Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
J Nanobiotechnology ; 20(1): 6, 2022 Jan 04.
Article in English | MEDLINE | ID: covidwho-1608546

ABSTRACT

BACKGROUND: Gold nanoparticles (AuNPs) have been widely used in local surface plasmon resonance (LSPR) immunoassays for biomolecule sensing, which is primarily based on two conventional methods: absorption spectra analysis and colorimetry. The low figure of merit (FoM) of the LSPR and high-concentration AuNP requirement restrict their limit of detection (LOD), which is approximately ng to µg mL-1 in antibody detection if there is no other signal or analyte amplification. Improvements in sensitivity have been slow in recent for a long time, and pushing the boundary of the current LOD is a great challenge of current LSPR immunoassays in biosensing. RESULTS: In this work, we developed spectral image contrast-based flow digital nanoplasmon-metry (Flow DiNM) to push the LOD boundary. Comparing the scattering image brightness of AuNPs in two neighboring wavelength bands near the LSPR peak, the peak shift signal is strongly amplified and quickly detected. Introducing digital analysis, the Flow DiNM provides an ultrahigh signal-to-noise ratio and has a lower sample volume requirement. Compared to the conventional analog LSPR immunoassay, Flow DiNM for anti-BSA detection in pure samples has an LOD as low as 1 pg mL-1 within only a 15-min detection time and 500 µL sample volume. Antibody assays against spike proteins of SARS-CoV-2 in artificial saliva that contained various proteins were also conducted to validate the detection of Flow DiNM in complicated samples. Flow DiNM shows significant discrimination in detection with an LOD of 10 pg mL-1 and a broad dynamic detection range of five orders of magnitude. CONCLUSION: Together with the quick readout time and simple operation, this work clearly demonstrated the high sensitivity and selectivity of the developed Flow DiNM in rapid antibody detection. Spectral image contrast and digital analysis further provide a new generation of LSPR immunoassay with AuNPs.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Surface Plasmon Resonance/methods , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19 Serological Testing/instrumentation , Equipment Design , Gold/chemistry , Humans , Immunoassay/instrumentation , Immunoassay/methods , Metal Nanoparticles/chemistry , SARS-CoV-2/immunology , Saliva/virology , Spike Glycoprotein, Coronavirus/immunology , Surface Plasmon Resonance/instrumentation
2.
Int J Mol Sci ; 22(24)2021 Dec 18.
Article in English | MEDLINE | ID: covidwho-1580689

ABSTRACT

Global reports on multidrug resistance (MDR) and life-threatening pathogens such as SARS-CoV-2 and Candida cruris have stimulated researchers to explore new antimicrobials that are eco-friendly and economically viable. In this context, biodegradable polymers such as nisin, chitin, and pullulan play an important role in solving the problem. Pullulan is an important edible, biocompatible, water-soluble polymer secreted by Aureobasidium pullulans that occurs ubiquitously. It consists of maltotriose units linked with α-1,6 glycosidic bonds and is classed as Generally Regarded as Safe (GRAS) by the Food and Drug Administration (FDA) in the USA. Pullulan is known for its antibacterial, antifungal, antiviral, and antitumor activities when incorporated with other additives such as antibiotics, drugs, nanoparticles, and so on. Considering the importance of its antimicrobial activities, this polymer can be used as a potential antimicrobial agent against various pathogenic microorganisms including the multidrug-resistant (MDR) pathogens. Moreover, pullulan has ability to synthesize biogenic silver nanoparticles (AgNPs), which are remarkably efficacious against pathogenic microbes. The pullulan-based nanocomposites can be applied for wound healing, food packaging, and also enhancing the shelf-life of fruits and vegetables. In this review, we have discussed biosynthesis of pullulan and its role as antibacterial, antiviral, and antifungal agent. Pullulan-based films impregnated with different antimicrobials such as AgNPs, chitosan, essential oils, and so on, forming nanocomposites have also been discussed as natural alternatives to combat the problems posed by pathogens.


Subject(s)
Anti-Infective Agents/pharmacology , Drug Resistance, Multiple/drug effects , Glucans/biosynthesis , Anti-Bacterial Agents , Anti-Infective Agents/chemistry , Antifungal Agents , COVID-19 , Chitin/pharmacology , Chitosan/chemistry , Drug Resistance, Multiple/physiology , Food Packaging , Glucans/metabolism , Glucans/pharmacology , Humans , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Nisin/pharmacology , Polymers/chemistry , SARS-CoV-2
3.
Sci Rep ; 11(1): 24318, 2021 12 21.
Article in English | MEDLINE | ID: covidwho-1585786

ABSTRACT

The COVID-19 pandemic presents a unique challenge to the healthcare community due to the high infectivity rate and need for effective personal protective equipment. Zinc oxide nanoparticles have shown promising antimicrobial properties and are recognized as a safe additive in many food and cosmetic products. This work presents a novel nanocomposite synthesis approach, which allows zinc oxide nanoparticles to be grown within textile and face mask materials, including melt-blown polypropylene and nylon-cotton. The resulting nanocomposite achieves greater than 3 log10 reduction (≥ 99.9%) in coronavirus titer within a contact time of 10 min, by disintegrating the viral envelope. The new nanocomposite textile retains activity even after 100 laundry cycles and has been dermatologist tested as non-irritant and hypoallergenic. Various face mask designs were tested to improve filtration efficiency and breathability while offering antiviral protection, with Claros' design reporting higher filtration efficiency than surgical masks (> 50%) for particles ranged 200 nm to 5 µm in size.


Subject(s)
Masks/virology , Nanocomposites/toxicity , SARS-CoV-2/drug effects , Virus Inactivation/drug effects , COVID-19/prevention & control , COVID-19/virology , Filtration/methods , Humans , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Nylons/chemistry , Polypropylenes/chemistry , SARS-CoV-2/isolation & purification , Textiles/analysis , Zinc Oxide/chemistry
4.
ACS Appl Mater Interfaces ; 14(1): 138-149, 2022 Jan 12.
Article in English | MEDLINE | ID: covidwho-1574636

ABSTRACT

Highly sensitive, reliable assays with strong multiplexing capability for detecting nucleic acid targets are significantly important for diagnosing various diseases, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The nanomaterial-based assay platforms suffer from several critical issues such as non-specific binding and highly false-positive results. In this paper, to overcome such limitations, we reported sensitive and remarkably reproducible magnetic microparticles (MMPs) and a surface-enhanced Raman scattering (SERS)-based assay using stable silver nanoparticle clusters for detecting viral nucleic acids. The MMP-SERS-based assay exhibited a sensitivity of 1.0 fM, which is superior to the MMP-fluorescence-based assay. In addition, in the presence of anisotropic Ag nanostructures (nanostars and triangular nanoplates), the assay exhibited greatly enhanced sensitivity (10 aM) and excellent signal reproducibility. This assay platform intrinsically eliminated the non-specific binding that occurs in the target detection step, and the controlled formation of stable silver nanoparticle clusters in solution enabled the remarkable reproducibility of the results. These findings indicate that this assay can be employed for future practical bioanalytical applications.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Magnetite Nanoparticles/chemistry , COVID-19/virology , Coronavirus Envelope Proteins/genetics , Humans , Limit of Detection , Metal Nanoparticles/chemistry , RNA, Viral/analysis , RNA, Viral/chemistry , RNA-Dependent RNA Polymerase/genetics , Reproducibility of Results , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Silver/chemistry , Spectrum Analysis, Raman
5.
Monoclon Antib Immunodiagn Immunother ; 40(5): 210-218, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1483363

ABSTRACT

The novel coronavirus disease (COVID-19), known as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), exhibits a strong human-to-human transmission infectivity and could cause acute respiratory infections. Therefore, simple and rapid serological testing is urgently needed to recognize positive cases. In this study, a point-of-care serological test based on lateral flow immunoassay (LFIA) was developed and its application for the simultaneous detection of IgM/IgG antibodies against SARS-CoV-2 was evaluated. The recombinant SARS-CoV-2 antigens were conjugated to the produced colloidal gold nanoparticles and used as the detection reagent. This test required only 10-15 minutes to achieve simultaneous qualitative detection of IgM/IgG antibodies specific to SARS-CoV-2 in 20 µL of serum or plasma samples. The clinical performance and reliability of the assay were evaluated by performing the test with 60 samples and comparing the results of these tests with those obtained via real-time polymerase chain reaction. The sensitivity and specificity of our assay were defined to be 90% and 96.6%, respectively. The presented LFIA was sufficiently sensitive and accurate to be used for the rapid diagnosis of coronavirus disease 2019 in laboratories or in patient care settings, particularly in emergency conditions, in which many samples require to be evaluated on time.


Subject(s)
Immunoassay/methods , Immunoglobulin G/blood , Immunoglobulin M/blood , Metal Nanoparticles/chemistry , SARS-CoV-2/immunology , Antibodies, Viral/blood , COVID-19 Serological Testing/methods , Colloids/chemistry , Cross Reactions , Gold , Humans , Immunoassay/instrumentation , Reagent Strips , Sensitivity and Specificity
6.
ACS Appl Mater Interfaces ; 13(42): 49754-49761, 2021 Oct 27.
Article in English | MEDLINE | ID: covidwho-1475248

ABSTRACT

A reliable and sensitive detection approach for SARS-CoV 2 is essential for timely infection diagnosis and transmission prevention. Here, a two-dimensional (2D) metal-organic framework (MOF)-based photoelectrochemical (PEC) aptasensor with high sensitivity and stability for SARS-CoV 2 spike glycoprotein (S protein) detection was developed. The PEC aptasensor was constructed by a plasmon-enhanced photoactive material (namely, Au NPs/Yb-TCPP) with a specific DNA aptamer against S protein. The Au NPs/Yb-TCPP fabricated by in situ growth of Au NPs on the surface of 2D Yb-TCPP nanosheets showed a high electron-hole (e-h) separation efficiency due to the enhancement effect of plasmon, resulting in excellent photoelectric performance. The modified DNA aptamer on the surface of Au NPs/Yb-TCPP can bind with S protein with high selectivity, thus decreasing the photocurrent of the system due to the high steric hindrance and low conductivity of the S protein. The established PEC aptasensor demonstrated a highly sensitive detection for S protein with a linear response range of 0.5-8 µg/mL with a detection limit of 72 ng/mL. This work presented a promising way for the detection of SARS-CoV 2, which may conduce to the impetus of clinic diagnostics.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Metal-Organic Frameworks/chemistry , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/analysis , Base Sequence , Biosensing Techniques/instrumentation , COVID-19/diagnosis , DNA/chemistry , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Gold/chemistry , Gold/radiation effects , Humans , Immobilized Nucleic Acids/chemistry , Light , Limit of Detection , Metal Nanoparticles/chemistry , Metal Nanoparticles/radiation effects , Pharynx/virology , Photochemical Processes , Porphyrins/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Ytterbium/chemistry
7.
Int J Mol Sci ; 22(19)2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1463707

ABSTRACT

The electron density of a nanoparticle is a very important characteristic of the properties of a material. This paper describes the formation of silver nanoparticles (NPs) and the variation in the electronic state of an NP's surface upon the reduction in Ag+ ions with oxalate ions, induced by UV irradiation. The calculations were based on optical spectrophotometry data. The NPs were characterized using Transmission electron microscopy and Dynamic light scattering. As ~10 nm nanoparticles are formed, the localized surface plasmon resonance (LSPR) band increases in intensity, decreases in width, and shifts to the UV region from 402 to 383 nm. The interband transitions (IBT) band (≤250 nm) increases in intensity, with the band shape and position remaining unchanged. The change in the shape and position of the LSPR band of silver nanoparticles in the course of their formation is attributable to an increasing concentration of free electrons in the particles as a result of a reduction in Ag+ ions on the surface and electron injection by CO2- radicals. The ζ-potential of colloids increases with an increase in electron density in silver nuclei. A quantitative relationship between this shift and electron density on the surface was derived on the basis of the Mie-Drude theory. The observed blue shift (19 nm) corresponds to an approximately 10% increase in the concentration of electrons in silver nanoparticles.


Subject(s)
Electricity , Electrons , Metal Nanoparticles/chemistry , Silver/chemistry , Solutions/chemistry , Chemical Phenomena , Electrochemistry , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Transmission , Models, Theoretical , Particle Size , Surface Plasmon Resonance
8.
ACS Appl Mater Interfaces ; 13(41): 48469-48477, 2021 Oct 20.
Article in English | MEDLINE | ID: covidwho-1461961

ABSTRACT

The COVID-19 pandemic highlighted the importance of developing surfaces and coatings with antiviral activity. Here, we present, for the first time, peptide-based assemblies that can kill viruses. The minimal inhibitory concentration (MIC) of the assemblies is in the range tens of micrograms per milliliter. This value is 2 orders of magnitude smaller than the MIC of metal nanoparticles. When applied on a surface, by drop casting, the peptide spherical assemblies adhere to the surface and form an antiviral coating against both RNA- and DNA-based viruses including coronavirus. Our results show that the coating reduced the number of T4 bacteriophages (DNA-based virus) by 3 log, compared with an untreated surface and 6 log, when compared with a stock solution. Importantly, we showed that this coating completely inactivated canine coronavirus (RNA-based virus). This peptide-based coating can be useful wherever sterile surfaces are needed to reduce the risk of viral transmission.


Subject(s)
Antiviral Agents/chemistry , Peptides/chemistry , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Bacteriophages/drug effects , COVID-19/drug therapy , COVID-19/virology , Coronavirus/drug effects , Coronavirus/isolation & purification , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Dihydroxyphenylalanine/chemistry , Dog Diseases/drug therapy , Dog Diseases/virology , Dogs , Humans , Metal Nanoparticles/chemistry , Peptides/pharmacology , Peptides/therapeutic use , SARS-CoV-2/isolation & purification , Virus Inactivation/drug effects
9.
ACS Appl Mater Interfaces ; 13(40): 47996-48008, 2021 Oct 13.
Article in English | MEDLINE | ID: covidwho-1440455

ABSTRACT

Use of masks is a primary tool to prevent the spread of the novel COVID-19 virus resulting from unintentional close contact with infected individuals. However, detailed characterization of the chemical properties and physical structure of common mask materials is lacking in the current literature. In this study, a series of commercial masks and potential mask materials, including 3M Particulate Respirator 8210 N95, a material provided by Oak Ridge National Laboratory Carbon Fiber Technology Facility (ORNL/CFTF), and a Filti Face Mask Material, were characterized by a suite of techniques, including scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Wetting properties of the mask materials were quantified by measurements of contact angle with a saliva substitute. Mask pass-through experiments were performed using a dispersed metal oxide nanoparticle suspension to model the SARS-CoV-2 virus, with quantification via spatially resolved X-ray fluorescence mapping. Notably, all mask materials tested provided a strong barrier against respiratory droplet breakthrough. The comparisons and characterizations provided in this study provide useful information when evaluating mask materials for respiratory protection.


Subject(s)
Filtration , Masks , Materials Testing/methods , N95 Respirators , COVID-19/prevention & control , Metal Nanoparticles/chemistry , Microscopy, Electron, Scanning , Photoelectron Spectroscopy , Polyesters/chemistry , Polypropylenes/chemistry , Porosity , SARS-CoV-2 , Spectrum Analysis, Raman , Wettability , X-Ray Diffraction
10.
Sci Rep ; 11(1): 18444, 2021 09 16.
Article in English | MEDLINE | ID: covidwho-1415956

ABSTRACT

Over the past year, the world's attention has focused on combating COVID-19 disease, but the other threat waiting at the door-antimicrobial resistance should not be forgotten. Although making the diagnosis rapidly and accurately is crucial in preventing antibiotic resistance development, bacterial identification techniques include some challenging processes. To address this challenge, we proposed a deep neural network (DNN) that can discriminate antibiotic-resistant bacteria using surface-enhanced Raman spectroscopy (SERS). Stacked autoencoder (SAE)-based DNN was used for the rapid identification of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) bacteria using a label-free SERS technique. The performance of the DNN was compared with traditional classifiers. Since the SERS technique provides high signal-to-noise ratio (SNR) data, some subtle differences were found between MRSA and MSSA in relative band intensities. SAE-based DNN can learn features from raw data and classify them with an accuracy of 97.66%. Moreover, the model discriminates bacteria with an area under curve (AUC) of 0.99. Compared to traditional classifiers, SAE-based DNN was found superior in accuracy and AUC values. The obtained results are also supported by statistical analysis. These results demonstrate that deep learning has great potential to characterize and detect antibiotic-resistant bacteria by using SERS spectral data.


Subject(s)
Methicillin Resistance , Staphylococcus aureus/classification , Staphylococcus aureus/growth & development , Deep Learning , Discriminant Analysis , Humans , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Neural Networks, Computer , Signal-To-Noise Ratio , Silver/chemistry , Spectrum Analysis, Raman , Staphylococcus aureus/drug effects , Support Vector Machine
11.
PLoS One ; 16(9): e0256621, 2021.
Article in English | MEDLINE | ID: covidwho-1394545

ABSTRACT

This paper describes a detailed study of spectral and time-resolved photoprocesses in human platelets and their complexes with platinum (Pt) nanoparticles (NPs). Fluorescence, quantum yield, and platelet amino acid lifetime changes in the presence and without femtosecond ablated platinum NPs have been studied. Fluorescence spectroscopy analysis of main fluorescent amino acids and their residues (tyrosine (Tyr), tryptophan (Trp), and phenylalanine (Phe)) belonging to the platelet membrane have been performed. The possibility of energy transfer between Pt NPs and the platelet membrane has been revealed. Förster Resonance Energy Transfer (FRET) model was used to perform the quantitative evaluation of energy transfer parameters. The prospects of Pt NPs usage deals with quenching-based sensing for pathology's based on platelet conformations as cardiovascular diseases have been demonstrated.


Subject(s)
Blood Platelets/chemistry , Fluorescence Resonance Energy Transfer/methods , Metal Nanoparticles/chemistry , Platinum/chemistry , Adult , Energy Transfer , Healthy Volunteers , Humans , Spectrometry, Fluorescence/methods
12.
Nanotheranostics ; 5(4): 461-471, 2021.
Article in English | MEDLINE | ID: covidwho-1369901

ABSTRACT

The gold nanoclusters (Au NCs) are a special kind of gold nanomaterial containing several gold atoms. Because of their small size and large surface area, Au NCs possess macroscopic quantum tunneling and dielectric domain effects. Furthermore, Au NCs fluorescent materials have longer luminous time and better photobleaching resistance compared with other fluorescent materials. The synthetic process of traditional Au NCs is complicated. Traditional Au NCs are prepared mainly by using polyamide amine type dendrites, and sixteen alkyl trimethylamine bromide or sulfhydryl small molecule as stabilizers. They are consequently synthesized by the reduction of strong reducing agents such as sodium borohydride. Notably, these materials are toxic and environmental-unfriendly. Therefore, there is an urgent need to develop more effective methods for synthesizing Au NCs via a green approach. On the other hand, the self-assembly of protein gold cluster-based materials, and their biomedical applications have become research hotspots in this field. We have been working on the synthesis, assembly and application of protein conjugated gold clusters for a long time. In this review, the synthesis and assembly of protein-gold nanoclusters and their usage in cell imaging and other medical research are discussed.


Subject(s)
Fluorescent Dyes , Gold , Green Fluorescent Proteins , Metal Nanoparticles , Optical Imaging , Theranostic Nanomedicine , Fluorescent Dyes/chemistry , Fluorescent Dyes/therapeutic use , Gold/chemistry , Gold/therapeutic use , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/therapeutic use , Humans , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use
13.
Int J Mol Sci ; 22(16)2021 Aug 17.
Article in English | MEDLINE | ID: covidwho-1360773

ABSTRACT

The current SARS-CoV-2 pandemic causes serious public health, social, and economic issues all over the globe. Surface transmission has been claimed as a possible SARS-CoV-2 infection route, especially in heavy contaminated environmental surfaces, including hospitals and crowded public places. Herein, we studied the deactivation of SARS-CoV-2 on photoactive AgNPs@TiO2 coated on industrial ceramic tiles under dark, UVA, and LED light irradiations. SARS-CoV-2 inactivation is effective under any light/dark conditions. The presence of AgNPs has an important key to limit the survival of SARS-CoV-2 in the dark; moreover, there is a synergistic action when TiO2 is decorated with Ag to enhance the virus photocatalytic inactivation even under LED. The radical oxidation was confirmed as the the central mechanism behind SARS-CoV-2 damage/inactivation by ESR analysis under LED light. Therefore, photoactive AgNPs@TiO2 ceramic tiles could be exploited to fight surface infections, especially during viral severe pandemics.


Subject(s)
Ceramics/chemistry , Metal Nanoparticles/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/radiation effects , Titanium/chemistry , Antiviral Agents/pharmacology , COVID-19/virology , Humans , Light , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Pandemics , Particle Size , SARS-CoV-2/metabolism , Surface Properties , Virus Inactivation/drug effects , Virus Inactivation/radiation effects
14.
Biosensors (Basel) ; 11(8)2021 Jul 26.
Article in English | MEDLINE | ID: covidwho-1354921

ABSTRACT

The global damage that a widespread viral infection can cause is evident from the ongoing COVID-19 pandemic. The importance of virus detection to prevent the spread of viruses has been reaffirmed by the pandemic and the associated social and economic damage. Surface plasmon resonance (SPR) in microscale and localized SPR (LSPR) in nanoscale virus sensing systems are thought to be useful as next-generation detection methods. Many studies have been conducted on ultra-sensitive technologies, especially those based on signal amplification. In some cases, it has been reported that even a low viral load can be measured, indicating that the virus can be detected in patients even in the early stages of the viral infection. These findings corroborate that SPR and LSPR are effective in minimizing false-positives and false-negatives that are prevalent in the existing virus detection techniques. In this review, the methods and signal responses of SPR and LSPR-based virus detection technologies are summarized. Furthermore, this review surveys some of the recent developments reported and discusses the limitations of SPR and LSPR-based virus detection as the next-generation detection technologies.


Subject(s)
Metal Nanoparticles/chemistry , SARS-CoV-2/physiology , Surface Plasmon Resonance/methods , Virion/isolation & purification , COVID-19/diagnosis , COVID-19/virology , Dengue Virus/isolation & purification , Dengue Virus/physiology , Humans , Limit of Detection , Orthomyxoviridae/isolation & purification , Orthomyxoviridae/physiology , Point-of-Care Systems , SARS-CoV-2/isolation & purification , Virion/chemistry
15.
Biosensors (Basel) ; 11(7)2021 Jul 14.
Article in English | MEDLINE | ID: covidwho-1323111

ABSTRACT

Enteroviruses are ubiquitous mammalian pathogens that can produce mild to life-threatening disease. We developed a multimodal, rapid, accurate and economical point-of-care biosensor that can detect nucleic acid sequences conserved amongst 96% of all known enteroviruses. The biosensor harnesses the physicochemical properties of gold nanoparticles and oligonucleotides to provide colourimetric, spectroscopic and lateral flow-based identification of an exclusive enteroviral nucleic acid sequence (23 bases), which was identified through in silico screening. Oligonucleotides were designed to demonstrate specific complementarity towards the target enteroviral nucleic acid to produce aggregated gold-oligonucleotide nanoconstructs. The conserved target enteroviral nucleic acid sequence (≥1 × 10-7 M, ≥1.4 × 10-14 g/mL) initiates gold-oligonucleotide nanoconstruct disaggregation and a signal transduction mechanism, producing a colourimetric and spectroscopic blueshift (544 nm (purple) > 524 nm (red)). Furthermore, lateral-flow assays that utilise gold-oligonucleotide nanoconstructs were unaffected by contaminating human genomic DNA, demonstrated rapid detection of conserved target enteroviral nucleic acid sequence (<60 s), and could be interpreted with a bespoke software and hardware electronic interface. We anticipate that our methodology will translate in silico screening of nucleic acid databases to a tangible enteroviral desktop detector, which could be readily translated to related organisms. This will pave the way forward in the clinical evaluation of disease and complement existing strategies to overcome antimicrobial resistance.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nucleic Acids , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Nucleic Acid Hybridization , Oligonucleotides
16.
Int J Nanomedicine ; 16: 4739-4753, 2021.
Article in English | MEDLINE | ID: covidwho-1315916

ABSTRACT

Background: Serological tests detecting severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are widely used in seroprevalence studies and evaluating the efficacy of the vaccination program. Some of the widely used serological testing techniques are enzyme-linked immune-sorbent assay (ELISA), chemiluminescence immunoassay (CLIA), and lateral flow immunoassay (LFIA). However, these tests are plagued with low sensitivity or specificity, time-consuming, labor-intensive, and expensive. We developed a serological test implementing flow-through dot-blot assay (FT-DBA) for SARS-CoV-2 specific IgG detection, which provides enhanced sensitivity and specificity while being quick to perform and easy to use. Methods: SARS-CoV-2 antigens were immobilized on nitrocellulose membrane to capture human IgG, which was then detected with anti-human IgG conjugated gold nanoparticle (hIgG-AuNP). A total of 181 samples were analyzed in-house. Within which 35 were further evaluated in US FDA-approved CLIA Elecsys SARS-CoV-2 assay. The positive panel consisted of RT-qPCR positive samples from patients with both <14 days and >14 days from the onset of clinical symptoms. The negative panel contained samples collected from the pre-pandemic era dengue patients and healthy donors during the pandemic. Moreover, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of FT-DBA were evaluated against RT-qPCR positive sera. However, the overall efficacies were assessed with sera that seroconverted against either nucleocapsid (NCP) or receptor-binding domain (RBD). Results: In-house ELISA selected a total of 81 true seropositive and 100 seronegative samples. The sensitivity of samples with <14 days using FT-DBA was 94.7%, increasing to 100% for samples >14 days. The overall detection sensitivity and specificity were 98.8% and 98%, respectively, whereas the overall PPV and NPV were 99.6% and 99%. Moreover, comparative analysis between in-house ELISA assays and FT-DBA revealed clinical agreement of Cohen's Kappa value of 0.944. The FT-DBA showed sensitivity and specificity of 100% when compared with commercial CLIA kits. Conclusion: The assay can confirm past SARS-CoV-2 infection with high accuracy within 2 minutes compared to commercial CLIA or in-house ELISA. It can help track SARS-CoV-2 disease progression, population screening, and vaccination response. The ease of use of the assay without requiring any instruments while being semi-quantitative provides the avenue of its implementation in remote areas around the globe, where conventional serodiagnosis is not feasible.


Subject(s)
Gold/chemistry , Immunoblotting/methods , Immunoglobulin G/analysis , Metal Nanoparticles/chemistry , Nucleocapsid/analysis , SARS-CoV-2/isolation & purification , Adult , Antibodies, Viral/blood , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Predictive Value of Tests , SARS-CoV-2/immunology , Sensitivity and Specificity , Seroepidemiologic Studies
17.
Chem Commun (Camb) ; 57(56): 6871-6874, 2021 Jul 13.
Article in English | MEDLINE | ID: covidwho-1281748

ABSTRACT

The trans-cleavage activity of the target-activated CRISPR/Cas12a liberated an RNA crosslinker from a molecular transducer, which facilitated the assembly of gold nanoparticles. Integration of the molecular transducer with isothermal amplification and CRISPR/Cas12a resulted in visual detection of the N gene and E gene of SARS-CoV-2 in 45 min.


Subject(s)
COVID-19/diagnosis , CRISPR-Cas Systems , Genes, Viral/genetics , Gold/chemistry , Metal Nanoparticles/chemistry , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics , COVID-19/virology , Colorimetry , Cross-Linking Reagents , RNA/chemistry
18.
J Nanobiotechnology ; 19(1): 56, 2021 Feb 25.
Article in English | MEDLINE | ID: covidwho-1114088

ABSTRACT

BACKGROUND: Uncontrolled inflammation is a central problem for many respiratory diseases. The development of potent, targeted anti-inflammatory therapies to reduce lung inflammation and re-establish the homeostasis in the respiratory tract is still a challenge. Previously, we developed a unique anti-inflammatory nanodrug, P12 (made of hexapeptides and gold nanoparticles), which can attenuate Toll-like receptor-mediated inflammatory responses in macrophages. However, the effect of the administration route on its therapeutic efficacy and tissue distribution remained to be defined. RESULTS: In this study, we systematically compared the effects of three different administration routes [the intratracheal (i.t.), intravenous (i.v.) and intraperitoneal (i.p.)] on the therapeutic activity, biodistribution and pulmonary cell targeting features of P12. Using the LPS-induced ALI mouse model, we found that the local administration route via i.t. instillation was superior in reducing lung inflammation than the other two routes even treated with a lower concentration of P12. Further studies on nanoparticle biodistribution showed that the i.t. administration led to more accumulation of P12 in the lungs but less in the liver and other organs; however, the i.v. and i.p. administration resulted in more nanoparticle accumulation in the liver and lymph nodes, respectively, but less in the lungs. Such a lung favorable distribution was also determined by the unique surface chemistry of P12. Furthermore, the inflammatory condition in the lung could decrease the accumulation of nanoparticles in the lung and liver, while increasing their distribution in the spleen and heart. Interestingly, the i.t. administration route helped the nanoparticles specifically target the lung macrophages, whereas the other two administration routes did not. CONCLUSION: The i.t. administration is better for treating ALI using nanodevices as it enhances the bioavailability and efficacy of the nanodrugs in the target cells of the lung and reduces the potential systematic side effects.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Gold/pharmacology , Lung/metabolism , Macrophages, Alveolar/drug effects , Metal Nanoparticles/chemistry , Pneumonia/drug therapy , Acute Lung Injury/drug therapy , Animals , Cytokines , Disease Models, Animal , Lipopolysaccharides/adverse effects , Lung/pathology , Macrophages, Alveolar/metabolism , Male , Mice , Mice, Inbred C57BL , Pneumonia/pathology , Tissue Distribution
19.
Microbiol Immunol ; 64(1): 33-51, 2020 Jan.
Article in English | MEDLINE | ID: covidwho-1262996

ABSTRACT

The spike (S) protein of coronavirus, which binds to cellular receptors and mediates membrane fusion for cell entry, is a candidate vaccine target for blocking coronavirus infection. However, some animal studies have suggested that inadequate immunization against severe acute respiratory syndrome coronavirus (SARS-CoV) induces a lung eosinophilic immunopathology upon infection. The present study evaluated two kinds of vaccine adjuvants for use with recombinant S protein: gold nanoparticles (AuNPs), which are expected to function as both an antigen carrier and an adjuvant in immunization; and Toll-like receptor (TLR) agonists, which have previously been shown to be an effective adjuvant in an ultraviolet-inactivated SARS-CoV vaccine. All the mice immunized with more than 0.5 µg S protein without adjuvant escaped from SARS after infection with mouse-adapted SARS-CoV; however, eosinophilic infiltrations were observed in the lungs of almost all the immunized mice. The AuNP-adjuvanted protein induced a strong IgG response but failed to improve vaccine efficacy or to reduce eosinophilic infiltration because of highly allergic inflammatory responses. Whereas similar virus titers were observed in the control animals and the animals immunized with S protein with or without AuNPs, Type 1 interferon and pro-inflammatory responses were moderate in the mice treated with S protein with and without AuNPs. On the other hand, the TLR agonist-adjuvanted vaccine induced highly protective antibodies without eosinophilic infiltrations, as well as Th1/17 cytokine responses. The findings of this study will support the development of vaccines against severe pneumonia-associated coronaviruses.


Subject(s)
Adjuvants, Immunologic/pharmacology , Coronavirus Infections/prevention & control , Gold/chemistry , Immunoglobulin G/immunology , Lung/immunology , Metal Nanoparticles/chemistry , Severe Acute Respiratory Syndrome/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Analysis of Variance , Animals , Antibodies, Viral/immunology , Chlorocebus aethiops , Coronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokines/metabolism , Disease Models, Animal , Female , Immunization , Lung/pathology , Mice , Mice, Inbred BALB C , Recombinant Proteins/immunology , SARS Virus/immunology , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Spike Glycoprotein, Coronavirus/genetics , Toll-Like Receptors , Vaccination , Vaccines, Synthetic , Vero Cells , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Vaccines/immunology , Viral Vaccines/pharmacology , Viral Vaccines/therapeutic use
20.
Chem Commun (Camb) ; 57(51): 6229-6232, 2021 Jun 24.
Article in English | MEDLINE | ID: covidwho-1246405

ABSTRACT

Tracking the viral progression of SARS-CoV-2 in COVID-19 infected body tissues is an emerging need of the current pandemic. Imaging at near infrared second biological window (NIR-II) offers striking benefits over the other technologies to explore deep-tissue information. Here we design, synthesise and characterise a molecular probe that selectively targets the N-gene of SARS-CoV-2. Highly specific antisense oligonucleotides (ASOs) were conjugated to lead sulfide quantum dots using a UV-triggered thiol-ene click chemistry for the recognition of viral RNA. Our ex vivo imaging studies demonstrated that the probe exhibits aggregation induced NIR-II emission only in presence of SARS-CoV-2 RNA which can be attributed to the efficient hybridisation of the ASOs with their target RNA strands.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , Fluorescent Dyes/chemistry , Oligonucleotides, Antisense/chemistry , Quantum Dots/chemistry , SARS-CoV-2/isolation & purification , Spectroscopy, Near-Infrared/methods , Animals , COVID-19/diagnostic imaging , COVID-19/metabolism , Click Chemistry/methods , Fluorescent Dyes/chemical synthesis , Humans , Lung/diagnostic imaging , Lung/metabolism , Lung/virology , Metal Nanoparticles/chemistry , Mice , Mice, Inbred BALB C , Models, Animal , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...