins , Mice , Neutralization Tests , Spike Glycoprotein, Coronavirus , Viral Envelope ProteinsABSTRACT
The COVID-19 pandemic triggered the development of numerous diagnostic tools to monitor infection and to determine immune response. Although assays to measure binding antibodies against SARS-CoV-2 are widely available, more specific tests measuring neutralization activities of antibodies are immediately needed to quantify the extent and duration of protection that results from infection or vaccination. We previously developed a 'Serological Assay based on a Tri-part split-NanoLuc® (SATiN)' to detect antibodies that bind to the spike (S) protein of SARS-CoV-2. Here, we expand on our previous work and describe a reconfigured version of the SATiN assay, called Neutralization SATiN (Neu-SATiN), which measures neutralization activity of antibodies directly from convalescent or vaccinated sera. The results obtained with our assay and other neutralization assays are comparable but with significantly shorter preparation and run time for Neu-SATiN. As the assay is modular, we further demonstrate that Neu-SATiN enables rapid assessment of the effectiveness of vaccines and level of protection against existing SARS-CoV-2 variants of concern and can therefore be readily adapted for emerging variants.