Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cell Chem Biol ; 29(2): 239-248.e4, 2022 02 17.
Article in English | MEDLINE | ID: covidwho-1347527

ABSTRACT

Triggering receptor expressed on myeloid cells-2 (TREM2) is a cell surface receptor on macrophages and microglia that senses and responds to disease-associated signals to regulate the phenotype of these innate immune cells. The TREM2 signaling pathway has been implicated in a variety of diseases ranging from neurodegeneration in the central nervous system to metabolic disease in the periphery. Here, we report that TREM2 is a thyroid hormone-regulated gene and its expression in macrophages and microglia is stimulated by thyroid hormone and synthetic thyroid hormone agonists (thyromimetics). Our findings report the endocrine regulation of TREM2 by thyroid hormone, and provide a unique opportunity to drug the TREM2 signaling pathway with orally active small-molecule therapeutic agents.


Subject(s)
Acetates/pharmacology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Membrane Glycoproteins/genetics , Microglia/drug effects , Phenols/pharmacology , Receptors, Immunologic/genetics , Retinoid X Receptors/genetics , Thyroid Hormones/pharmacology , Acetates/chemical synthesis , Animals , Binding Sites , Brain/drug effects , Brain/immunology , Brain/pathology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Gene Expression Regulation , Humans , Immunity, Innate , Macrophages/drug effects , Macrophages/immunology , Macrophages/pathology , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Microglia/immunology , Microglia/pathology , Models, Molecular , Phenols/chemical synthesis , Phenoxyacetates/pharmacology , Promoter Regions, Genetic , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Messenger/immunology , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/immunology , Response Elements , Retinoid X Receptors/chemistry , Retinoid X Receptors/metabolism , Signal Transduction
2.
JCI Insight ; 6(13)2021 06 18.
Article in English | MEDLINE | ID: covidwho-1346128

ABSTRACT

We explored the potential link between chronic inflammatory arthritis and COVID-19 pathogenic and resolving macrophage pathways and their role in COVID-19 pathogenesis. We found that bronchoalveolar lavage fluid (BALF) macrophage clusters FCN1+ and FCN1+SPP1+ predominant in severe COVID-19 were transcriptionally related to synovial tissue macrophage (STM) clusters CD48hiS100A12+ and CD48+SPP1+ that drive rheumatoid arthritis (RA) synovitis. BALF macrophage cluster FABP4+ predominant in healthy lung was transcriptionally related to STM cluster TREM2+ that governs resolution of synovitis in RA remission. Plasma concentrations of SPP1 and S100A12 (key products of macrophage clusters shared with active RA) were high in severe COVID-19 and predicted the need for Intensive Care Unit transfer, and they remained high in the post-COVID-19 stage. High plasma levels of SPP1 were unique to severe COVID-19 when compared with other causes of severe pneumonia, and IHC localized SPP1+ macrophages in the alveoli of COVID-19 lung. Investigation into SPP1 mechanisms of action revealed that it drives proinflammatory activation of CD14+ monocytes and development of PD-L1+ neutrophils, both hallmarks of severe COVID-19. In summary, COVID-19 pneumonitis appears driven by similar pathogenic myeloid cell pathways as those in RA, and their mediators such as SPP1 might be an upstream activator of the aberrant innate response in severe COVID-19 and predictive of disease trajectory including post-COVID-19 pathology.


Subject(s)
Arthritis, Rheumatoid/immunology , COVID-19/immunology , Monocytes/immunology , Neutrophils/immunology , Osteopontin/immunology , Arthritis, Rheumatoid/metabolism , B7-H1 Antigen/immunology , Bronchoalveolar Lavage Fluid/immunology , CD48 Antigen/immunology , COVID-19/chemically induced , COVID-19/metabolism , Fatty Acid-Binding Proteins/immunology , Humans , Lectins/immunology , Lipopolysaccharide Receptors/immunology , Lipopolysaccharide Receptors/metabolism , Lung/diagnostic imaging , Lung/immunology , Lung/metabolism , Lung/pathology , Macrophages/immunology , Macrophages/metabolism , Membrane Glycoproteins/immunology , Monocytes/metabolism , Neutrophils/metabolism , Osteopontin/blood , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Immunologic/immunology , S100A12 Protein/immunology , S100A12 Protein/metabolism , Synovial Membrane/immunology , Tomography, X-Ray Computed
3.
Front Immunol ; 11: 602254, 2020.
Article in English | MEDLINE | ID: covidwho-1081589

ABSTRACT

Given the aggressive spread of COVID-19-related deaths, there is an urgent public health need to support the development of vaccine candidates to rapidly improve the available control measures against SARS-CoV-2. To meet this need, we are leveraging our existing vaccine platform to target SARS-CoV-2. Here, we generated cellular heat shock chaperone protein, glycoprotein 96 (gp96), to deliver SARS-CoV-2 protein S (spike) to the immune system and to induce cell-mediated immune responses. We showed that our vaccine platform effectively stimulates a robust cellular immune response against protein S. Moreover, we confirmed that gp96-Ig, secreted from allogeneic cells expressing full-length protein S, generates powerful, protein S polyepitope-specific CD4+ and CD8+ T cell responses in both lung interstitium and airways. These findings were further strengthened by the observation that protein-S -specific CD8+ T cells were induced in human leukocyte antigen HLA-A2.1 transgenic mice thus providing encouraging translational data that the vaccine is likely to work in humans, in the context of SARS-CoV-2 antigen presentation.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Lung/immunology , Spike Glycoprotein, Coronavirus/administration & dosage , Animals , COVID-19 Vaccines/pharmacology , Genetic Vectors/immunology , Genetic Vectors/pharmacology , Humans , Immunoglobulin G/immunology , Membrane Glycoproteins/administration & dosage , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
4.
J Immunol ; 206(7): 1478-1482, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1073559

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has become pandemic. Cytokine release syndrome occurring in a minority of SARS-CoV-2 infections is associated with severe disease and high mortality. We profiled the composition, activation, and proliferation of T cells in 20 patients with severe or critical COVID-19 and 40 matched healthy controls by flow cytometry. Unsupervised hierarchical cluster analysis based on 18 T cell subsets resulted in separation of healthy controls and COVID-19 patients. Compared to healthy controls, patients suffering from severe and critical COVID-19 had increased frequencies of activated and proliferating CD38+Ki67+ CD4+ and CD8+ T cells, suggesting active antiviral T cell defense. Frequencies of CD38+Ki67+ Th1 and CD4+ cells correlated negatively with plasma IL-6. Thus, our data suggest that patients suffering from COVID-19 have a distinct T cell composition that is potentially modulated by IL-6.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunity, Cellular , SARS-CoV-2/immunology , Th1 Cells/immunology , ADP-ribosyl Cyclase 1/immunology , Adult , CD8-Positive T-Lymphocytes/pathology , COVID-19/epidemiology , COVID-19/pathology , Female , Humans , Immunophenotyping , Interleukin-6/immunology , Ki-67 Antigen/immunology , Male , Membrane Glycoproteins/immunology , Pandemics , Retrospective Studies , Th1 Cells/pathology
5.
Immunity ; 54(2): 235-246.e5, 2021 02 09.
Article in English | MEDLINE | ID: covidwho-988081

ABSTRACT

The interleukin-6 (IL-6) membrane receptor and its circulating soluble form, sIL-6R, can be targeted by antibody therapy to reduce deleterious immune signaling caused by chronic overexpression of the pro-inflammatory cytokine IL-6. This strategy may also hold promise for treating acute hyperinflammation, such as observed in coronavirus disease 2019 (COVID-19), highlighting a need to define regulators of IL-6 homeostasis. We found that conventional dendritic cells (cDCs), defined in mice via expression of the transcription factor Zbtb46, were a major source of circulating sIL-6R and, thus, systemically regulated IL-6 signaling. This was uncovered through identification of a cDC-dependent but T cell-independent modality that naturally adjuvants plasma cell differentiation and antibody responses to protein antigens. This pathway was then revealed as part of a broader biological buffer system in which cDC-derived sIL-6R set the in-solution persistence of IL-6. This control axis may further inform the development of therapeutic agents to modulate pro-inflammatory immune reactions.


Subject(s)
Dendritic Cells/immunology , Interleukin-6/blood , Interleukin-6/immunology , ADAM17 Protein , Animals , Cell Differentiation , Immunity, Humoral , Immunoglobulin M/immunology , Inflammation , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/immunology , Interleukin-6/genetics , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plasma Cells/immunology , Receptors, Interleukin-6/blood , Receptors, Interleukin-6/immunology , Signal Transduction/immunology , Toll-Like Receptor 4/immunology , Toll-Like Receptor 7/immunology
6.
Mol Ther ; 28(12): 2691-2702, 2020 12 02.
Article in English | MEDLINE | ID: covidwho-927132

ABSTRACT

Preventing the progression to acute respiratory distress syndrome (ARDS) in COVID-19 is an unsolved challenge. The involvement of T cell immunity in this exacerbation remains unclear. To identify predictive markers of COVID-19 progress and outcome, we analyzed peripheral blood of 10 COVID-19-associated ARDS patients and 35 mild/moderate COVID-19 patients, not requiring intensive care. Using multi-parametric flow cytometry, we compared quantitative, phenotypic, and functional characteristics of circulating bulk immune cells, as well as SARS-CoV-2 S-protein-reactive T cells between the two groups. ARDS patients demonstrated significantly higher S-protein-reactive CD4+ and CD8+ T cells compared to non-ARDS patients. Of interest, comparison of circulating bulk T cells in ARDS patients to non-ARDS patients demonstrated decreased frequencies of CD4+ and CD8+ T cell subsets, with activated memory/effector T cells expressing tissue migration molecule CD11a++. Importantly, survival from ARDS (4/10) was accompanied by a recovery of the CD11a++ T cell subsets in peripheral blood. Conclusively, data on S-protein-reactive polyfunctional T cells indicate the ability of ARDS patients to generate antiviral protection. Furthermore, decreased frequencies of activated memory/effector T cells expressing tissue migratory molecule CD11a++ observed in circulation of ARDS patients might suggest their involvement in ARDS development and propose the CD11a-based immune signature as a possible prognostic marker.


Subject(s)
COVID-19/immunology , Immunologic Memory/immunology , Pandemics , Respiratory Distress Syndrome/immunology , Adult , Aged , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/virology , Female , Humans , Male , Membrane Glycoproteins/immunology , Middle Aged , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , T-Lymphocyte Subsets/immunology
7.
Front Immunol ; 11: 576622, 2020.
Article in English | MEDLINE | ID: covidwho-895306

ABSTRACT

The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses a grave threat to global public health and imposes a severe burden on the entire human society. Like other coronaviruses, the SARS-CoV-2 genome encodes spike (S) glycoproteins, which protrude from the surface of mature virions. The S glycoprotein plays essential roles in virus attachment, fusion and entry into the host cell. Surface location of the S glycoprotein renders it a direct target for host immune responses, making it the main target of neutralizing antibodies. In the light of its crucial roles in viral infection and adaptive immunity, the S protein is the focus of most vaccine strategies as well as therapeutic interventions. In this review, we highlight and describe the recent progress that has been made in the biosynthesis, structure, function, and antigenicity of the SARS-CoV-2 S glycoprotein, aiming to provide valuable insights into the design and development of the S protein-based vaccines as well as therapeutics.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Antibodies, Neutralizing/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Humans , Membrane Glycoproteins/immunology , Membrane Glycoproteins/metabolism , Pneumonia, Viral/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
8.
Front Immunol ; 11: 565278, 2020.
Article in English | MEDLINE | ID: covidwho-796802

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to an outbreak of a pandemic worldwide. For better understanding the viral spike (S) protein variations and its potential effects on the interaction with the host immune system and also in vaccine development, the cell epitopes, glycosylation profile and their changes during the global transmission course were characterized and compared with SARS-CoV for their glycosylation profile. We analyzed totally 7,813 sequences screened from 8,897 whole genome sequences on GISAID database up to April 26, and 18 S protein amino acid variations with relatively high frequency (≥10-3) were identified. A total of 228 sequences of variants had multiple variations, of note, most of them harboring the D614G mutation. Among the predicted 69 linear B cell epitopes, 175 discontinuous B cell epitopes and 41 cytotoxic T lymphocyte epitopes in the viral S protein, we found that the protein structure and its potential function of some sites changed, such as the linear epitope length shortened and discontinuous epitope disappeared of G476S. In addition, we detected 9 predicted N-glycosylation sites and 3 O-glycosylation sites unique to SARS-CoV-2, but no evidently observed variation of the glycan sites so far. Our findings provided an important snapshot of temporal and geographical distributions on SARS-CoV-2 S protein cell epitopes and glycosylation sites, which would be an essential basis for the selection of vaccine candidates.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/transmission , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/transmission , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , COVID-19 , Coronavirus Infections/virology , Genome, Viral/genetics , Glycosylation , Host-Pathogen Interactions/immunology , Humans , Membrane Glycoproteins/immunology , Pandemics , Pneumonia, Viral/virology , Protein Conformation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Whole Genome Sequencing
9.
Infect Genet Evol ; 84: 104498, 2020 10.
Article in English | MEDLINE | ID: covidwho-696004

ABSTRACT

New coronavirus SARS-CoV-2 is capable to infect humans and cause a novel disease COVID-19. Aiming to understand a host genetic component of COVID-19, we focused on variants in genes encoding proteases and genes involved in innate immunity that could be important for susceptibility and resistance to SARS-CoV-2 infection. Analysis of sequence data of coding regions of FURIN, PLG, PRSS1, TMPRSS11a, MBL2 and OAS1 genes in 143 unrelated individuals from Serbian population identified 22 variants with potential functional effect. In silico analyses (PolyPhen-2, SIFT, MutPred2 and Swiss-Pdb Viewer) predicted that 10 variants could impact the structure and/or function of proteins. These protein-altering variants (p.Gly146Ser in FURIN; p.Arg261His and p.Ala494Val in PLG; p.Asn54Lys in PRSS1; p.Arg52Cys, p.Gly54Asp and p.Gly57Glu in MBL2; p.Arg47Gln, p.Ile99Val and p.Arg130His in OAS1) may have predictive value for inter-individual differences in the response to the SARS-CoV-2 infection. Next, we performed comparative population analysis for the same variants using extracted data from the 1000 Genomes project. Population genetic variability was assessed using delta MAF and Fst statistics. Our study pointed to 7 variants in PLG, TMPRSS11a, MBL2 and OAS1 genes with noticeable divergence in allelic frequencies between populations worldwide. Three of them, all in MBL2 gene, were predicted to be damaging, making them the most promising population-specific markers related to SARS-CoV-2 infection. Comparing allelic frequencies between Serbian and other populations, we found that the highest level of genetic divergence related to selected loci was observed with African, followed by East Asian, Central and South American and South Asian populations. When compared with European populations, the highest divergence was observed with Italian population. In conclusion, we identified 4 variants in genes encoding proteases (FURIN, PLG and PRSS1) and 6 in genes involved in the innate immunity (MBL2 and OAS1) that might be relevant for the host response to SARS-CoV-2 infection.


Subject(s)
Coronavirus Infections/genetics , Disease Resistance/genetics , Genetic Predisposition to Disease , Host-Pathogen Interactions/genetics , Metagenomics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/genetics , Spike Glycoprotein, Coronavirus/genetics , Alleles , Angiotensin-Converting Enzyme 2 , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/immunology , Eye Proteins/genetics , Eye Proteins/immunology , Furin/genetics , Furin/immunology , Gene Frequency , Genetic Variation , Genome, Human , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/immunology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Pandemics , Peptidyl-Dipeptidase A/immunology , Plasminogen/genetics , Plasminogen/immunology , Pneumonia, Viral/immunology , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Trypsin/genetics , Trypsin/immunology
10.
Med Hypotheses ; 144: 110044, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-623607

ABSTRACT

The SARS-CoV-2 hyperinflammatory response is associated with high mortality. This hypothesis suggests that a deficiency of nicotinamide adenine dinucleotide (NAD+) may be the primary factor related to the SARS-Cov-2 disease spectrum and the risk for mortality, as subclinical nutritional deficiencies may be unmasked by any significant increase in oxidative stress. NAD+ levels decline with age and are also reduced in conditions associated with oxidative stress as occurs with hypertension, diabetes and obesity. These groups have also been observed to have high mortality following infection with COVID-19. Further consumption of NAD+ in a pre-existent depleted state is more likely to cause progression to the hyperinflammatory stage of the disease through its limiting effects on the production of SIRT1. This provides a unifying hypothesis as to why these groups are at high risk of mortality and suggests that nutritional support with NAD+ and SIRT1 activators, could minimise disease severity if administered prophylactically and or therapeutically. The significance of this, if proven, has far-reaching consequences in the management of COVID-19 especially in third world countries, where resources and finances are limited.


Subject(s)
COVID-19/immunology , Diabetes Mellitus, Type 2/complications , NAD/deficiency , Obesity/complications , Sirtuin 1/immunology , ADAM17 Protein/immunology , ADP-ribosyl Cyclase 1/immunology , Age Factors , Aged , Aging , COVID-19/mortality , Diabetes Mellitus, Type 2/immunology , Disease Progression , Disease Susceptibility , Humans , Inflammation , Membrane Glycoproteins/immunology , NAD/chemistry , Obesity/immunology , Oxidative Stress , Protein Binding , Virus Replication , Zinc/chemistry
11.
Emerg Microbes Infect ; 9(1): 680-686, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-13830

ABSTRACT

Pseudoviruses are useful virological tools because of their safety and versatility, especially for emerging and re-emerging viruses. Due to its high pathogenicity and infectivity and the lack of effective vaccines and therapeutics, live SARS-CoV-2 has to be handled under biosafety level 3 conditions, which has hindered the development of vaccines and therapeutics. Based on a VSV pseudovirus production system, a pseudovirus-based neutralization assay has been developed for evaluating neutralizing antibodies against SARS-CoV-2 in biosafety level 2 facilities. The key parameters for this assay were optimized, including cell types, cell numbers, virus inoculum. When tested against the SARS-CoV-2 pseudovirus, SARS-CoV-2 convalescent patient sera showed high neutralizing potency, which underscore its potential as therapeutics. The limit of detection for this assay was determined as 22.1 and 43.2 for human and mouse serum samples respectively using a panel of 120 negative samples. The cutoff values were set as 30 and 50 for human and mouse serum samples, respectively. This assay showed relatively low coefficient of variations with 15.9% and 16.2% for the intra- and inter-assay analyses respectively. Taken together, we established a robust pseudovirus-based neutralization assay for SARS-CoV-2 and are glad to share pseudoviruses and related protocols with the developers of vaccines or therapeutics to fight against this lethal virus.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Immune Sera/immunology , Neutralization Tests , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , COVID-19 , Cell Line , Coronavirus Infections/therapy , Humans , Immunization, Passive , Limit of Detection , Membrane Glycoproteins/immunology , Mice , Plasmids , Reproducibility of Results , SARS-CoV-2 , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/genetics , Vesicular stomatitis Indiana virus/genetics , Viral Envelope Proteins/immunology , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL