Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Cell Rep ; 38(10): 110503, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1705992


Natural killer (NK) cells are innate immune cells that contribute to host defense against virus infections. NK cells respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and are activated in patients with acute coronavirus disease 2019 (COVID-19). However, by which mechanisms NK cells detect SARS-CoV-2-infected cells remains largely unknown. Here, we show that the Non-structural protein 13 of SARS-CoV-2 encodes for a peptide that is presented by human leukocyte antigen E (HLA-E). In contrast with self-peptides, the viral peptide prevents binding of HLA-E to the inhibitory receptor NKG2A, thereby rendering target cells susceptible to NK cell attack. In line with these observations, NKG2A-expressing NK cells are particularly activated in patients with COVID-19 and proficiently limit SARS-CoV-2 replication in infected lung epithelial cells in vitro. Thus, these data suggest that a viral peptide presented by HLA-E abrogates inhibition of NKG2A+ NK cells, resulting in missing self-recognition.

COVID-19 , Histocompatibility Antigens Class I , Killer Cells, Natural , Methyltransferases , NK Cell Lectin-Like Receptor Subfamily C , RNA Helicases , SARS-CoV-2 , Viral Nonstructural Proteins , COVID-19/immunology , Histocompatibility Antigens Class I/immunology , Humans , Killer Cells, Natural/immunology , Methyltransferases/immunology , NK Cell Lectin-Like Receptor Subfamily C/immunology , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Peptides/metabolism , RNA Helicases/immunology , Viral Nonstructural Proteins/immunology
Adv Sci (Weinh) ; 8(15): e2100606, 2021 08.
Article in English | MEDLINE | ID: covidwho-1340232


Mitochondrial antiviral signaling (MAVS) protein is the core signaling adaptor in the RNA signaling pathway. Thus, appropriate regulation of MAVS expression is essential for antiviral immunity against RNA virus infection. However, the regulation of MAVS expression at the mRNA level especially at the post transcriptional level is not well-defined. Here, it is reported that the MAVS mRNA undergoes N6 -methyladenosine (m6 A) modification through methyltransferase-like protein 14 (METTL14), which leads to a fast turnover of MAVS mRNA. Knockdown or deficiency of METTL14 increases MAVS mRNA stability, and downstream phosphorylation of TBK1/IRF3 and interferon-ß production in response to RNA viruses. Compared to wild-type mice, heterozygotes Mettl14+/- mice better tolerate RNA virus infection. The authors' findings unveil a novel mechanism to regulate the stability of MAVS transcripts post-transcriptionally through m6 A modification.

Adaptor Proteins, Signal Transducing/immunology , Adaptor Proteins, Signal Transducing/metabolism , Adenosine/analogs & derivatives , Methyltransferases/immunology , Methyltransferases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adenosine/genetics , Adenosine/immunology , Adenosine/metabolism , Animals , Disease Models, Animal , Humans , Immunity, Innate/genetics , Immunity, Innate/immunology , Methyltransferases/genetics , Mice , Mice, Inbred C57BL , Signal Transduction/genetics , Signal Transduction/immunology