Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nano Lett ; 22(13): 5269-5276, 2022 07 13.
Article in English | MEDLINE | ID: covidwho-1905595

ABSTRACT

The intranasal administration of drugs allows an effective and noninvasive therapeutic action on the respiratory tract. In an era of rapidly increasing antimicrobial resistance, new approaches to the treatment of communicable diseases, especially lung infections, are urgently needed. Metal nanoparticles are recognized as a potential last-line defense, but limited data on the biosafety and nano/biointeractions preclude their use. Here, we quantitatively and qualitatively assess the fate and the potential risks associated with the exposure to a silver nanomaterial model (i.e., silver ultrasmall-in-nano architectures, AgNAs) after a single dose instillation. Our results highlight that the biodistribution profile and the nano/biointeractions are critically influenced by both the design of the nanomaterial and the chemical nature of the metal. Overall, our data suggest that the instillation of rationally engineered nanomaterials might be exploited to develop future treatments for (non)communicable diseases of the respiratory tract.


Subject(s)
Metal Nanoparticles , Nanostructures , Metal Nanoparticles/therapeutic use , Silver , Tissue Distribution
2.
J Mater Chem B ; 9(47): 9642-9657, 2021 12 08.
Article in English | MEDLINE | ID: covidwho-1684136

ABSTRACT

Cancer is a growing threat to human beings. Traditional treatments for malignant tumors usually involve invasive means to healthy human tissues, such as surgical treatment and chemotherapy. In recent years the use of specific stimulus-responsive materials in combination with some non-contact, non-invasive stimuli can lead to better efficacy and has become an important area of research. It promises to develop personalized treatment systems for four types of physical stimuli: light, ultrasound, magnetic field, and temperature. Nanomaterials that are responsive to these stimuli can be used to enhance drug delivery, cancer treatment, and tissue engineering. This paper reviews the principles of the stimuli mentioned above, their effects on materials, and how they work with nanomaterials. For this aim, we focus on specific applications in controlled drug release, cancer therapy, tissue engineering, and virus detection, with particular reference to recent photothermal, photodynamic, sonodynamic, magnetothermal, radiation, and other types of therapies. It is instructive for the future development of stimulus-responsive nanomaterials for these aspects.


Subject(s)
Antineoplastic Agents/therapeutic use , Delayed-Action Preparations/therapeutic use , Metal Nanoparticles/therapeutic use , Neoplasms/drug therapy , Radiation-Sensitizing Agents/therapeutic use , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/radiation effects , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/radiation effects , Humans , Infrared Rays , Magnetic Phenomena , Metal Nanoparticles/chemistry , Metal Nanoparticles/radiation effects , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/radiation effects , SARS-CoV-2/isolation & purification , Temperature , Tissue Engineering/methods , Ultrasonic Waves , Viral Load/methods
3.
Wiley Interdiscip Rev Nanomed Nanobiotechnol ; 13(5): e1707, 2021 09.
Article in English | MEDLINE | ID: covidwho-1103379

ABSTRACT

Several human coronaviruses (HCoVs) are distinguished by the ability to generate epidemics or pandemics, with their corresponding diseases characterized by severe respiratory illness, such as that which occurs in severe acute respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and, today, in SARS-CoV-2, an outbreak that has struck explosively and uncontrollably beginning in December 2019 and has claimed the lives of more than 1.9 M people worldwide as of January 2021. The development of vaccines has taken one year, which is why it is necessary to investigate whether some already-existing alternatives that have been successfully developed in recent years can mitigate the pandemic's advance. Silver nanoparticles (AgNPs) have proved effective in antiviral action. Thus, in this review, several in vitro and in vivo studies of the effect of AgNPs on viruses that cause respiratory diseases are analyzed and discussed to promote an understanding of the possible interaction of AgNPs with SARS-CoV-2. The study focuses on several in vivo toxicological studies of AgNPs and a dose extrapolation to humans to determine the chief avenue of exposure. It can be concluded that the use of AgNPs as a possible treatment for SARS-CoV-2 could be viable, based on comparing the virus' behavior to that of similar viruses in in vivo studies, and that the suggested route of administration in terms of least degree of adverse effects is inhalation. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.


Subject(s)
COVID-19 , Metal Nanoparticles , COVID-19/therapy , Humans , Metal Nanoparticles/therapeutic use , Pandemics , SARS-CoV-2/drug effects , Silver
4.
ACS Biomater Sci Eng ; 7(1): 31-54, 2021 01 11.
Article in English | MEDLINE | ID: covidwho-997782

ABSTRACT

Although extensive research is being done to combat SARS-CoV-2, we are yet far away from a robust conclusion or strategy. With an increased amount of vaccine research, nanotechnology has found its way into vaccine technology. Researchers have explored the use of various nanostructures for delivering the vaccines for enhanced efficacy. Apart from acting as delivery platforms, multiple studies have shown the application of inorganic nanoparticles in suppressing the growth as well as transmission of the virus. The present review gives a detailed description of various inorganic nanomaterials which are being explored for combating SARS-CoV-2 along with their role in suppressing the transmission of the virus either through air or by contact with inanimate surfaces. The review further discusses the use of nanoparticles for development of an antiviral coating that may decrease adhesion of SARS-CoV-2. A separate section has been included describing the role of nanostructures in biosensing and diagnosis of SARS-CoV-2. The role of nanotechnology in providing an alternative therapeutic platform along with the role of radionuclides in SARS-CoV-2 has been described briefly. Based on ongoing research and commercialization of this nanoplatform for a viral disease, the nanomaterials show the potential in therapy, biosensing, and diagnosis of SARS-CoV-2.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/diagnosis , Metal Nanoparticles/therapeutic use , SARS-CoV-2/drug effects , Animals , COVID-19/radiotherapy , COVID-19/therapy , COVID-19 Vaccines/therapeutic use , Disinfectants/pharmacology , Humans , Radiopharmaceuticals/therapeutic use , Respiratory Protective Devices , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL