Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
Add filters

Document Type
Year range
1.
Placenta ; 117: 161-168, 2022 01.
Article in English | MEDLINE | ID: covidwho-1557002

ABSTRACT

The emergence of COVID-19 has created a major health crisis across the globe. Invasion of SARS-CoV-2 into the lungs causes acute respiratory distress syndrome (ARDS) that result in the damage of lung alveolar epithelial cells. Currently, there is no standard treatment available to treat the disease and the resultant lung scarring is irreversible even after recovery. This has prompted researchers across the globe to focus on developing new therapeutics and vaccines for the treatment and prevention of COVID-19. Mesenchymal stem cells (MSCs) have emerged as an efficient drug screening platform and MSC-derived organoids has found applications in disease modeling and drug discovery. Perinatal tissue derived MSC based cell therapies have been explored in the treatment of various disease conditions including ARDS because of their enhanced regenerative and immunomodulatory properties. The multi-utility properties of MSCs have been described in this review wherein we discuss the potential use of MSC-derived lung organoids in screening of novel therapeutic compounds for COVID-19 and also in disease modeling to better understand the pathogenesis of the disease. This article also summarizes the rationale behind the development of MSC-based cell- and cell-free therapies and vaccines for COVID-19 with a focus on the current progress in this area. With the pandemic raging, an important necessity is to develop novel treatment strategies which will not only alleviate the disease symptoms but also avoid any off-target effects which could further increase post infection sequelae. Naturally occurring mesenchymal stem cells could be the magic bullet which fulfil these criteria.


Subject(s)
Amnion/cytology , COVID-19/therapy , Mesenchymal Stem Cells , Placenta/cytology , SARS-CoV-2 , Umbilical Cord/cytology , COVID-19 Vaccines , Cell- and Tissue-Based Therapy , Exosomes/transplantation , Female , Humans , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/ultrastructure , Pregnancy , SARS-CoV-2/immunology , Wharton Jelly/cytology
2.
Cell ; 184(26): 6243-6261.e27, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1536467

ABSTRACT

COVID-19-induced "acute respiratory distress syndrome" (ARDS) is associated with prolonged respiratory failure and high mortality, but the mechanistic basis of lung injury remains incompletely understood. Here, we analyze pulmonary immune responses and lung pathology in two cohorts of patients with COVID-19 ARDS using functional single-cell genomics, immunohistology, and electron microscopy. We describe an accumulation of CD163-expressing monocyte-derived macrophages that acquired a profibrotic transcriptional phenotype during COVID-19 ARDS. Gene set enrichment and computational data integration revealed a significant similarity between COVID-19-associated macrophages and profibrotic macrophage populations identified in idiopathic pulmonary fibrosis. COVID-19 ARDS was associated with clinical, radiographic, histopathological, and ultrastructural hallmarks of pulmonary fibrosis. Exposure of human monocytes to SARS-CoV-2, but not influenza A virus or viral RNA analogs, was sufficient to induce a similar profibrotic phenotype in vitro. In conclusion, we demonstrate that SARS-CoV-2 triggers profibrotic macrophage responses and pronounced fibroproliferative ARDS.


Subject(s)
COVID-19/pathology , COVID-19/virology , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/virology , Macrophages/pathology , Macrophages/virology , SARS-CoV-2/physiology , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , COVID-19/diagnostic imaging , Cell Communication , Cohort Studies , Fibroblasts/pathology , Gene Expression Regulation , Humans , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/genetics , Mesenchymal Stem Cells/pathology , Phenotype , Proteome/metabolism , Receptors, Cell Surface/metabolism , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , Tomography, X-Ray Computed , Transcription, Genetic
3.
PLoS One ; 16(11): e0259732, 2021.
Article in English | MEDLINE | ID: covidwho-1518359

ABSTRACT

Mesenchymal stem cell derived extracellular vesicles (MSC-EVs) are bioactive particles that evoke beneficial responses in recipient cells. We identified a role for MSC-EV in immune modulation and cellular salvage in a model of SARS-CoV-2 induced acute lung injury (ALI) using pulmonary epithelial cells and exposure to cytokines or the SARS-CoV-2 receptor binding domain (RBD). Whereas RBD or cytokine exposure caused a pro-inflammatory cellular environment and injurious signaling, impairing alveolar-capillary barrier function, and inducing cell death, MSC-EVs reduced inflammation and reestablished target cell health. Importantly, MSC-EV treatment increased active ACE2 surface protein compared to RBD injury, identifying a previously unknown role for MSC-EV treatment in COVID-19 signaling and pathogenesis. The beneficial effect of MSC-EV treatment was confirmed in an LPS-induced rat model of ALI wherein MSC-EVs reduced pro-inflammatory cytokine secretion and respiratory dysfunction associated with disease. MSC-EV administration was dose-responsive, demonstrating a large effective dose range for clinical translation. These data provide direct evidence of an MSC-EV-mediated improvement in ALI and contribute new insights into the therapeutic potential of MSC-EVs in COVID-19 or similar pathologies of respiratory distress.


Subject(s)
Acute Lung Injury/complications , Acute Lung Injury/virology , COVID-19/pathology , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Pneumonia/complications , Pneumonia/virology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Disease Models, Animal , Extracellular Vesicles/ultrastructure , Humans , Immunomodulation , Male , Models, Biological , Pneumonia/pathology , Rats, Sprague-Dawley , SARS-CoV-2/physiology , Signal Transduction , THP-1 Cells
4.
Int J Mol Sci ; 22(21)2021 Nov 07.
Article in English | MEDLINE | ID: covidwho-1512380

ABSTRACT

Heparin and its derivatives are saving thousands of human lives annually, by successfully preventing and treating thromboembolic events. Although the mode of action during anticoagulation is well studied, their influence on cell behavior is not fully understood as is the risk of bleeding and other side effects. New applications in regenerative medicine have evolved supporting production of cell-based therapeutics or as a substrate for creating functionalized matrices in biotechnology. The currently resurgent interest in heparins is related to the expected combined anti-inflammatory, anti-thrombotic and anti-viral action against COVID-19. Based on a concise summary of key biochemical and clinical data, this review summarizes the impact for manufacturing and application of cell therapeutics and highlights the need for discriminating the different heparins.


Subject(s)
Anticoagulants/chemistry , Cell- and Tissue-Based Therapy/methods , Heparin/analogs & derivatives , Anticoagulants/adverse effects , Anticoagulants/therapeutic use , Biocompatible Materials/chemistry , Biocompatible Materials/therapeutic use , Cell Adhesion , Hemorrhage/etiology , Heparin/adverse effects , Heparin/therapeutic use , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Regenerative Medicine , Thromboembolism/drug therapy
5.
Cell Transplant ; 30: 9636897211054481, 2021.
Article in English | MEDLINE | ID: covidwho-1511642

ABSTRACT

Biological and cellular interleukin-6 (IL-6)-related therapies have been used to treat severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure, which prompted further exploration of the role of IL-6 in human umbilical cord mesenchymal stem cell (hUCMSC) therapy. Peripheral blood mononuclear cells (PBMCs) were responders cocultured with hUCMSCs or exogenous IL-6. A PBMC suppression assay was used to analyze the anti-inflammatory effects via MTT assay. The IL-6 concentration in the supernatant was measured using ELISA. The correlation between the anti-inflammatory effect of hUCMSCs and IL-6 levels and the relevant roles of IL-6 and IL-6 mRNA expression was analyzed using the MetaCore functional network constructed from gene microarray data. The location of IL-6 and IL-6 receptor (IL-6R) expression was further evaluated. We reported that hUCMSCs did not initially exert any inhibitory effect on PHA-stimulated proliferation; however, a potent inhibitory effect on PHA-stimulated proliferation was observed, and the IL-6 concentration reached approximately 1000 ng/mL after 72 hours. Exogenous 1000 ng/mL IL-6 inhibited PHA-stimulated inflammation but less so than hUCMSCs. The inhibitory effects of hUCMSCs on PHA-stimulated PBMCs disappeared after adding an IL-6 neutralizing antibody or pretreatment with tocilizumab (TCZ), an IL-6R antagonist. hUCMSCs exert excellent anti-inflammatory effects by inducing higher IL-6 levels, which is different from TCZ. High concentration of IL-6 cytokine secretion plays an important role in the anti-inflammatory effect of hUCMSC therapy. Initial hUCMSC therapy, followed by TCZ, seems to optimize the therapeutic potential to treat COVID-19-related acute respiratory distress syndrome (ARDS).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/complications , Interleukin-6/biosynthesis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Neutralizing/immunology , Cells, Cultured , Coculture Techniques , Combined Modality Therapy , DNA, Complementary/genetics , Gene Expression Regulation/drug effects , Humans , Inflammation , Interleukin-6/genetics , Interleukin-6/pharmacology , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Lymphocyte Activation/drug effects , Phytohemagglutinins/pharmacology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, Interleukin-6/antagonists & inhibitors , Receptors, Interleukin-6/biosynthesis , Receptors, Interleukin-6/genetics , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , Umbilical Cord/cytology
6.
Front Biosci (Landmark Ed) ; 26(10): 948-961, 2021 10 30.
Article in English | MEDLINE | ID: covidwho-1498509

ABSTRACT

Background: Corona Virus Disease 2019 (COVID-19) is an acute respiratory infectious disease caused by severe respiratory syndrome coronavirus 2 (SARS-CoV-2). The primary pathogenesis is over-activation of the immune system. SARS-CoV-2 continues to mutate and spread rapidly and no effective treatment options are yet available. Mesenchymal stem cells (MSCs) are known to induce anti-inflammatory macrophages, regulatory T cells and dendritic cells. There are a rapidly increasing number of clinical investigations of cell-based therapy approaches for COVID-19. Objective: To summarize the pathogenic mechanism of SARS-CoV-2, and systematically formulated the immunomodulation of COVID-19 by MSCs and their exosomes, as well as research progress. Method: Searching PubMed, clinicaltrials.gov and Chictr.cn for eligible studies to be published or registered by May 2021. Main keywords and search strategies were as follows: ((Mesenchymal stem cells) OR (MSCs)) AND (COVID-19). Results: MSCs regulate the immune system to prevent cytokine release syndrome (CRS) and to promote endogenous repair by releasing various paracrine factors and exosomes. Conclusions: MSC therapy is thus a promising candidate for COVID-19.


Subject(s)
COVID-19/therapy , Exosomes/transplantation , Immunomodulation/immunology , Lung Injury/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , COVID-19/epidemiology , COVID-19/virology , Clinical Trials as Topic , Exosomes/immunology , Exosomes/metabolism , Humans , Lung Injury/physiopathology , Lung Injury/virology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology , Outcome Assessment, Health Care/methods , Outcome Assessment, Health Care/statistics & numerical data , Pandemics , Regeneration/immunology , Regeneration/physiology , SARS-CoV-2/immunology , SARS-CoV-2/physiology
7.
Stem Cells Transl Med ; 10(11): 1482-1490, 2021 11.
Article in English | MEDLINE | ID: covidwho-1490914

ABSTRACT

As our life expectancy increases, specific medical conditions appear, and new challenges are met in terms of global health. Frailty has become a medical and scientific concept to define pathologies where inflammation, depressed immune system, cellular senescence, and molecular aging converge. But more importantly, frailty is the ultimate cause of death that limits our life span and deteriorates health in an increasing proportion of the world population. The difficulty of tackling this problem is the combination of factors that influence frailty appearance, such as stem cells exhaustion, inflammation, loss of regeneration capability, and impaired immunomodulation. To date, multiple research fields have found mechanisms participating in this health condition, but to make progress, science will need to investigate frailty with an interdisciplinary approach. This article summarizes the current efforts to understand frailty from their processes mediated by inflammation, aging, and stem cells to provide a new perspective that unifies the efforts in producing advanced therapies against medical conditions in the context of frailty. We believe this approach against frailty is particularly relevant to COVID-19, since people in a state of frailty die more frequently due to the hyperinflammatory process associated with this infection.


Subject(s)
COVID-19 , Frailty , Inflammation/complications , Mesenchymal Stem Cell Transplantation , Aging/physiology , COVID-19/complications , COVID-19/therapy , Frailty/etiology , Frailty/therapy , Humans , Immunomodulation/physiology , Inflammation/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cell Transplantation/trends , Mesenchymal Stem Cells/physiology , Regeneration/physiology , SARS-CoV-2 , Signal Transduction/physiology
8.
Int J Mol Sci ; 22(21)2021 Oct 30.
Article in English | MEDLINE | ID: covidwho-1488618

ABSTRACT

The inflammatory response plays a central role in the complications of congenital pulmonary airway malformations (CPAM) and severe coronavirus disease 2019 (COVID-19). The aim of this study was to evaluate the transcriptional changes induced by SARS-CoV-2 exposure in pediatric MSCs derived from pediatric lung (MSCs-lung) and CPAM tissues (MSCs-CPAM) in order to elucidate potential pathways involved in SARS-CoV-2 infection in a condition of exacerbated inflammatory response. MSCs-lung and MSCs-CPAM do not express angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TRMPSS2). SARS-CoV-2 appears to be unable to replicate in MSCs-CPAM and MSCs-lung. MSCs-lung and MSCs-CPAM maintained the expression of stemness markers MSCs-lung show an inflammatory response (IL6, IL1B, CXCL8, and CXCL10), and the activation of Notch3 non-canonical pathway; this route appears silent in MSCs-CPAM, and cytokine genes expression is reduced. Decreased value of p21 in MSCs-lung suggested no cell cycle block, and cells did not undergo apoptosis. MSCs-lung appears to increase genes associated with immunomodulatory function but could contribute to inflammation, while MSCs-CPAM keeps stable or reduce the immunomodulatory receptors expression, but they also reduce their cytokines expression. These data indicated that, independently from their perilesional or cystic origin, the MSCs populations already present in a patient affected with CPAM are not permissive for SARS-CoV-2 entry, and they will not spread the disease in case of infection. Moreover, these MSCs will not undergo apoptosis when they come in contact with SARS-CoV-2; on the contrary, they maintain their staminality profile.


Subject(s)
Mesenchymal Stem Cells/metabolism , Respiratory System Abnormalities , SARS-CoV-2/physiology , Transcriptome , COVID-19/genetics , COVID-19/metabolism , COVID-19/pathology , Case-Control Studies , Cells, Cultured , Gene Expression Profiling , Host-Pathogen Interactions/genetics , Humans , Infant , Lung/abnormalities , Lung/metabolism , Lung/pathology , Male , Mesenchymal Stem Cells/pathology , Mesenchymal Stem Cells/virology , RNA-Seq , Respiratory System Abnormalities/genetics , Respiratory System Abnormalities/pathology , Respiratory System Abnormalities/virology
9.
Cell Transplant ; 30: 9636897211049814, 2021.
Article in English | MEDLINE | ID: covidwho-1484237

ABSTRACT

During the past 18 months as the world dealt with the COVID-19 pandemic, articles published in Cell Transplantation (CT) voiced unique perspectives on the disease which have since been supported by additional research. Intrigued by the variability in COVID-19 severity, CT authors explored the influence of variants in angiotensin-converting enzyme 2 (ACE2) and the transmembrane serine protease 2 (TMPRSS2) genes, as well as the role of androgen receptors on disease development. Mesenchymal stem cells (MSC) were offered up as a potential COVID-19 therapy because of their immune modulating characteristics and successful use in other acute respiratory diseases. Two CT author groups gave proof of principle when hospitalized COVID-19 patients were infused with MSC after no other interventions seemed to work. MSC treatment reduced disease severity and shortened hospitalization stays. Lastly, CT authors speculated why we are still in the midst of a pandemic and the consequences of disillusioned comfort as we face new emerging variants that may undermine all we have accomplished thus far.


Subject(s)
COVID-19/immunology , COVID-19/therapy , Mesenchymal Stem Cells/cytology , Serine Endopeptidases/genetics , Angiotensin-Converting Enzyme 2/metabolism , Biomedical Research , Cell Transplantation , Cytokines/metabolism , Hospitalization , Humans , Immune System , Mesenchymal Stem Cells/metabolism , Peptidyl-Dipeptidase A/genetics , Publications , Receptors, Androgen/metabolism , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index
10.
Front Immunol ; 12: 738697, 2021.
Article in English | MEDLINE | ID: covidwho-1477824

ABSTRACT

The severe respiratory consequences of the coronavirus disease 2019 (COVID-19) pandemic have prompted the urgent need for novel therapies. Cell-based therapies, primarily using mesenchymal stromal cells (MSCs), have demonstrated safety and potential efficacy in the treatment of critical illness, particularly sepsis and acute respiratory distress syndrome (ARDS). However, there are limited preclinical data for MSCs in COVID-19. Recent studies have shown that MSCs could decrease inflammation, improve lung permeability, enhance microbe and alveolar fluid clearance, and promote lung epithelial and endothelial repair. In addition, MSC-based therapy has shown promising effects in preclinical studies and phase 1 clinical trials in sepsis and ARDS. Here, we review recent advances related to MSC-based therapy in the context of sepsis and ARDS and evaluate the potential value of MSCs as a therapeutic strategy for COVID-19.


Subject(s)
COVID-19/therapy , Cell- and Tissue-Based Therapy/methods , Cytokine Release Syndrome/therapy , Mesenchymal Stem Cell Transplantation/methods , Cytokine Release Syndrome/pathology , Humans , Inflammation/therapy , Mesenchymal Stem Cells/immunology , SARS-CoV-2 , Sepsis/therapy
11.
Int J Mol Sci ; 22(12)2021 Jun 20.
Article in English | MEDLINE | ID: covidwho-1472414

ABSTRACT

Acute kidney injury (AKI) and chronic kidney disease (CKD) are rising in global prevalence and cause significant morbidity for patients. Current treatments are limited to slowing instead of stabilising or reversing disease progression. In this review, we describe mesenchymal stem cells (MSCs) and their constituents, extracellular vesicles (EVs) as being a novel therapeutic for CKD. MSC-derived EVs (MSC-EVs) are membrane-enclosed particles, including exosomes, which carry genetic information that mimics the phenotype of their cell of origin. MSC-EVs deliver their cargo of mRNA, miRNA, cytokines, and growth factors to target cells as a form of paracrine communication. This genetically reprograms pathophysiological pathways, which are upregulated in renal failure. Since the method of exosome preparation significantly affects the quality and function of MSC-exosomes, this review compares the methodologies for isolating exosomes from MSCs and their role in tissue regeneration. More specifically, it summarises the therapeutic efficacy of MSC-EVs in 60 preclinical animal models of AKI and CKD and the cargo of biomolecules they deliver. MSC-EVs promote tubular proliferation and angiogenesis, and inhibit apoptosis, oxidative stress, inflammation, the epithelial-to-mesenchymal transition, and fibrosis, to alleviate AKI and CKD. By reprogramming these pathophysiological pathways, MSC-EVs can slow or even reverse the progression of AKI to CKD, and therefore offer potential to transform clinical practice.


Subject(s)
Biological Therapy , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Kidney Diseases/therapy , Mesenchymal Stem Cells/metabolism , Acute Kidney Injury/diagnosis , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Acute Kidney Injury/therapy , Animals , Apoptosis/drug effects , Biological Therapy/methods , Cell Differentiation , Cell Proliferation/drug effects , Cell Self Renewal , Chemical Fractionation , Disease Management , Disease Susceptibility , Exosomes/metabolism , Humans , Kidney Diseases/etiology , Kidney Diseases/pathology , Mesenchymal Stem Cells/cytology , Protective Agents , Renal Insufficiency/diagnosis , Renal Insufficiency/etiology , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/therapy
12.
Stem Cells Dev ; 30(19): 947-969, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1462261

ABSTRACT

Mesenchymal stem cell (MSC) therapy is considered one of the most promising treatments in the context of the coronavirus disease 2019 (COVID-19) pandemic. However, the safety and effectiveness of MSCs in the treatment of COVID-19-associated pneumonia patients need to be systematically reviewed and analyzed. Two independent researchers searched for relevant studies published between October 2019 and April 2021 in the PubMed, Embase, Cochrane Library, WAN FANG, and CNKI databases. All relevant randomized controlled trials, clinically controlled studies, retrospective studies, case reports, letters (with valid data), and case series were included in this meta-analysis. A fixed-effects model and 95% confidence interval (CI) were used to analyze the results. A total of 22 studies involving 371 patients were included in the present study. Allogeneic MSCs from umbilical cord, adipose tissue, menstrual blood, placental tissue, Wharton's jelly, or unreported sources were administered in 247 participants. Combined results revealed that MSC therapy significantly reduced the incidence of adverse events [AEs; odds ratio (OR) = 0.43, 95% CI = 0.22-0.84, P = 0.01] and mortality (OR = 0.17, 95% CI = 0.06-0.49, P < 0.01), and the difference compared with control group was statistically significant. No serious MSC treatment-related AEs were reported. Lung function, radiographic outcomes, and inflammation- and immunity-related biomarker levels all showed improving trends. Therefore, MSC therapy is an effective and safe method for the treatment of COVID-19-associated pneumonia and shows advantages in reducing AEs and mortality. However, a standard and effective MSC treatment program must be developed.


Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , SARS-CoV-2/metabolism , Allografts , COVID-19/metabolism , COVID-19/mortality , COVID-19/therapy , Humans
13.
Cells ; 10(10)2021 10 03.
Article in English | MEDLINE | ID: covidwho-1444118

ABSTRACT

The PD-L1/PD-1 immune checkpoint axis is the strongest T cell exhaustion inducer. As immune dysfunction occurs during obesity, we analyzed the impact of obesity on PD-L1/PD-1 expression in white adipose tissue (WAT) in mice and in human white adipocytes. We found that PD-L1 was overexpressed in WAT of diet-induced obese mice and was associated with increased expression of PD-1 in visceral but not subcutaneous WAT. Human in vitro cocultures with adipose-tissue-derived mesenchymal stem cells (ASC) and mononuclear cells demonstrated that the presence of ASC harvested from obese WAT (i) enhanced PD-L1 expression as compared with ASC from lean WAT, (ii) decreased Th1 cell cytokine secretion, and (iii) resulted in decreased cytolytic activity towards adipocytes. Moreover, (iv) the implication of PD-L1 in obese ASC-mediated T cell dysfunction was demonstrated through PD-L1 blockade. Finally, (v) conditioned media gathered from these cocultures enhanced PD-L1 expression in freshly differentiated adipocytes, depending on IFNγ. Altogether, our results suggest that PD-L1 is overexpressed in the WAT of obese individuals during IFNγ secretion, leading to T cell dysfunction and notably reduced cytolytic activity. Such a mechanism could shed light on why adipose-tissue-infiltrating viruses, such as SARS-CoV-2, can worsen disease in obese individuals.


Subject(s)
Adipose Tissue, White/metabolism , B7-H1 Antigen/biosynthesis , Gene Expression Regulation , Mesenchymal Stem Cells/cytology , Obesity/metabolism , T-Lymphocytes/immunology , Animals , COVID-19/immunology , Cell Differentiation , Coculture Techniques , Humans , Immunohistochemistry , Inflammation , Interferon-gamma/metabolism , Leukocytes, Mononuclear/cytology , Male , Mice , Mice, Inbred C57BL , Obesity/immunology , SARS-CoV-2 , T-Lymphocytes/cytology
14.
Cells ; 10(10)2021 09 29.
Article in English | MEDLINE | ID: covidwho-1444117

ABSTRACT

Mesenchymal stem cells (MSCs) are multipotent adult stem cells present in virtually all tissues; they have a potent self-renewal capacity and can differentiate into multiple cell types. They also affect the ambient tissue by the paracrine secretion of numerous factors in vivo, including the induction of other stem cells' differentiation. In vitro, the culture media supernatant is named secretome and contains soluble molecules and extracellular vesicles that retain potent biological function in tissue regeneration. MSCs are considered safe for human treatment; their use does not involve ethical issues, as embryonic stem cells do not require genetic manipulation as induced pluripotent stem cells, and after intravenous injection, they are mainly found in the lugs. Therefore, these cells are currently being tested in various preclinical and clinical trials for several diseases, including COVID-19. Several affected COVID-19 patients develop induced acute respiratory distress syndrome (ARDS) associated with an uncontrolled inflammatory response. This condition causes extensive damage to the lungs and may leave serious post-COVID-19 sequelae. As the disease may cause systemic alterations, such as thromboembolism and compromised renal and cardiac function, the intravenous injection of MSCs may be a therapeutic alternative against multiple pathological manifestations. In this work, we reviewed the literature about MSCs biology, focusing on their function in pulmonary regeneration and their use in COVID-19 treatment.


Subject(s)
COVID-19/blood , COVID-19/therapy , Lung/physiology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Regeneration/physiology , Animals , COVID-19/drug therapy , Cell Differentiation , Cell- and Tissue-Based Therapy , Culture Media , Extracellular Vesicles , Humans , Inflammation , Mice , Mice, SCID , Phenotype , Pneumonia/blood , Pneumonia/immunology , Pneumonia/therapy , Respiratory Distress Syndrome , SARS-CoV-2 , Thromboembolism/blood , Thromboembolism/immunology , Thromboembolism/therapy
15.
Curr Stem Cell Res Ther ; 16(4): 465-480, 2021.
Article in English | MEDLINE | ID: covidwho-1435707

ABSTRACT

The cause of Coronavirus Disease 2019 (COVID-19) known as the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, formerly designated 2019-nCoV) was first discovered in December 2019 in Wuhan, China. It then spread rapidly worldwide. Investigation for the discovery of drugs to cure this disease continues. The currently accepted treatments are supportive, but there is no specific disease curing intervention found yet. Since mid-February, therapies involving Mesenchymal Stem/Stromal Cells (MSCs) have been proposed for the treatment of patients with COVID-19. In light of these recent developments, this review will focus on: i) the mechanism of SARS-CoV-2 action and the subsequent pathology in COVID-19, ii) the proposed mechanism( s) of outcome-improving action of MSCs or MSC-derived extracellular vesicles in COVID-19 pneumonia, iii) registered MSC-based clinical trials and interventions for the treatment of COVID-19, iv) published case studies/series/trials reporting the use of MSC-based treatments in COVID-19 cases, and finally v) the need for authority regulations and clinical guidelines for MSCbased treatment strategies for COVID-19.


Subject(s)
COVID-19/therapy , Mesenchymal Stem Cell Transplantation/standards , Mesenchymal Stem Cells/cytology , Practice Guidelines as Topic , Extracellular Vesicles/metabolism , Humans , SARS-CoV-2/pathogenicity
16.
Curr Stem Cell Res Ther ; 16(4): 406-413, 2021.
Article in English | MEDLINE | ID: covidwho-1435705

ABSTRACT

COVID-19 pandemic is a global health crisis of the 21st Century. There are currently no approved vaccines and no particular anti-viral treatment for coronavirus disease. As COVID-19 has a broad range of illnesses, it is necessary to find a safe and effective therapeutic method for COVID-19. An attractive approach for treating COVID-19 is cell therapy. Cell therapy aims to inject new and healthy stem cells into a patient's body, to repair the damaged cells and tissues. Stem cell therapy is one of the most studied and important approaches in the treatment of COVID-19 these days. The significant clinical outcome was observed by the adoptive transfer of stem cells, specifically mesenchymal stem cells. This study reviews the characteristics of stem cells and clinical trials that have used stem cells in treating COVID-19.


Subject(s)
COVID-19/drug therapy , COVID-19/therapy , Cell- and Tissue-Based Therapy , Mesenchymal Stem Cells/immunology , SARS-CoV-2/pathogenicity , COVID-19/virology , Cell- and Tissue-Based Therapy/methods , Humans , Mesenchymal Stem Cell Transplantation/methods
17.
Syst Rev ; 10(1): 249, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1412799

ABSTRACT

BACKGROUND: Mesenchymal stromal cells (MSCs) have significant immunomodulatory and tissue repair capabilities, mediated partly by conditioned media or through secreted extracellular vesicles (MSC-EVs). Infection with SARS-CoV-2 can cause mild to life-threatening illness due to activated immune responses that may be dampened by MSCs or their secretome. Many clinical studies of MSCs have been launched since the beginning of the global pandemic, however, few have been completed and most lack power to assess efficacy. Repeated systematic searches and meta-analyses are needed to understand, in real time, the extent of potential benefit in different patient populations as the evidence emerges. METHODS: This living systematic review will be maintained to provide up-to-date information as the pandemic evolves. A systematic literature search of Embase, MEDLINE, and Cochrane Central Register of Controlled Trials databases will be performed. All clinical studies (e.g., randomized, pseudorandomized and non-randomized controlled trials, uncontrolled trials, and case series) employing MSCs or their secretome as a therapeutic intervention for COVID-19 will be included. Patients must have confirmed SARS-CoV-2 infection. Study screening and data extraction will be performed in duplicate. Information concerning interventions, patient populations, methods of MSC isolation and characterization, primary and secondary clinical and/or laboratory outcomes, and adverse events will be extracted. Key clinical outcomes will be pooled through random-effects meta-analysis to determine the efficacy of MSCs and their secreted products for COVID-19. DISCUSSION: Our systematic review and subsequent updates will inform the scientific, medical, and health policy communities as the pandemic evolves to guide decisions on the appropriate use of MSC-related products to treat COVID-19. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD 42021225431.


Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Meta-Analysis as Topic , Pandemics , SARS-CoV-2 , Systematic Reviews as Topic
18.
Cells ; 10(9)2021 09 12.
Article in English | MEDLINE | ID: covidwho-1408629

ABSTRACT

Extracellular vesicles (EVs) are cell-released, nanometer-scaled, membrane-bound materials and contain diverse contents including proteins, small peptides, and nucleic acids. Once released, EVs can alter the microenvironment and regulate a myriad of cellular physiology components, including cell-cell communication, proliferation, differentiation, and immune responses against viral infection. Among the cargoes in the vesicles, small non-coding micro-RNAs (miRNAs) have received attention in that they can regulate the expression of a variety of human genes as well as external viral genes via binding to the complementary mRNAs. In this study, we tested the potential of EVs as therapeutic agents for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. First, we found that the mesenchymal stem-cell-derived EVs (MSC-EVs) enabled the rescue of the cytopathic effect of SARS-CoV-2 virus and the suppression of proinflammatory responses in the infected cells by inhibiting the viral replication. We found that these anti-viral responses were mediated by 17 miRNAs matching the rarely mutated, conserved 3'-untranslated regions (UTR) of the viral genome. The top five miRNAs highly expressed in the MSC-EVs, miR-92a-3p, miR-26a-5p, miR-23a-3p, miR-103a-3p, and miR-181a-5p, were tested. They were bound to the complemented sequence which led to the recovery of the cytopathic effects. These findings suggest that the MSC-EVs are a potential candidate for multiple variants of anti-SARS-CoV-2.


Subject(s)
COVID-19/therapy , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , MicroRNAs/therapeutic use , SARS-CoV-2/physiology , 3' Untranslated Regions/genetics , Animals , Antiviral Agents/pharmacology , Base Sequence , Cell Line , Conserved Sequence/genetics , Female , Genome, Viral , Humans , Models, Biological , Mutation/genetics , Placenta/metabolism , Pregnancy , RNA, Viral/genetics , SARS-CoV-2/genetics
19.
Signal Transduct Target Ther ; 6(1): 339, 2021 09 08.
Article in English | MEDLINE | ID: covidwho-1402052

ABSTRACT

The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has placed a global public burden on health authorities. Although the virological characteristics and pathogenesis of COVID-19 has been largely clarified, there is currently no specific therapeutic measure. In severe cases, acute SARS-CoV-2 infection leads to immune disorders and damage to both the adaptive and innate immune responses. Having roles in immune regulation and regeneration, mesenchymal stem cells (MSCs) serving as a therapeutic option may regulate the over-activated inflammatory response and promote recovery of lung damage. Since the outbreak of the COVID-19 pandemic, a series of MSC-therapy clinical trials has been conducted. The findings indicate that MSC treatment not only significantly reduces lung damage, but also improves patient recovery with safety and good immune tolerance. Herein, we summarize the recent progress in MSC therapy for COVID-19 and highlight the challenges in the field.


Subject(s)
COVID-19/therapy , Lung Injury/therapy , Lung/immunology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/immunology , SARS-CoV-2/immunology , Animals , COVID-19/immunology , COVID-19/pathology , Humans , Lung/pathology , Lung/virology , Lung Injury/immunology , Lung Injury/virology , Mesenchymal Stem Cells/pathology
20.
Trials ; 22(1): 595, 2021 Sep 06.
Article in English | MEDLINE | ID: covidwho-1398873

ABSTRACT

BACKGROUND: Chronic lower limb ischemia develops earlier and more frequently in patients with type 2 diabetes mellitus. Diabetes remains the main cause of lower-extremity non-traumatic amputations. Current medical treatment, based on antiplatelet therapy and statins, has demonstrated deficient improvement of the disease. In recent years, research has shown that it is possible to improve tissue perfusion through therapeutic angiogenesis. Both in animal models and humans, it has been shown that cell therapy can induce therapeutic angiogenesis, making mesenchymal stromal cell-based therapy one of the most promising therapeutic alternatives. The aim of this study is to evaluate the feasibility, safety, and efficacy of cell therapy based on mesenchymal stromal cells derived from adipose tissue intramuscular administration to patients with type 2 diabetes mellitus with critical limb ischemia and without possibility of revascularization. METHODS: A multicenter, randomized double-blind, placebo-controlled trial has been designed. Ninety eligible patients will be randomly assigned at a ratio 1:1:1 to one of the following: control group (n = 30), low-cell dose treatment group (n = 30), and high-cell dose treatment group (n = 30). Treatment will be administered in a single-dose way and patients will be followed for 12 months. Primary outcome (safety) will be evaluated by measuring the rate of adverse events within the study period. Secondary outcomes (efficacy) will be measured by assessing clinical, analytical, and imaging-test parameters. Tertiary outcome (quality of life) will be evaluated with SF-12 and VascuQol-6 scales. DISCUSSION: Chronic lower limb ischemia has limited therapeutic options and constitutes a public health problem in both developed and underdeveloped countries. Given that the current treatment is not established in daily clinical practice, it is essential to provide evidence-based data that allow taking a step forward in its clinical development. Also, the multidisciplinary coordination exercise needed to develop this clinical trial protocol will undoubtfully be useful to conduct academic clinical trials in the field of cell therapy in the near future. TRIAL REGISTRATION: ClinicalTrials.gov NCT04466007 . Registered on January 07, 2020. All items from the World Health Organization Trial Registration Data Set are included within the body of the protocol.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cells , Noma , Adipose Tissue , Animals , Clinical Trials, Phase II as Topic , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/therapy , Double-Blind Method , Humans , Ischemia/diagnosis , Ischemia/therapy , Multicenter Studies as Topic , Quality of Life , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...