Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 230
Filter
1.
Stem Cell Res Ther ; 14(1): 118, 2023 05 04.
Article in English | MEDLINE | ID: covidwho-2316661

ABSTRACT

BACKGROUND: Elevated levels of inflammatory factors are associated with poor prognosis in coronavirus disease-19 (COVID-19). However, mesenchymal stem cells (MSCs) have immunomodulatory functions. Accordingly, this meta-analysis aimed to determine the efficacy and safety of MSC-based therapy in patients with COVID-19 pneumonia. METHODS: Online global databases were used to find relevant studies. Two independent researchers then selected and evaluated the studies for suitability while the Cochrane risk of bias tool determined the quality of all articles and Cochran's Q test and I2 index assessed the degree of heterogeneity in the principal studies. Statistical analysis was performed using Review Manager software, and the effect of each study on the overall estimate was evaluated by sensitivity analysis. RESULTS: Seven studies were included in the meta-analysis, and all MSCs used in the trials were acquired from the umbilical cord. The results of these studies (n = 328) indicated that patients with COVID-19 pneumonia who received MSCs had a 0.58 risk of death compared with controls (95% CI = 0.38, 0.87; P = 0.53; I2 = 0%). In terms of inflammatory biomarkers, MSCs reduced the levels of C-reactive protein (n = 88; MD = - 32.49; 95% CI = - 48.43, - 16.56; P = 0.46; I2 = 0%) and interferon-gamma (n = 44; SMD = - 1.23; 95% CI = - 1.89, - 0.57; P = 0.37; I2 = 0%) in severe COVID-19 patients but had no significant effect on interleukin-6 (n = 185; MD = - 0.75; 95% CI = - 7.76, 6.27; P = 0.57; I2 = 0%). A summary of the data revealed no significant differences in adverse events (n = 287) or serious adverse events (n = 229) between the MSC and control groups. CONCLUSIONS: Infusion of umbilical cord-derived MSCs is an effective strategy for treating patients with COVID-19 pneumonia, with no noticeable adverse effects.


Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , COVID-19/therapy , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cell Transplantation/methods , Randomized Controlled Trials as Topic , Umbilical Cord
2.
Ther Adv Respir Dis ; 17: 17534666231158276, 2023.
Article in English | MEDLINE | ID: covidwho-2319790

ABSTRACT

BACKGROUND: In coronavirus disease 2019 (COVID-19) patients, elevated levels of inflammatory cytokines from over stimulation of immune cells have become a concern due to the potential outburst of cytokine storm that damages the tissues and organs, especially the lungs. This leads to the manifestation of COVID-19 symptoms, such as pneumonia, acute respiratory distress syndrome (ARDS), multiple organ failure, and eventually death. Mesenchymal stromal/stem cells (MSCs) are currently one of hopeful approaches in treating COVID-19 considering its anti-inflammatory and immunomodulatory functions. On that account, the number of clinical trials concerning the use of MSCs for COVID-19 has been increasing. However, the number of systematic reviews and meta-analysis that specifically discuss its potential as treatment for the disease is still lacking. Therefore, this review will assess the safety and efficacy of MSC administration in COVID-19 patients. OBJECTIVES: To pool evidence on the safety and efficacy of MSCs in treating COVID-19 by observing MSC-related adverse effects as well as evaluating its effects in reducing inflammatory response and improving pulmonary function. DATA SOURCES AND METHODS: Following literature search across six databases and one trial register, full-text retrieval, and screening against eligibility criteria, only eight studies were included for data extraction. All eight studies evaluated the use of umbilical cord-derived mesenchymal stromal/stem cell (UC-MSC), infused intravenously. Of these eight studies, six studies were included in meta-analysis on the incidence of mortality, adverse events (AEs), and serious adverse events (SAEs), and the levels of C-reactive protein (CRP) and interleukin (IL)-6. Meta-analysis on pulmonary function was not performed due to insufficient data. RESULTS: MSC-treated group showed significantly lower risk of mortality than the control group (p = 0.03). No statistical significance was observed on the incidence of AEs (p = 0.78) and SAEs (p = 0.44), and the levels of CRP (p = 0.06) and IL-6 (p = 0.09). CONCLUSION: MSCs were safe for use, with lower risk of mortality and no association with AEs. Regarding efficacy, descriptive analysis showed indications of improvement on the inflammatory reaction, lung clearance, and oxygenation status despite the lack of statistical significance in meta-analysis of CRP and IL-6. Nevertheless, more studies are needed for affirmation. REGISTRATION: This systematic review and meta-analysis was registered on the PROSPERO database (no. CRD42022307730).


Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , SARS-CoV-2/metabolism , Interleukin-6/metabolism , Mesenchymal Stem Cell Transplantation/adverse effects , Cytokines/metabolism , Mesenchymal Stem Cells/metabolism
3.
EBioMedicine ; 92: 104600, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2309545

ABSTRACT

BACKGROUND: Long-term effects of human mesenchymal stem cell (MSC) treatment on COVID-19 patients have not been fully characterized. The aim of this study was to evaluate the safety and efficacy of a MSC treatment administered to severe COVID-19 patients enrolled in our previous randomized, double-blind, placebo-controlled clinical trial (NCT04288102). METHODS: A total of 100 patients experiencing severe COVID-19 received either MSC treatment (n = 65, 4 × 107 cells per infusion) or a placebo (n = 35) combined with standard of care on days 0, 3, and 6. Patients were subsequently evaluated 18 and 24 months after treatment to evaluate the long-term safety and efficacy of the MSC treatment. Outcomes measured included: 6-min walking distance (6-MWD), lung imaging, quality of life according to the Short Form 36 questionnaire (SF-36), COVID-19-related symptoms, titers of SARS-CoV-2 neutralizing antibodies, tumor markers, and MSC-related adverse events (AEs). FINDINGS: Two years after treatment, a marginally smaller proportion of patients had a 6-MWD below the lower limit of the normal range in the MSC group than in the placebo group (OR = 0.19, 95% CI: 0.04-0.80, Fisher's exact test, p = 0.015). At month 18, the general health score from the SF-36 was higher in the MSC group than in the placebo group (50.00 vs. 35.00, 95% CI: 0.00-20.00, Wilcoxon rank sum test, p = 0.018). Total severity score of lung imaging and the titer of neutralizing antibodies were similar between the two groups at months 18 and 24. There was no difference in AEs or tumor markers at the 2-year follow-up between the two groups. INTERPRETATION: Long-term safety was observed for the COVID-19 patients who received MSC treatment. However, efficacy of MSC treatment was not significantly sustained through the end of the 2-year follow-up period. FUNDING: The National Key Research and Development Program of China (2022YFA1105604, 2020YFC0860900, 2022YFC2304401), the specific research fund of The Innovation Platform for Academicians of Hainan Province (YSPTZX202216) and the Fund of National Clinical Center for Infectious Diseases, PLA General Hospital (NCRC-ID202105,413FZT6).


Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Humans , COVID-19/therapy , SARS-CoV-2 , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cell Transplantation/methods , Follow-Up Studies , Quality of Life , Double-Blind Method , Treatment Outcome
4.
Discov Med ; 35(175): 201-207, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2293267

ABSTRACT

BACKGROUND: COVID-19 (coronavirus disease 2019) is a pandemic around the world, and its treatment options often fail to achieve ideal results. There is a lot of controversy in the treatment of COVID-19 with mesenchymal stem cells (MSCs). The study aims to assess the safety and efficacy of mesenchymal treatment of new coronary pneumonia. METHODS: We manually searched electronic databases including PubMed, Embase, Cochrane Library, and Web of Science until 25th July 2022, and Stata 15.0 (StataCorpLLC: College Station, TX, USA) was used to analyze the data. RESULTS: A total of 8 randomized controlled trials were included, involving a total of 345 people, of which 180 were in the MSCs group and 165 were in the placebo group. The analysis results showed that MSCs can reduce mortality in COVID-19 patients compared to placebo [RR (Risk Ratio) = 0.56, 95% CI (Confidence Interval) (0.36, 0.89); p = 0.003]. There was no significant difference between the mesenchymal stem cell group and the placebo group in the incidence of adverse reactions [RR = 0.64, 95% CI (0.34, 1.18); p = 0.281]; In the SpO2/FiO2 (Oxygen Saturation/Fraction of Inspiration O2) [WMD (Weighted Mean Difference) = 9.07, 95% CI (-38.01, 56.15); p = 0.080]; In ICU (Intensive Care Unit) stay [WMD = -1.66, 95% CI (-7.23, 3.91); p = 0.131]. CONCLUSIONS: Mesenchymal stem cells can reduce the mortality of COVID-19 patients.


Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Humans , COVID-19/therapy
5.
Adv Ther ; 40(6): 2626-2692, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2299754

ABSTRACT

Serious manifestations of respiratory virus infections such as influenza and coronavirus disease 2019 (COVID-19) are associated with a dysregulated immune response and systemic inflammation. Treating the immunological/inflammatory dysfunction with glucocorticoids, Janus kinase inhibitors, and monoclonal antibodies against the interleukin-6 receptor has significantly reduced the risk of respiratory failure and death in hospitalized patients with severe COVID-19, but the proportion of those requiring invasive mechanical ventilation (IMV) and dying because of respiratory failure remains elevated. Treatment of severe influenza-associated pneumonia and acute respiratory distress syndrome (ARDS) with available immunomodulators and anti-inflammatory compounds is still not recommended. New therapies are therefore needed to reduce the use of IMV and the risk of death in hospitalized patients with rapidly increasing oxygen demand and systemic inflammation who do not respond to the current standard of care. This paper provides a critical assessment of the published clinical trials that have tested the investigational use of intravenously administered allogeneic mesenchymal stem/stromal cells (MSCs) and MSC-derived secretome with putative immunomodulatory/antiinflammatory/regenerative properties as add-on therapy to improve the outcome of these patients. Increased survival rates are reported in 5 of 12 placebo-controlled or open-label comparative trials involving patients with severe and critical COVID-19 and in the only study concerning patients with influenza-associated ARDS. Results are encouraging but inconclusive for the following reasons: small number of patients tested in each trial; differences in concomitant treatments and respiratory support; imbalances between study arms; differences in MSC source, MSC-derived product, dosing and starting time of the investigational therapy; insufficient/inappropriate reporting of clinical data. Solutions are proposed for improving the clinical development plan, with the aim of facilitating regulatory approval of the MSC-based investigational therapy for life-threatening respiratory virus infections in the future. Major issues are the absence of a biomarker predicting responsiveness to MSCs and MSC-derived secretome and the lack of pharmacoeconomic evaluations.


Subject(s)
COVID-19 , Influenza, Human , Mesenchymal Stem Cell Transplantation , Respiratory Distress Syndrome , Respiratory Insufficiency , Humans , SARS-CoV-2 , Influenza, Human/complications , Influenza, Human/therapy , Secretome , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Inflammation/etiology , Respiratory Insufficiency/etiology , Stromal Cells , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cell Transplantation/methods
6.
Stem Cells Transl Med ; 12(4): 185-193, 2023 04 17.
Article in English | MEDLINE | ID: covidwho-2280986

ABSTRACT

BACKGROUND: Treatment options for patients with COVID-19-related acute respiratory distress syndrome (ARDS) are desperately needed. Allogeneic human umbilical cord derived mesenchymal stromal cells (hCT-MSCs) have potential therapeutic benefits in these critically ill patients, but feasibility and safety data are lacking. MATERIALS AND METHODS: In this phase I multisite study, 10 patients with COVID-19-related ARDS were treated with 3 daily intravenous infusions of hCT-MSCs (1 million cells/kg, maximum dose 100 million cells). The primary endpoint assessed safety. RESULTS: Ten patients (7 females, 3 males; median age 62 years (range 39-79)) were enrolled at 2 sites and received a total of 30 doses of study product. The average cell dose was 0.93 cells/kg (range 0.56-1.45 cells/kg and total dose range 55-117 million cells) with 5/30 (17%) of doses lower than intended dose. Average cell viability was 85% (range 63%-99%) with all but one meeting the >70% release criteria. There were no infusion-related reactions or study-related adverse events, 28 non-serious adverse events in 3 unique patients, and 2 serious adverse events in 2 unique patients, which were expected and unrelated to the study product. Five patients died: 3 by day 28 and 5 by day 90 of the study (median 27 days, range 7-76 days). All deaths were determined to be unrelated to the hCT-MSCs. CONCLUSION: We were able to collect relevant safety outcomes for the use of hCT-MSCs in patients with COVID-19-related ARDS. Future studies to explore their safety and efficacy are warranted.


Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Respiratory Distress Syndrome , Male , Female , Humans , Adult , Middle Aged , Aged , COVID-19/therapy , COVID-19/etiology , Feasibility Studies , Mesenchymal Stem Cell Transplantation/adverse effects , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy
7.
Int J Mol Sci ; 24(5)2023 Feb 23.
Article in English | MEDLINE | ID: covidwho-2253265

ABSTRACT

This study aimed to identify the impact of mesenchymal stem cell transplantation on the safety and clinical outcomes of patients with severe COVID-19. This research focused on how lung functional status, miRNA, and cytokine levels changed following mesenchymal stem cell transplantation in patients with severe COVID-19 pneumonia and their correlation with fibrotic changes in the lung. This study involved 15 patients following conventional anti-viral treatment (Control group) and 13 patients after three consecutive doses of combined treatment with MSC transplantation (MCS group). ELISA was used to measure cytokine levels, real-time qPCR for miRNA expression, and lung computed tomography (CT) imaging to grade fibrosis. Data were collected on the day of patient admission (day 0) and on the 7th, 14th, and 28th days of follow-up. A lung CT assay was performed on weeks 2, 8, 24, and 48 after the beginning of hospitalization. The relationship between levels of biomarkers in peripheral blood and lung function parameters was investigated using correlation analysis. We confirmed that triple MSC transplantation in individuals with severe COVID-19 was safe and did not cause severe adverse reactions. The total score of lung CT between patients from the Control and MSC groups did not differ significantly on weeks 2, 8, and 24 after the beginning of hospitalization. However, on week 48, the CT total score was 12 times lower in patients in the MSC group (p ≤ 0.05) compared to the Control group. In the MSC group, this parameter gradually decreased from week 2 to week 48 of observation, whereas in the Control group, a significant drop was observed up to week 24 and remained unchanged afterward. In our study, MSC therapy improved lymphocyte recovery. The percentage of banded neutrophils in the MSC group was significantly lower in comparison with control patients on day 14. Inflammatory markers such as ESR and CRP decreased more rapidly in the MSC group in comparison to the Control group. The plasma levels of surfactant D, a marker of alveocyte type II damage, decreased after MSC transplantation for four weeks in contrast to patients in the Control group, in whom slight elevations were observed. We first showed that MSC transplantation in severe COVID-19 patients led to the elevation of the plasma levels of IP-10, MIP-1α, G-CSF, and IL-10. However, the plasma levels of inflammatory markers such as IL-6, MCP-1, and RAGE did not differ between groups. MSC transplantation had no impact on the relative expression levels of miR-146a, miR-27a, miR-126, miR-221, miR-21, miR-133, miR-92a-3p, miR-124, and miR-424. In vitro, UC-MSC exhibited an immunomodulatory impact on PBMC, increasing neutrophil activation, phagocytosis, and leukocyte movement, activating early T cell markers, and decreasing effector and senescent effector T cell maturation.


Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , MicroRNAs , Respiratory Distress Syndrome , Humans , COVID-19/metabolism , Leukocytes, Mononuclear , Respiratory Distress Syndrome/metabolism , Mesenchymal Stem Cell Transplantation/methods , Cytokines/metabolism , MicroRNAs/metabolism , Mesenchymal Stem Cells/metabolism , Umbilical Cord
8.
Curr Opin Pulm Med ; 27(3): 205-209, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-2270272

ABSTRACT

PURPOSE OF REVIEW: Severe acute respiratory syndrome coronavirus-2-induced hyperinflammation is a major cause of death or end-organ dysfunction in COVID-19 patients. We review adjunct host-directed therapies (HDTs) for COVID-19 management. RECENT FINDINGS: The use of umbilical cord-derived mesenchymal stem cells as HDT for COVID-19 has been shown to be safe in phase 1 and 2 trials. Trials of anti-interleukin-6 receptor antibodies show promising mortality benefit in hospitalized COVID-19 patients. Repurposed drugs and monoclonal antibodies targeting specific cytokines acting on different aspects of the pro- and anti-inflammatory cascades are under evaluation. SUMMARY: A range of HDTs shows promise for reducing mortality and improving long term disability in patients with severe COVID-19, and require evaluation in randomized, controlled trials.


Subject(s)
COVID-19 , Immunologic Factors/pharmacology , Mesenchymal Stem Cell Transplantation/methods , Molecular Targeted Therapy/methods , COVID-19/immunology , COVID-19/therapy , Humans , Inflammation/immunology , Inflammation/therapy , SARS-CoV-2
9.
Cell Death Dis ; 14(1): 66, 2023 01 28.
Article in English | MEDLINE | ID: covidwho-2221801

ABSTRACT

Coronavirus disease 2019 (COVID-19) treatments are still urgently needed for critically and severely ill patients. Human umbilical cord-mesenchymal stem cells (hUC-MSCs) infusion has therapeutic benefits in COVID-19 patients; however, uncertain therapeutic efficacy has been reported in severe patients. In this study, we selected an appropriate cytokine, IL-18, based on the special cytokine expression profile in severe pneumonia of mice induced by H1N1virus to prime hUC-MSCs in vitro and improve the therapeutic effect of hUC-MSCs in vivo. In vitro, we demonstrated that IL-18-primed hUC-MSCs (IL18-hUCMSC) have higher proliferative ability than non-primed hUC-MSCs (hUCMSCcon). In addition, VCAM-1, MMP-1, TGF-ß1, and some chemokines (CCL2 and CXCL12 cytokines) are more highly expressed in IL18-hUCMSCs. We found that IL18-hUCMSC significantly enhanced the immunosuppressive effect on CD3+ T-cells. In vivo, we demonstrated that IL18-hUCMSC infusion could reduce the body weight loss caused by a viral infection and significantly improve the survival rate. Of note, IL18-hUCMSC can also significantly attenuate certain clinical symptoms, including reduced activity, ruffled fur, hunched backs, and lung injuries. Pathologically, IL18-hUCMSC transplantation significantly enhanced the inhibition of inflammation, viral load, fibrosis, and cell apoptosis in acute lung injuries. Notably, IL18-hUCMSC treatment has a superior inhibitory effect on T-cell exudation and proinflammatory cytokine secretion in bronchoalveolar lavage fluid (BALF). Altogether, IL-18 is a promising cytokine that can prime hUC-MSCs to improve the efficacy of precision therapy against viral-induced pneumonia, such as COVID-19.


Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Pneumonia, Viral , Humans , Mice , Animals , Interleukin-18/metabolism , Umbilical Cord/metabolism , T-Lymphocytes/metabolism , COVID-19/metabolism , Cytokines/metabolism , Pneumonia, Viral/therapy , Pneumonia, Viral/metabolism , Immunosuppression Therapy , Mesenchymal Stem Cells/metabolism
10.
Iran J Allergy Asthma Immunol ; 21(6): 687-703, 2022 Dec 24.
Article in English | MEDLINE | ID: covidwho-2204584

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a systemic inflammation resulting from immune system overactivity. ARDS is also a fatal complication of COVID-19. Mesenchymal stem cells (MSCs) have immune modulatory properties. This study evaluated the safety and efficacy of three times transplantation of umbilical cord-derived MSCs (UC-MSCs) in terms of specific immunological and clinical changes in mild-to-moderate COVID-19-induced ARDS patients. In this single-center, open-label, phase 1 clinical trial, 20 patients diagnosed with COVID-19 and mild-to-moderate ARDS were included and were divided into two groups: a control group receiving standard care and an intervention group receiving UC-MSC in addition to standard care. Three consecutive intravenous transplants of UC-MSC (1×  cells/kg body weight per each transplant) were performed in the intervention group on days 1, 3, and 5. The biological assay was investigated four times (days 0, 5, 10, and 17). UC-MSCs improved the patients' clinical and paraclinical parameters, including leukocytosis, lymphopenia, thrombocytopenia, and liver enzyme abnormalities compared to the control group. They also decreased pro-inflammatory lymphocytes (TH1 and TH17) and increased anti-inflammatory T lymphocytes. Cell therapy also reduced the mean fluorescence intensity (MFI) in overactivated CD8+ T cells.  These findings show that three UC-MSC injections could regulate a hyperactivated immune system in COVID-19-induced ARDS patients by decreasing the inflammatory T lymphocyte subset and can improve the patient's hematological condition and liver function. However, more studies are needed in this area.


Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Respiratory Distress Syndrome , Humans , COVID-19/complications , COVID-19/therapy , Mesenchymal Stem Cell Transplantation/methods , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Inflammation , Umbilical Cord
11.
Front Immunol ; 13: 963445, 2022.
Article in English | MEDLINE | ID: covidwho-2141996

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a life-threatening lung disease. It may occur during the pancytopenia phase following allogeneic hematopoietic cell transplantation (HCT). ARDS is rare following HCT. Mesenchymal stromal cells (MSCs) have strong anti-inflammatory effect and first home to the lung following intravenous infusion. MSCs are safe to infuse and have almost no side effects. During the Covid-19 pandemic many patients died from ARDS. Subsequently MSCs were evaluated as a therapy for Covid-19 induced ARDS. We report three patients, who were treated with MSCs for ARDS following HCT. Two were treated with MSCs derived from the bone marrow (BM). The third patient was treated with MSCs obtained from the placenta, so-called decidua stromal cells (DSCs). In the first patient, the pulmonary infiltrates cleared after infusion of BM-MSCs, but he died from multiorgan failure. The second patient treated with BM-MSCs died of aspergillus infection. The patient treated with DSCs had a dramatic response and survived. He is alive after 7 years with a Karnofsky score of 100%. We also reviewed experimental and clinical studies using MSCs or DSCs for ARDS. Several positive reports are using MSCs for sepsis and ARDS in experimental animals. In man, two prospective randomized placebo-controlled studies used adipose and BM-MSCs, respectively. No difference in outcome was seen compared to placebo. Some pilot studies used MSCs for Covid-19 ARDS. Positive results were achieved using umbilical cord and DSCs however, optimal source of MSCs remains to be elucidated using randomized trials.


Subject(s)
Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cell Transplantation , Respiratory Distress Syndrome , Animals , Female , Humans , Male , COVID-19/complications , COVID-19/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cells/physiology , Prospective Studies , Respiratory Distress Syndrome/therapy
12.
Medicina (Kaunas) ; 58(12)2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2123746

ABSTRACT

Purpose: This study assessed the safety, feasibility, and tolerability of mesenchymal stem cells for patients diagnosed with COVID (Coronavirus disease 2019-induced ARDS (acute respiratory distress syndrome)). Materials and Methods: Critically ill adult COVID-19 patients who were admitted to Wonju Severance Christian Hospital were enrolled in this study. One patient received human bone marrow-derived mesenchymal stem cell (hBMSC) transplantation and received a total dose of 9 × 107 allogeneic hBMSCs via intravenous infusion. The main outcome of this study was to assess the safety, adverse events, and efficacy following transplantation of hBMSCs in COVID-19- induced ARDS patients. Efficacy was assessed radiologically based on pneumonia improvement, changes in PaO2/FiO2, and O2 saturation. Results: A 73-year-old man visited Wonju Severance Christian Hospital presenting with fever and fatigue. A throat swab was performed for real-time polymerase chain reaction to confirm COVID-19, and the result was positive. The patient developed ARDS on Day 5. MSC transplantation was performed on that day and administered on Day 29. Early adverse events, including allergic reactions, were not observed following MSC transplantation. Subsequently, clinical symptoms, signs, and laboratory findings, including PaO2/FiO2 and O2 saturation, improved. Conclusion: The results of this case report suggest that intravenous injection of MSC derived from the bone marrow is safe and acceptable and can lead to favorable outcomes for critically ill COVID-19 patients.


Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Respiratory Distress Syndrome , Male , Adult , Humans , Aged , COVID-19/complications , SARS-CoV-2 , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cell Transplantation/methods , Critical Illness , Treatment Outcome , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy
13.
Turk J Haematol ; 39(4): 222-229, 2022 12 01.
Article in English | MEDLINE | ID: covidwho-2080695

ABSTRACT

Objective: Many methods are used in the treatment of coronavirus disease 2019 (COVID-19), which causes acute respiratory distress syndrome (ARDS), and there are conflicting reports in the literature regarding the results of mesenchymal stem cell (MSC) therapy, which is one of those methods. The aim of our study is to evaluate the effect of MSC treatment applied together with standard treatments on survival. Materials and Methods: This retrospective case-control study evaluates the survival effect of MSC treatment administered to patients treated in intensive care after the development of ARDS due to COVID-19 between March 2020 and March 2021. The age, gender, comorbid disease status, APACHE II score, and overall and comorbidity-based survival rates were compared between patients who received standard medical treatment (SMT) and patients who received MSC treatment together with SMT. Results: There were 62 patients in the group receiving only SMT and 81 patients in the group receiving SMT and MSC. No difference was observed between the groups in terms of age, gender, presence of comorbid diseases, or APACHE II scores. There were also no differences according to Kaplan-Maier analysis for the survival statuses of the groups. There was no serious adverse effect due to MSC treatment among these patients. Conclusion: Our study presents the largest case series in the literature, and it was observed that MSC treatment may not significantly affect overall survival or comorbid disease-based survival, in contrast to many other studies in the literature.


Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Respiratory Distress Syndrome , Humans , COVID-19/therapy , Mesenchymal Stem Cell Transplantation/methods , Case-Control Studies , Retrospective Studies , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Intensive Care Units
14.
Curr Pharm Des ; 28(36): 2991-2994, 2022.
Article in English | MEDLINE | ID: covidwho-2054718

ABSTRACT

COVID-19, which has strongly affected the 21st century, is caused by severe acute respiratory syndrome (SARS)-CoV-2. The emergence of viral variants has rendered even vaccinated people prone to infection; thus, completely eradicating COVID-19 may be impossible. COVID-19 causes hyperinflammation, leading to organ damage and even death. SARS-CoV-2 infects not only the lungs, causing acute respiratory distress syndrome, but also the extrapulmonary organs. Not all patients with COVID-19 respond adequately to treatments with antiviral and anti-inflammatory drugs. Therefore, new treatments are urgently needed. Mesenchymal stem cells (MSCs) exhibit immunomodulatory activity and are used to safely and effectively treat various immune disorders. Evidence has indicated the efficacy of MSCs against COVID-19. However, the safety and efficacy of MSCs must be probed further. For this reason, we explored key clinical challenges associated with MSC therapy for COVID-19, such as sources, administration routes, cell dosage, treatment timepoint, and virus reactivation. We identified several challenges that must be addressed before MSCs can be clinically applied.


Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Respiratory Distress Syndrome , Humans , COVID-19/therapy , SARS-CoV-2
15.
Stem Cells Transl Med ; 11(11): 1103-1112, 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2051544

ABSTRACT

Patients with severe COVID-19 experience cytokine storm, an uncontrolled upregulation of pro-inflammatory cytokines, which if unresolved leads to acute respiratory distress syndrome (ARDS), organ damage, and death. Treatments with mesenchymal stromal cells (MSC) [Viswanathan S, Shi Y, Galipeau J, et al. Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy Mesenchymal Stromal Cell committee position statement on nomenclature. Cytotherapy. 2019;21:1019-1024] appear to be effective in reducing morbidity and mortality. MSC respond to pro-inflammatory cytokines by releasing anti-inflammatory factors and mobilizing immune cells. We analyzed 82 COVID-19 clinical trials registered at ClinicalTrials.gov to determine MSC dosing, routes of administration, and outcome measures. Nearly all trials described the use of intravenous delivery with most doses ranging between 50 and 125 million MSC/treatment, which overlaps with a minimal effective dose range that we described previously. We also searched the literature to analyze clinical trial reports that used MSC to treat COVID-19. MSC were found to improve survival and oxygenation, increase discharge from intensive care units and hospitals, and reduce levels of pro-inflammatory markers. We report on a 91-year-old man with severe COVID-19 who responded rapidly to MSC treatment with transient reductions in several pro-inflammatory markers and delayed improvement in oxygenation. The results suggest that frequent monitoring of pro-inflammatory markers for severe COVID-19 will provide improved treatment guidelines by determining relationships between cytokine storms and ARDS. We propose that markers for cytokine storm are leading indicators for ARDS and that measurement of cytokines will indicate earlier treatment with MSC than is performed now for ARDS in severe COVID-19.


Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Respiratory Distress Syndrome , Male , Humans , Aged, 80 and over , SARS-CoV-2 , Cytokine Release Syndrome , Mesenchymal Stem Cell Transplantation/methods , Respiratory Distress Syndrome/therapy , Cytokines
16.
Stem Cell Res Ther ; 13(1): 365, 2022 07 28.
Article in English | MEDLINE | ID: covidwho-2021331

ABSTRACT

BACKGROUND: High morbidity and mortality rates of the COVID-19 pandemic have made it a global health priority. Acute respiratory distress syndrome (ARDS) is one of the most important causes of death in COVID-19 patients. Mesenchymal stem cells have been the subject of many clinical trials for the treatment of ARDS because of their immunomodulatory, anti-inflammatory, and regenerative potentials. The aim of this phase I clinical trial was the safety assessment of allogeneic placenta-derived mesenchymal stem cells (PL-MSCs) intravenous injection in patients with ARDS induced by COVID-19. METHODS: We enrolled 20 patients suffering from ARDS caused by COVID-19 who had been admitted to the intensive care unit. PL-MSCs were isolated and propagated using a xeno-free/GMP compliant protocol. Each patient in the treatment group (N = 10) received standard treatment and a single dose of 1 × 106 cells/kg PL-MSCs intravenously. The control groups (N = 10) only received the standard treatment. Clinical signs and laboratory tests were evaluated in all participants at the baseline and during 28 days follow-ups. RESULTS: No adverse events were observed in the PL-MSC group. Mean length of hospitalization, serum oxygen saturation, and other clinical and laboratory parameters were not significantly different in the two groups (p > 0.05). CONCLUSION: Our results demonstrated that intravenous administration of PL-MSCs in patients with COVID-19 related ARDS is safe and feasible. Further studies whit higher cell doses and repeated injections are needed to evaluate the efficacy of this treatment modality. TRIAL REGISTRATION: Iranian Registry of Clinical Trials (IRCT); IRCT20200621047859N4. Registered 1 March 2021, https://en.irct.ir/trial/52947 .


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Respiratory Distress Syndrome , COVID-19/therapy , Humans , Iran , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cell Transplantation/methods , Pandemics , Respiratory Distress Syndrome/therapy , SARS-CoV-2
18.
Hum Cell ; 35(6): 1633-1639, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2014580

ABSTRACT

Endothelial dysfunction is one of the key cornerstone complications of emerging and re-emerging viruses which lead to vascular leakage and a high mortality rate. The mechanism that regulates the origin of endothelial dysregulation is not completely elucidated. Currently, there are no potential pharmacological treatments and curable management for such diseases. In this sense, mesenchymal stromal/stem cells (MSCs) has been emerging to be a promising therapeutic strategy in restoring endothelial barrier function in various lung disease, including ALI and ARDS. The mechanism of the role of MSCs in restoring endothelial integrity among single-strand RNA (ssRNA) viruses that target endothelial cells remains elusive. Thus, we have discussed the therapeutic role of MSCs in restoring vascular integrity by (i) inhibiting the metalloprotease activity thereby preventing the cleavage of tight junction proteins, which are essential for maintaining membrane integrity (ii) possessing antioxidant properties which neutralize the excessive ROS production due to virus infection and its associated hyper host immune response (iii) modulating micro RNAs that regulate the endothelial activation and its integrity by downregulating the inflammatory response during ssRNA infection.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Virus Diseases , Antioxidants/metabolism , Endothelial Cells/metabolism , Humans , Mesenchymal Stem Cells/physiology , Metalloproteases/metabolism , RNA , Reactive Oxygen Species/metabolism , Tight Junction Proteins/metabolism , Virus Diseases/metabolism
19.
Int J Mol Sci ; 23(17)2022 Sep 02.
Article in English | MEDLINE | ID: covidwho-2010107

ABSTRACT

Mesenchymal stem cells (MSCs) are multipotent stem cells with the capacity of self-renewal, homing, and low immunogenicity. These distinct biological characteristics have already shown immense potential in regenerative medicine. MSCs also possess immunomodulatory properties that can maintain immune homeostasis when the immune response is over-activated or under-activated. The secretome of MSCs consists of cytokines, chemokines, signaling molecules, and growth factors, which effectively contribute to the regulation of immune and inflammatory responses. The immunomodulatory effects of MSCs can also be achieved through direct cell contact with microenvironmental factors and immune cells. Furthermore, preconditioned and engineered MSCs can specifically improve the immunomodulation effects in diverse clinical applications. These multifunctional properties of MSCs enable them to be used as a prospective therapeutic strategy to treat immune disorders, including autoimmune diseases and incurable inflammatory diseases. Here we review the recent exploration of immunomodulatory mechanisms of MSCs and briefly discuss the promotion of the genetically engineered MSCs. Additionally, we review the potential clinical applications of MSC-mediated immunomodulation in four types of immune diseases, including systemic lupus erythematosus, Crohn's disease, graft-versus-host disease, and COVID-19.


Subject(s)
COVID-19 , Immune System Diseases , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , COVID-19/therapy , Cytokines/metabolism , Humans , Immune System Diseases/metabolism , Immunity , Immunomodulation , Mesenchymal Stem Cells/metabolism
20.
Cells ; 11(17)2022 08 29.
Article in English | MEDLINE | ID: covidwho-2005945

ABSTRACT

Medical health systems continue to be challenged due to newly emerging COVID-19, and there is an urgent need for alternative approaches for treatment. An increasing number of clinical observations indicate cytokine storms to be associated with COVID-19 severity and also to be a significant cause of death among COVID-19 patients. Cytokine storm involves the extensive proliferative and hyperactive activity of T and macrophage cells and the overproduction of pro-inflammatory cytokines. Stem cells are the type of cell having self-renewal properties and giving rise to differentiated cells. Currently, stem cell therapy is an exciting and promising therapeutic approach that can treat several diseases that were considered incurable in the past. It may be possible to develop novel methods to treat various diseases by identifying stem cells' growth and differentiation factors. Treatment with mesenchymal stem cells (MSCs) in medicine is anticipated to be highly effective. The present review article is organized to put forward the positive arguments and implications in support of mesenchymal stem cell therapy as an alternative therapy to cytokine storms, to combat COVID-19. Using the immunomodulatory potential of the MSCs, it is possible to fight against COVID-19 and counterbalance the cytokine storm.


Subject(s)
COVID-19 , Cytokine Release Syndrome , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , COVID-19/therapy , Cytokine Release Syndrome/therapy , Cytokines/metabolism , Humans , Mesenchymal Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL