Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
PLoS One ; 16(8): e0256401, 2021.
Article in English | MEDLINE | ID: covidwho-1365430


SARS-CoV-2 infection in hospital areas is of a particular concern, since the close interaction between health care personnel and patients diagnosed with COVID-19, which allows virus to be easily spread between them and subsequently to their families and communities. Preventing SARS-CoV-2 infection among healthcare personnel is essential to reduce the frequency of infections and outbreaks during the pandemic considering that they work in high-risk areas. In this research, silver nanoparticles (AgNPs) were tested in vitro and shown to have an inhibitory effect on SARS-CoV-2 infection in cultured cells. Subsequently, we assess the effects of mouthwash and nose rinse with ARGOVIT® silver nanoparticles (AgNPs), in the prevention of SARS-CoV-2 contagion in health workers consider as high-risk group of acquiring the infection in the General Tijuana Hospital, Mexico, a hospital for the exclusive recruitment of patients diagnosed with COVID-19. We present a prospective randomized study of 231 participants that was carried out for 9 weeks (during the declaration of a pandemic). The "experimental" group was instructed to do mouthwash and nose rinse with the AgNPs solution; the "control" group was instructed to do mouthwashes and nose rinse in a conventional way. The incidence of SARS-CoV-2 infection was significantly lower in the "experimental" group (two participants of 114, 1.8%) compared to the "control" group (thirty-three participants of 117, 28.2%), with an 84.8% efficiency. We conclude that the mouth and nasal rinse with AgNPs helps in the prevention of SARS-CoV-2 infection in health personnel who are exposed to patients diagnosed with COVID-19.

COVID-19/prevention & control , Health Personnel , Metal Nanoparticles/administration & dosage , Mouthwashes/administration & dosage , SARS-CoV-2 , Silver/administration & dosage , Adolescent , Adult , Aged , Animals , COVID-19/epidemiology , Chlorocebus aethiops , Female , Humans , Male , Mexico , Middle Aged , Vero Cells
Int J Nanomedicine ; 16: 2689-2702, 2021.
Article in English | MEDLINE | ID: covidwho-1186650


Background: The COVID-19 pandemic is requesting highly effective protective personnel equipment, mainly for healthcare professionals. However, the current demand has exceeded the supply chain and, consequently, shortage of essential medical materials, such as surgical masks. Due to these alarming limitations, it is crucial to develop effective means of disinfection, reusing, and thereby applying antimicrobial shielding protection to the clinical supplies. Purpose: Therefore, in this work, we developed a novel, economical, and straightforward approach to promote antimicrobial activity to surgical masks by impregnating silver nanoparticles (AgNPs). Methods: Our strategy consisted of fabricating a new alcohol disinfectant formulation combining special surfactants and AgNPs, which is demonstrated to be extensively effective against a broad number of microbial surrogates of SARS-CoV-2. Results: The present nano-formula reported a superior microbial reduction of 99.999% against a wide number of microorganisms. Furthermore, the enveloped H5N1 virus was wholly inactivated after 15 min of disinfection. Far more attractive, the current method for reusing surgical masks did not show outcomes of detrimental amendments, suggesting that the protocol does not alter the filtration effectiveness. Conclusion: The nano-disinfectant provides a valuable strategy for effective decontamination, reuse, and even antimicrobial promotion to surgical masks for frontline clinical personnel.

Anti-Infective Agents/pharmacology , Disinfectants/pharmacology , Masks , Metal Nanoparticles/chemistry , Silver/pharmacology , Animals , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/prevention & control , COVID-19/transmission , Chick Embryo , Disinfectants/administration & dosage , Disinfectants/chemistry , Disinfection/methods , Dynamic Light Scattering , Equipment Reuse , Humans , Influenza A Virus, H5N1 Subtype/drug effects , Masks/virology , Metal Nanoparticles/administration & dosage , Microbial Sensitivity Tests , Silver/chemistry , Spectroscopy, Fourier Transform Infrared , Textiles , X-Ray Diffraction
Biochem Biophys Res Commun ; 533(1): 195-200, 2020 11 26.
Article in English | MEDLINE | ID: covidwho-753910


The pandemic of COVID-19 is spreading unchecked due to the lack of effective antiviral measures. Silver nanoparticles (AgNP) have been studied to possess antiviral properties and are presumed to inhibit SARS-CoV-2. Due to the need for an effective agent against SARS-CoV-2, we evaluated the antiviral effect of AgNPs. We evaluated a plethora of AgNPs of different sizes and concentration and observed that particles of diameter around 10 nm were effective in inhibiting extracellular SARS-CoV-2 at concentrations ranging between 1 and 10 ppm while cytotoxic effect was observed at concentrations of 20 ppm and above. Luciferase-based pseudovirus entry assay revealed that AgNPs potently inhibited viral entry step via disrupting viral integrity. These results indicate that AgNPs are highly potent microbicides against SARS-CoV-2 but should be used with caution due to their cytotoxic effects and their potential to derange environmental ecosystems when improperly disposed.

Antiviral Agents/administration & dosage , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Metal Nanoparticles/administration & dosage , Pneumonia, Viral/drug therapy , Silver/administration & dosage , Animals , Antiviral Agents/toxicity , Betacoronavirus/physiology , COVID-19 , Cell Line , Cell Survival/drug effects , Chlorocebus aethiops , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Dose-Response Relationship, Drug , Humans , Metal Nanoparticles/toxicity , Metal Nanoparticles/ultrastructure , Pandemics , Particle Size , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2 , Silver/toxicity , Vero Cells , Virus Internalization/drug effects