ABSTRACT
BACKGROUND: Multiple observational studies have associated metformin prescription with reduced progression of abdominal aortic aneurysm (AAA). The Metformin Aneurysm Trial (MAT) will test whether metformin reduces the risk of AAA rupture-related mortality or requirement for AAA surgery (AAA events) in people with asymptomatic aneurysms. METHODS: MAT is an international, multi-centre, prospective, parallel-group, randomised, placebo-controlled trial. Participants must have an asymptomatic AAA measuring at least 35 mm in maximum diameter, no diabetes, no contraindication to metformin and no current plans for surgical repair. The double-blind period is preceded by a 6-week, single-blind, active run-in phase in which all potential participants receive metformin. Only patients tolerating metformin by taking at least 80% of allocated medication will enter the trial and be randomised to 1500 mg of metformin XR or an identical placebo. The primary outcome is the proportion of AAA events defined as rupture-related mortality or need for surgical repair. Secondary outcomes include AAA growth, major adverse cardiovascular events and health-related quality of life. In order to test if metformin reduced the risk of AAA events by at least 25%, 616 primary outcome events will be required (power 90%, alpha 0.05). DISCUSSION: Currently, there is no drug therapy for AAA. Past trials have found no convincing evidence of the benefit of multiple blood pressure lowering, antibiotics, a mast cell inhibitor, an anti-platelet drug and a lipid-lowering medication on AAA growth. MAT is one of a number of trials now ongoing testing metformin for AAA. MAT, unlike these other trials, is designed to test the effect of metformin on AAA events. The international collaboration needed for MAT will be challenging to achieve given the current COVID-19 pandemic. If this challenge can be overcome, MAT will represent a trial unique within the AAA field in its large size and design. TRIAL REGISTRATION: Australian Clinical Trials ACTRN12618001707257 . Registered on 16 October 2018.
Subject(s)
Aortic Aneurysm, Abdominal , COVID-19 , Metformin , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/surgery , Australia , Humans , Metformin/adverse effects , Pandemics , Prospective Studies , Quality of Life , Randomized Controlled Trials as Topic , SARS-CoV-2 , Single-Blind MethodSubject(s)
Diabetes Mellitus , Metformin , Pneumonia , Veterans , Humans , Metformin/therapeutic use , Hypoglycemic Agents/therapeutic useABSTRACT
BACKGROUND: Due to the high comorbidity of diabetes and hypertension, co-administration of metformin with anti-hypertensive drugs is likely. Baxdrostat is an aldosterone synthase inhibitor in development for the potential treatment of hypertension. In vitro data indicated that baxdrostat inhibits the multidrug and toxin extrusion 1 (MATE1) and MATE2-K renal transporters. Metformin is a MATE substrate, so this study assessed potential effects of baxdrostat on the pharmacokinetics of metformin. METHODS: Twenty-seven healthy volunteers received 1000 mg metformin alone and 1000 mg metformin in the presence of 10 mg baxdrostat in a randomized, crossover manner. Each treatment was separated by 10 or more days. Blood and urine samples were collected over a 3-day period after each treatment to measure plasma and urine concentrations of metformin. Safety was assessed by adverse events (AEs), physical examinations, electrocardiograms, vital signs, and clinical laboratory evaluations. RESULTS: There were no deaths, serious AEs, discontinuations due to treatment-emergent AEs, or noteworthy increases in AEs with either treatment, indicating that metformin and baxdrostat were well-tolerated when co-administered. Baxdrostat did not significantly affect plasma concentrations or renal clearance of metformin. CONCLUSION: The results of this study suggest that diabetic patients with hypertension receiving both metformin and baxdrostat are unlikely to require dose adjustment. REGISTRATION: ClinicalTrials.gov identifier no. NCT05526690.
Subject(s)
Hypertension , Metformin , Humans , Metformin/pharmacology , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/pharmacokinetics , Cross-Over Studies , Cytochrome P-450 CYP11B2 , Healthy Volunteers , Area Under Curve , Hypertension/drug therapy , Drug InteractionsSubject(s)
COVID-19 , Metformin , Humans , Ivermectin/therapeutic use , Fluvoxamine/therapeutic use , Metformin/therapeutic useABSTRACT
BACKGROUND: Coronavirus disease 2019 (COVID-19) is a new pandemic that the entire world is facing since December of 2019. Increasing evidence has shown that metformin is linked to favorable outcomes in patients with COVID-19. The aim of this study was to address whether outpatient or inpatient metformin therapy for type 2 diabetes mellitus is associated with low in-hospital mortality in patients hospitalized for COVID-19. METHODS: We searched studies published in PubMed, Embase, Google Scholar and Cochrane Library up to November 1, 2022. Raw event data extracted from individual study were pooled using the Mantel-Haenszel approach. Odds ratio (OR) or hazard ratio (HR) adjusted for covariates that potentially confound the association using multivariable regression or propensity score matching was pooled by the inverse-variance method. Random effect models were applied for meta-analysis due to variance among studies. RESULTS: Twenty-two retrospective observational studies were selected. The pooled unadjusted OR for outpatient metformin therapy and in-hospital mortality was 0.48 (95% CI, 0.37-0.62) and the pooled OR adjusted with multivariable regression or propensity score matching was 0.71 (95% CI, 0.50-0.99). The pooled unadjusted OR for inpatient metformin therapy and in-hospital mortality was 0.18 (95% CI, 0.10-0.31), whereas the pooled adjusted HR was 1.10 (95% CI, 0.38-3.15). CONCLUSIONS: Our results suggest that there is a significant association between the reduction of in-hospital mortality and outpatient metformin therapy for type 2 diabetes mellitus in patients hospitalized for COVID-19.
Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Metformin , Humans , Metformin/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Retrospective Studies , Propensity Score , COVID-19/complicationsSubject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Metformin , Neoplasms , Humans , Metformin/adverse effects , Longevity , Hypoglycemic Agents/adverse effects , Neoplasms/drug therapy , Neoplasms/epidemiology , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiologyABSTRACT
Metformin is the most widely known anti-hyperglycemic, officially acquired by the USA government in 1995 and in 2001 it became the most prescribed treatment for type II diabetes. But how did it become the must-use drug for this disease in such a short period of time? it all started with traditional medicine, by using a plant known as "goat's rue" for the reduction of blood glucose levels. Its use arose in 1918 and evolved to the metformin synthesis in laboratories a couple of years later, using very rudimentary methods which involved melting and strong heating. Thus, a first synthetic route that allowed the preparation of the initial metformin derivates was established. Some of these resulted toxics, and others outperformed the metformin, reducing the blood glucose levels in such efficient way. Nevertheless, the risk and documented cases of lactic acidosis increased with metformin derivatives like buformin and phenformin. Recently, metformin has been widely studied, and it has been associated and tested in the treatment of type II diabetes, cancer, polycystic ovarian syndrome, cell differentiation to oligodendrocytes, reduction of oxidative stress in cells, weight reduction, as anti-inflammatory and even in the recent COVID-19 disease. Herein we briefly review and analyze the history, synthesis, and biological applications of metformin and its derivates.
Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Metformin , Humans , Metformin/pharmacology , Metformin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Blood GlucoseABSTRACT
Background: The global pandemic of coronavirus disease 2019 (COVID-19) continues to affect people around the world, with one of the most frequent comorbidities being Type 2 Diabetes (T2D). Studies have suggested a link between disbalances in gut microbiota and these diseases, as well as with COVID-19, potentially due to inflammatory dysfunction. This study aims to analyze the changes in gut microbiota in COVID-19 patients with T2D using a culture-based method. Methods: The stool samples were taken from 128 patients with confirmed COVID-19. Changes in the composition of gut microbiota were analyzed by culture-based method. The study used chi-squared and t-test to find significant differences in gut bacteria between samples and non-parametric correlation analysis to examine relationship between gut bacteria abundance, C-reactive protein (CRP) levels and length of stay (LoS) in COVID-19 patients without T2D. Results: The gut microbiota of T2D patients with COVID-19 showed increased Clostridium spp., Candida spp., and decreased Bifidobacterium spp., Lactobacillus spp. Metformin-treated patients with T2D and COVID-19 without antibiotic treatment showed increased Bacteroides spp., Lactobacillus spp., and decreased Enterococcus, Clostridium compared to the same group with antibiotic treatment. The study also found a positive correlation between the abundance of certain gut microbiota genera, such as Klebsiella spp. and Enterococcus spp., and CRP levels and LoS in COVID-19 patients without and with T2D, while the abundance of other genera, such as Bifidobacterium spp. and Lactobacillus spp., was found to have a negative correlation. Conclusion: In conclusion, this study provides important insights into the gut microbiota composition of SARS-CoV-2-infected individuals with T2D and its potential impact on the course of the disease. The findings suggest that certain gut microbiota genera may be associated with increased CRP levels and longer hospital stays. The significance of this study lies in the fact that it highlights the potential role of gut microbiota in the progression of COVID-19 in patients with T2D, and may inform future research and treatment strategies for this patient population. The future impact of this study could include the development of targeted interventions to modulate gut microbiota in order to improve outcomes for COVID-19 patients with T2D.
Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Metformin , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/microbiology , COVID-19/complications , SARS-CoV-2 , Metformin/therapeutic use , Bifidobacterium , EnterococcusABSTRACT
The COVID-19 pandemic remains the pre-eminent global health problem, and yet after more than three years there is still no prophylactic agent against the disease aside from vaccines. The objective of this study was to evaluate whether pre-existing, outpatient medications approved by the US Food and Drug Administration (FDA) reduce the risk of hospitalization due to COVID-19. This was a retrospective cohort study of patients from across the United States infected with COVID-19 in the year 2020. The main outcome was adjusted odds of hospitalization for COVID-19 amongst those positive for the infection. Outcomes were adjusted for known risk factors for severe disease. 3,974,272 patients aged 18 or older with a diagnosis of COVID-19 in 2020 met our inclusion criteria and were included in the analysis. Mean age was 50.7 (SD 18). Of this group, 290,348 patients (7.3%) were hospitalized due to COVID-19, similar to the CDC's reported estimate (7.5%). Four drugs showed protective effects against COVID-19 hospitalization: rosuvastatin (aOR 0.91, p = 0.00000024), empagliflozin-metformin (aOR 0.69, p = 0.003), metformin (aOR 0.97, p = 0.017), and enoxaparin (aOR 0.88, p = 0.0048). Several pre-existing medications for outpatient use may reduce severity of disease and protect against COVID-19 hospitalization. Well-designed clinical trials are needed to assess the efficacy of these agents in a therapeutic or prophylactic setting.
Subject(s)
COVID-19 , Metformin , Humans , United States/epidemiology , Middle Aged , COVID-19/epidemiology , SARS-CoV-2 , Retrospective Studies , Outpatients , Pandemics/prevention & control , HospitalizationABSTRACT
BACKGROUND: Patients with diabetes are more likely to suffer COVID-19 complications. Using noninsulin antihyperglycemic medications (AGMs) during COVID-19 infection has proved challenging. In this study, we evaluate different noninsulin AGMs in patients with COVID-19. METHODS: We searched Medline, Embase, Web of Science, and Cochrane on 24 January 2022. We used the following keywords (COVID-19) AND (diabetes mellitus) AND (antihyperglycemic agent). The inclusion criteria were studies reporting one or more of the outcomes. We excluded non-English articles, case reports, and literature reviews. Study outcomes were mortality, hospitalization, and intensive care unit (ICU) admission. RESULTS: The use of metformin rather than other glucose-lowering medications was associated with statistically significant lower mortality (risk ratio [RR]: 0.60, 95% confidence interval [CI]: 0.47, 0.77, p < .001). Dipeptidyl peptidase-4 inhibitor (DPP-4i) use was associated with statistically significantly higher hospitalization risk (RR: 1.44, 95% CI: 1.23, 1.68, p < .001) and higher risk of ICU admissions and/or mechanical ventilation vs nonusers (RR: 1.24, 95% CI: 1.04, 1.48, p < .02). There was a statistically significant decrease in hospitalization for SGLT-2i users vs nonusers (RR: 0.89, 95% CI: 0.84-0.95, p < .001). Glucagon-like peptide-1 receptor agonist (GLP-1RA) use was associated with a statistically significant decrease in mortality (RR: 0.56, 95% CI: 0.42, 073, p < 0.001), ICU admission, and/or mechanical ventilation (RR: 0.79, 95% CI: 0.69-0.89, p < .001), and hospitalization (RR: 0.73, 95% CI: 0.54, 0.98, p = .04). CONCLUSIONS: AGM use was not associated with increased mortality. However, metformin and GLP-1RA use reduced mortality risk statistically significantly. DPP-4i use was associated with a statistically significant increase in the risk of hospitalization and admission to the ICU.
Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Metformin , Sodium-Glucose Transporter 2 Inhibitors , Humans , Hypoglycemic Agents/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , COVID-19/epidemiology , COVID-19/complications , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Metformin/therapeutic use , Glucagon-Like Peptide-1 ReceptorABSTRACT
Background: COVID-19 infection caused by SARS-COV-2 can result in multi-organ injuries and significant mortality in severe and critical patients, particularly those with type 2 diabetes as a comorbidity. Metformin and insulin are the main diabetes medications that affect the outcome of patients with COVID-19. Objective: The purpose of our study was to find out the features of the hematological indicators of patients with COVID-19 patients and type 2 diabetes. Methods: This is a retrospective study of the hospital confirmed COVID-19 patients between January to March 2022, who were admitted to Transcarpathian Regional Clinical Infectious Diseases Hospital (Uzhhorod, Ukraine). Results: The effect of type 2 diabetes, metformin, and insulin on COVID-19 were analyzed, respectively. Demographics and blood laboratory indices were collected. In patients who took metformin, the level of CRP was significantly lower than in patients who did not take metformin (24 mg/L [IQR 15 - 58] vs 52 mg/L, [IQR 22-121], P = 0.046). Conclusion: Our findings suggest that pre-admission metformin use may benefit COVID-19 patients with type 2 diabetes.
Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Metformin , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Metformin/therapeutic use , Insulin/therapeutic use , SARS-CoV-2 , Retrospective StudiesABSTRACT
SARS-CoV-2 infection has been a major threat to human health and a huge challenge to Medicine. In only two years, COVID-19 affected >350 million people, causing >5.6 million deaths. Chronic inflammatory states, such as diabetes or obesity, are known risk factors for COVID-19 poorest outcomes, with higher risk for disease severity and greater mortality. Metformin remains on the first line of the management of hyperglycemia in type 2 diabetes. Through its anti-inflammatory and immunomodulatory mechanisms, metformin appears as an opportunity to control the dysregulated cytokine storm secondary to SARS-CoV-2 infection. Recent studies point towards a potential protective role of metformin in the course of COVID-19, showing that current or previous treatment with metformin associates with better outcomes.
Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Metformin , Humans , COVID-19/complications , Metformin/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , SARS-CoV-2 , Inflammation/complications , Inflammation/drug therapyABSTRACT
BACKGROUND: Tirzepatide is a dual glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 (GLP-1) receptor agonist that is under development for the treatment of type 2 diabetes. The efficacy and safety of once-weekly tirzepatide as compared with semaglutide, a selective GLP-1 receptor agonist, are unknown. METHODS: In an open-label, 40-week, phase 3 trial, we randomly assigned 1879 patients, in a 1:1:1:1 ratio, to receive tirzepatide at a dose of 5 mg, 10 mg, or 15 mg or semaglutide at a dose of 1 mg. At baseline, the mean glycated hemoglobin level was 8.28%, the mean age 56.6 years, and the mean weight 93.7 kg. The primary end point was the change in the glycated hemoglobin level from baseline to 40 weeks. RESULTS: The estimated mean change from baseline in the glycated hemoglobin level was -2.01 percentage points, -2.24 percentage points, and -2.30 percentage points with 5 mg, 10 mg, and 15 mg of tirzepatide, respectively, and -1.86 percentage points with semaglutide; the estimated differences between the 5-mg, 10-mg, and 15-mg tirzepatide groups and the semaglutide group were -0.15 percentage points (95% confidence interval [CI], -0.28 to -0.03; P = 0.02), -0.39 percentage points (95% CI, -0.51 to -0.26; P<0.001), and -0.45 percentage points (95% CI, -0.57 to -0.32; P<0.001), respectively. Tirzepatide at all doses was noninferior and superior to semaglutide. Reductions in body weight were greater with tirzepatide than with semaglutide (least-squares mean estimated treatment difference, -1.9 kg, -3.6 kg, and -5.5 kg, respectively; P<0.001 for all comparisons). The most common adverse events were gastrointestinal and were primarily mild to moderate in severity in the tirzepatide and semaglutide groups (nausea, 17 to 22% and 18%; diarrhea, 13 to 16% and 12%; and vomiting, 6 to 10% and 8%, respectively). Of the patients who received tirzepatide, hypoglycemia (blood glucose level, <54 mg per deciliter) was reported in 0.6% (5-mg group), 0.2% (10-mg group), and 1.7% (15-mg group); hypoglycemia was reported in 0.4% of those who received semaglutide. Serious adverse events were reported in 5 to 7% of the patients who received tirzepatide and in 3% of those who received semaglutide. CONCLUSIONS: In patients with type 2 diabetes, tirzepatide was noninferior and superior to semaglutide with respect to the mean change in the glycated hemoglobin level from baseline to 40 weeks. (Funded by Eli Lilly; SURPASS-2 ClinicalTrials.gov number, NCT03987919.).
Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Gastric Inhibitory Polypeptide/administration & dosage , Glucagon-Like Peptides/administration & dosage , Hypoglycemic Agents/administration & dosage , Blood Glucose/analysis , Diabetes Mellitus, Type 2/blood , Dose-Response Relationship, Drug , Drug Administration Schedule , Drug Therapy, Combination , Female , Gastric Inhibitory Polypeptide/adverse effects , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptides/adverse effects , Glycated Hemoglobin/analysis , Humans , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/therapeutic use , Incretins/therapeutic use , Injections, Subcutaneous , Male , Metformin/therapeutic use , Middle Aged , Nausea/chemically induced , Weight Loss/drug effectsABSTRACT
Introduction: Diabetes mellitus is a common comorbidity among patients with coronavirus disease 2019 (COVID-19). Diabetic patients with COVID-19 have a two-fold increased risk of death and tend to have more severe infection compared to the general population. Metformin, a first-line medication for diabetes management, has anti-inflammatory and immunomodulatory effects. Previous studies focusing on metformin and COVID-19 clinical outcomes have had mixed results, with some showing a mortality benefit or decreased complications with metformin use. To date, few studies have analyzed such outcomes among a diverse, multiracial community. Methods: This was a retrospective review of patients with Type 2 diabetes and a confirmed COVID-19 infection admitted to an urban academic medical center from January 1, 2020 to May 7, 2020. Baseline characteristics were collected. The primary outcomes of the study were in-hospital mortality and length of stay (LOS). Results: A total of 4462 patients with Type 2 diabetes and confirmed COVID-19 were identified. 41.3% were Black, and 41.5% were Hispanic. There were 1021 patients in the metformin group and 3441 in the non-metformin group. Of note, more participants in the metformin group had comorbid disease and/or advanced diabetes. We found no statistically significant differences between the metformin and non-metformin group in in-hospital mortality (28.1% vs 25.3%, P=0.08) or length of hospital stay in days (7.3 vs. 7.5, P=0.59), even after matching patients on various factors (29.3% vs. 29.6%, P=0.87; 7.7 vs. 8.1, P=0.23). Conclusion: While patients had more comorbid disease and advanced diabetes in the metformin group, there were no significant differences with regard to in-hospital mortality or length of stay due to COVID-19 compared to the non-metformin group. Prospective studies are needed to determine if there is clinical benefit for initiating, continuing, or re-initiating metformin in patients hospitalized with COVID-19.
Subject(s)
COVID-19 Drug Treatment , COVID-19 , Diabetes Mellitus, Type 2 , Metformin , Humans , Metformin/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Length of Stay , COVID-19/complications , Hypoglycemic Agents/therapeutic useABSTRACT
AIMS: To analyse if antidiabetic treatment was associated with better COVID-19 outcomes in type 2 diabetic patients, measured by hospital admission and mortality rates as severe outcomes. METHODS: Cohort study including COVID-19 patients registered in the Primary Care electronic records, in March-June 2020, comparing exposed to metformin in monotherapy with exposed to any other antidiabetic. DATA SOURCE: SIDIAP (Information System for Research in Primary Care), which captures clinical information of 5,8 million people from Catalonia, Spain. RESULTS: We included 31,006 diabetic patients infected with COVID-19, 43.7% previously exposed to metformin, 45.5% of them in monotherapy. 16.4% were admitted to hospital and 15.1% died. Users of insulin in monotherapy (OR 1.29, 95% CI 1.11-1.50), combined with metformin (OR 1.38, 1.13-1.69) or IDPP4 alone (OR 1.29, 1.03-1.63) had higher risk of severe outcomes than those in metformin monotherapy. Users of any insulin (OR 1.61, 1.32-1.97) or combined with metformin (OR 1.69, 1.30-2.20) had a higher risk of mortality. CONCLUSIONS: Patients receiving metformin monotherapy in our study showed a lower risk of hospitalization and death in comparison to those treated with other frequent antidiabetic agents. We cannot distinguish if better outcomes are related with the antidiabetic therapy or with other factors, such as metabolic control or interventions applied during the hospital admission.
Subject(s)
COVID-19 Drug Treatment , COVID-19 , Diabetes Mellitus, Type 2 , Metformin , Humans , Hypoglycemic Agents/adverse effects , Spain/epidemiology , Pandemics , Cohort Studies , COVID-19/epidemiology , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Metformin/adverse effects , Insulin/adverse effects , Primary Health CareABSTRACT
BACKGROUND: While vaccination is the most important way to combat the SARS-CoV-2 pandemic, there may still be a need for early outpatient treatment that is safe, inexpensive, and currently widely available in parts of the world that do not have access to the vaccine. There are in-silico, in-vitro, and in-tissue data suggesting that metformin inhibits the viral life cycle, as well as observational data suggesting that metformin use before infection with SARS-CoV2 is associated with less severe COVID-19. Previous observational analyses from single-center cohorts have been limited by size. METHODS: Conducted a retrospective cohort analysis in adults with type 2 diabetes (T2DM) for associations between metformin use and COVID-19 outcomes with an active comparator design of prevalent users of therapeutically equivalent diabetes monotherapy: metformin versus dipeptidyl-peptidase-4-inhibitors (DPP4i) and sulfonylureas (SU). This took place in the National COVID Cohort Collaborative (N3C) longitudinal U.S. cohort of adults with +SARS-CoV-2 result between January 1 2020 to June 1 2021. Findings included hospitalization or ventilation or mortality from COVID-19. Back pain was assessed as a negative control outcome. RESULTS: 6,626 adults with T2DM and +SARS-CoV-2 from 36 sites. Mean age was 60.7 +/- 12.0 years; 48.7% male; 56.7% White, 21.9% Black, 3.5% Asian, and 16.7% Latinx. Mean BMI was 34.1 +/- 7.8kg/m2. Overall 14.5% of the sample was hospitalized; 1.5% received mechanical ventilation; and 1.8% died. In adjusted outcomes, compared to DPP4i, metformin had non-significant associations with reduced need for ventilation (RR 0.68, 0.32-1.44), and mortality (RR 0.82, 0.41-1.64). Compared to SU, metformin was associated with a lower risk of ventilation (RR 0.5, 95% CI 0.28-0.98, p = 0.044) and mortality (RR 0.56, 95%CI 0.33-0.97, p = 0.037). There was no difference in unadjusted or adjusted results of the negative control. CONCLUSIONS: There were clinically significant associations between metformin use and less severe COVID-19 compared to SU, but not compared to DPP4i. New-user studies and randomized trials are needed to assess early outpatient treatment and post-exposure prophylaxis with therapeutics that are safe in adults, children, pregnancy and available worldwide.
Subject(s)
COVID-19 Drug Treatment , Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Metformin , Adult , Child , Male , Humans , Middle Aged , Aged , Female , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Retrospective Studies , RNA, Viral/therapeutic use , SARS-CoV-2 , Treatment Outcome , Sulfonylurea Compounds/therapeutic use , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Metformin/therapeutic use , Cohort StudiesABSTRACT
Disorders of systemic metabolism can influence immunity. Individuals with obesity are known to have increased inflammation, increased risk to select autoimmune diseases, impaired response to several infections, and impaired vaccine response. For example, over the last decade, it has become clear that individuals with obesity have increased risk of morbidity and mortality from influenza infection. Unsurprisingly, this finding is also observed in the current COVID-19 pandemic: individuals with obesity, particularly severe obesity, have increased risk of poor outcomes from SARS-CoV-2 infection, including increased rates of hospitalization, ICU admission, mechanical ventilation, and death. Several studies have now demonstrated a critical role for T cells in the context of obesity-associated immune dysfunction in response to viral infection, and one mechanism for this may be altered T cell metabolism. Indeed, recent studies have shown that activated T cells from obese mice have an altered metabolic profile characterized by increased glucose oxidation, both in vitro and in vivo following viral infection. For that reason, treatments that target abnormal immune cell metabolism in obesity may improve outcomes to viral infection. To that end, several recent studies have shown that use of the metabolic drug, metformin, can reverse abnormal T cell metabolism and restore T cell immunity, as well as survival, in response to viral infection. These findings will be discussed in detail here.
Subject(s)
COVID-19 , Metformin , Animals , Mice , Humans , Pandemics , SARS-CoV-2 , T-Lymphocytes , Obesity/complications , Metformin/therapeutic use , Oxidative Stress , GlucoseABSTRACT
INTRODUCTION: The coronavirus disease 2019 (COVID-19) caused a worldwide pandemic and has led to over five million deaths. Many cardiovascular risk factors (e.g. obesity or diabetes) are associated with an increased risk of adverse outcomes in COVID-19. On the other hand, it has been suggested that medications used to treat cardiometabolic conditions may have protective effects for patients with COVID-19. OBJECTIVES: To determine whether patients taking four classes of cardioprotective medications-aspirin, metformin, renin angiotensin aldosterone system inhibitors (RAASi) and statins-have a lower risk of adverse outcomes of COVID-19. METHODS: We conducted a retrospective cohort study of primary care patients at a large integrated healthcare delivery system who had a positive COVID-19 test between March 2020 and March 2021. We compared outcomes of patients who were taking one of the study medications at the time of the COVID-19 test to patients who took a medication from the same class in the past (to minimize bias by indication). The following outcomes were compared: a) hospitalization; b) ICU admission; c) intubation; and d) death. Multivariable analysis was used to adjust for patient demographics and comorbidities. RESULTS: Among 13,585 study patients, 1,970 (14.5%) were hospitalized; 763 (5.6%) were admitted to an ICU; 373 (2.8%) were intubated and 720 (5.3%) died. In bivariate analyses, patients taking metformin, RAASi and statins had lower risk of hospitalization, ICU admission and death. However, in multivariable analysis, only the lower risk of death remained statistically significant. Patients taking aspirin had a significantly higher risk of hospitalization in both bivariate and multivariable analyses. CONCLUSIONS: Cardioprotective medications were not associated with a consistent benefit in COVID-19. As vaccination and effective treatments are not yet universally accessible worldwide, research should continue to determine whether affordable and widely available medications could be utilized to decrease the risks of this disease.
Subject(s)
COVID-19 Drug Treatment , COVID-19 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Metformin , Aspirin , COVID-19/epidemiology , Hospitalization , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Retrospective Studies , SARS-CoV-2ABSTRACT
BACKGROUND: Coronavirus disease 2019 (COVID-19) is associated with an increased prevalence and mortality from diabetic ketoacidosis (DKA) globally. With limited access to specialised care, most patients with DKA in South Africa are managed at district hospital level. This study describes the profile of patients admitted to a district hospital in South Africa with DKA and COVID-19 and examines associated risk factors encountered. METHODS: This was a case series of all patients presenting to a district hospital with DKA and COVID-19 infection between July 2020 and July 2021. Data extracted included patients' demographic profiles, biochemical results, comorbidities and clinical outcomes. RESULTS: The median age of the 10 patients admitted during the study period was 39 years old (±12), six of whom were male. The hemoglobin A1c (HbA1c) values on admission ranged from 9.7 to 13.8. Five of the patients had pre-existing type 2 diabetes mellitus (DM). Four of the known DM patients were on metformin only, and one was on biphasic insulin. Three patients had other pre-existing comorbidities, two patients with hypertension and one with human immunodeficiency virus (HIV). Three patients demised, two of whom were hypoxic on admission. CONCLUSION: Diabetic ketoacidosis appears more commonly in COVID-19 infected patients with type 2 DM and at a young age. Suboptimal glycaemic control was associated with DKA, and hypoxia was a strong predictor for mortality. Treatment inertia was evident in the known DM group, who were on monotherapy despite persistent hyperglycaemia. Greater vigilance is required to detect ketosis in type 2 DM and intensify therapy to improve glycaemic control.
Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Diabetic Ketoacidosis , Metformin , Adult , Biphasic Insulins/therapeutic use , COVID-19/complications , COVID-19/epidemiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Diabetic Ketoacidosis/diagnosis , Diabetic Ketoacidosis/epidemiology , Diabetic Ketoacidosis/therapy , Female , Glycated Hemoglobin/analysis , Glycated Hemoglobin/therapeutic use , Hospitals, District , Humans , Male , Metformin/therapeutic use , Retrospective Studies , South Africa/epidemiologyABSTRACT
Metformin can suppress gluconeogenesis and reduce blood sugar by activating adenosine monophosphate-activated protein kinase (AMPK) and inducing small heterodimer partner (SHP) expression in the liver cells. The main mechanism of metformin's action is related to its activation of the AMPK enzyme and regulation of the energy balance. AMPK is a heterothermic serine/threonine kinase made of a catalytic alpha subunit and two subunits of beta and a gamma regulator. This enzyme can measure the intracellular ratio of AMP/ATP. If this ratio is high, the amino acid threonine 172 available in its alpha chain would be activated by the phosphorylated liver kinase B1 (LKB1), leading to AMPK activation. Several studies have indicated that apart from its significant role in the reduction of blood glucose level, metformin activates the AMPK enzyme that in turn has various efficient impacts on the regulation of various processes, including controlling inflammatory conditions, altering the differentiation pathway of immune and non-immune cell pathways, and the amelioration of various cancers, liver diseases, inflammatory bowel disease (IBD), kidney diseases, neurological disorders, etc. Metformin's activation of AMPK enables it to control inflammatory conditions, improve oxidative status, regulate the differentiation pathways of various cells, change the pathological process in various diseases, and finally have positive therapeutic effects on them. Due to the activation of AMPK and its role in regulating several subcellular signalling pathways, metformin can be effective in altering the cells' proliferation and differentiation pathways and eventually in the prevention and treatment of certain diseases.