Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 229
Filter
1.
Front Immunol ; 13: 825103, 2022.
Article in English | MEDLINE | ID: covidwho-1785336

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has had an enormous impact on the world, affecting people's lifestyle, economy, and livelihood. Recently, with the development of vaccines, the number of infected cases has decreased. Many case reports have revealed that COVID-19 may induce other serious comorbidities such as anti-N-methyl-d-aspartate (anti-NMDA) receptor encephalitis. Anti-NMDA receptor encephalitis is an acute autoimmune disease that occurs more commonly in women than in men. To explore the association between COVID-19 and anti-NMDA receptor encephalitis, the microRNA (miRNA) biomarkers of COVID-19, anti-NMDA receptor encephalitis, and other related diseases from the literature are reviewed; then on the basis of these miRNA biomarkers, the relationship between COVID-19 and anti-NMDA receptor encephalitis is discussed. miRNAs are small non-coding RNAs that play important roles in cell differentiation, development, cell-cycle regulation, and apoptosis. miRNAs have been used as biological biomarkers for many diseases. The results in this study reveal that the relationship between anti-NMDA receptor encephalitis and COVID-19 infection or COVID-19 vaccination cannot be excluded; however, the risk that COVID-19 triggers the anti-NMDA receptor encephalitis is not high.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , COVID-19 , MicroRNAs , Biomarkers , COVID-19 Vaccines , Female , Humans , Male , MicroRNAs/genetics
2.
PLoS One ; 17(4): e0266124, 2022.
Article in English | MEDLINE | ID: covidwho-1779761

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is one of the most severe global pandemic due to its high pathogenicity and death rate starting from the end of 2019. Though there are some vaccines available against SAER-CoV-2 infections, we are worried about their effectiveness, due to its unstable sequence patterns. Therefore, beside vaccines, globally effective supporting drugs are also required for the treatment against SARS-CoV-2 infection. To explore commonly effective repurposable drugs for the treatment against different variants of coronavirus infections, in this article, an attempt was made to explore host genomic biomarkers guided repurposable drugs for SARS-CoV-1 infections and their validation with SARS-CoV-2 infections by using the integrated bioinformatics approaches. At first, we identified 138 differentially expressed genes (DEGs) between SARS-CoV-1 infected and control samples by analyzing high throughput gene-expression profiles to select drug target key receptors. Then we identified top-ranked 11 key DEGs (SMAD4, GSK3B, SIRT1, ATM, RIPK1, PRKACB, MED17, CCT2, BIRC3, ETS1 and TXN) as hub genes (HubGs) by protein-protein interaction (PPI) network analysis of DEGs highlighting their functions, pathways, regulators and linkage with other disease risks that may influence SARS-CoV-1 infections. The DEGs-set enrichment analysis significantly detected some crucial biological processes (immune response, regulation of angiogenesis, apoptotic process, cytokine production and programmed cell death, response to hypoxia and oxidative stress), molecular functions (transcription factor binding and oxidoreductase activity) and pathways (transcriptional mis-regulation in cancer, pathways in cancer, chemokine signaling pathway) that are associated with SARS-CoV-1 infections as well as SARS-CoV-2 infections by involving HubGs. The gene regulatory network (GRN) analysis detected some transcription factors (FOXC1, GATA2, YY1, FOXL1, TP53 and SRF) and micro-RNAs (hsa-mir-92a-3p, hsa-mir-155-5p, hsa-mir-106b-5p, hsa-mir-34a-5p and hsa-mir-19b-3p) as the key transcriptional and post- transcriptional regulators of HubGs, respectively. We also detected some chemicals (Valproic Acid, Cyclosporine, Copper Sulfate and arsenic trioxide) that may regulates HubGs. The disease-HubGs interaction analysis showed that our predicted HubGs are also associated with several other diseases including different types of lung diseases. Then we considered 11 HubGs mediated proteins and their regulatory 6 key TFs proteins as the drug target proteins (receptors) and performed their docking analysis with the SARS-CoV-2 3CL protease-guided top listed 90 anti-viral drugs out of 3410. We found Rapamycin, Tacrolimus, Torin-2, Radotinib, Danoprevir, Ivermectin and Daclatasvir as the top-ranked 7 candidate-drugs with respect to our proposed target proteins for the treatment against SARS-CoV-1 infections. Then, we validated these 7 candidate-drugs against the already published top-ranked 11 target proteins associated with SARS-CoV-2 infections by molecular docking simulation and found their significant binding affinity scores with our proposed candidate-drugs. Finally, we validated all of our findings by the literature review. Therefore, the proposed candidate-drugs might play a vital role for the treatment against different variants of SARS-CoV-2 infections with comorbidities, since the proposed HubGs are also associated with several comorbidities.


Subject(s)
COVID-19 , MicroRNAs , COVID-19/drug therapy , Computational Biology , Humans , MicroRNAs/genetics , Molecular Docking Simulation , SARS-CoV-2/genetics , Transcription Factors/genetics , Transcriptome
3.
PLoS One ; 17(4): e0265670, 2022.
Article in English | MEDLINE | ID: covidwho-1775445

ABSTRACT

Host biomarkers are increasingly being considered as tools for improved COVID-19 detection and prognosis. We recently profiled circulating host-encoded microRNA (miRNAs) during SARS-CoV-2 infection, revealing a signature that classified COVID-19 cases with 99.9% accuracy. Here we sought to develop a signature suited for clinical application by analyzing specimens collected using minimally invasive procedures. Eight miRNAs displayed altered expression in anterior nasal tissues from COVID-19 patients, with miR-142-3p, a negative regulator of interleukin-6 (IL-6) production, the most strongly upregulated. Supervised machine learning analysis revealed that a three-miRNA signature (miR-30c-2-3p, miR-628-3p and miR-93-5p) independently classifies COVID-19 cases with 100% accuracy. This study further defines the host miRNA response to SARS-CoV-2 infection and identifies candidate biomarkers for improved COVID-19 detection.


Subject(s)
COVID-19 , MicroRNAs , Biomarkers , COVID-19/diagnosis , Gene Expression Profiling , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Respiratory System/metabolism , SARS-CoV-2/genetics
4.
Infect Genet Evol ; 99: 105260, 2022 04.
Article in English | MEDLINE | ID: covidwho-1773643

ABSTRACT

The ongoing pandemic that resulted from coronavirus disease (COVID-19), which is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), had been spiraling out of control with no known antiviral drugs or vaccines. Due to the extremely serious nature of the disease, it has claimed many lives, with a mortality rate of 3.4% declared by the World Health Organization (WHO) on March 3, 2020. The aim of this study is to gain an understanding of the regulatory nature of the proteins involved in COVID-19 and to explore the possibility that microRNA (miRNA) could become a major component in the decoding of the virus. In the study, we were able to correlate the host protein gene BCL2L1 with miRNA miR-23b via network analysis. MiRNAs have previously been associated with the antiviral properties of various viral diseases, such as enterovirus 71 and hepatitis. They have been reported to act as antiviral regulators, since they are an integral component in the direct regulation of viral genes. MiRNAs are also capable of enabling the virus to avoid the host immune response by suppressing the IFN-α/ß signaling pathway or increasing the production of IFN-α/ß and as a result, inhibiting the viral infection. Here, we explain and shed light on the various correlations in the miRNA-gene-disease association that are seen in the host proteins of COVID-19.


Subject(s)
COVID-19 , MicroRNAs , Humans , MicroRNAs/genetics , Pandemics , Prevalence , SARS-CoV-2/genetics , bcl-X Protein
5.
J Clin Res Pediatr Endocrinol ; 14(1): 76-86, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1766064

ABSTRACT

Objective: Micro RNAs (miRNAs) are gaining acceptance as novel biomarkers for the autoimmune disorders. However, miRNA profiles have not been investigated in individuals at risk of or diagnosed with type 1 diabetes mellitus (T1DM). To study the expression pattern of miRNAs in plasma obtained from patients with T1DM and compare with matched healthy controls. Methods: Equal numbers of patients with T1DM (90) and healthy-matched control children (90) were assessed for the expression profile of plasma miRNAs including miRNA-101-5p, miRNA-146-5p, miRNA-21-5p, miRNA-375, miRNA-126, and Let7a-5p using reverse transcriptase polymerase chain reaction methodology and quantitative real-time testing. Results: Analysis showed that miRNA-101, miRNA-21 and miRNA-375 were highly expressed, whereas, miRNA-146-5p, miRNA-126, and miRNA-Let7a-5p showed significantly low levels of expression in T1DM patients compared to controls (p<0.05). In addition, miRNA-101 and miRNA-146 correlated with age at diagnosis of T1DM and disease duration, respectively. Furthermore, multivariate analysis showed that miRNA-126 and Let7a-5p had a significant negative correlation with mean hemoglobin A1c (HbA1c) values. Conclusion: Dysregulation of the six miRNAs analyzed suggested a possible role as biomarkers in T1DM. miRNA-101 was correlated with age at diagnosis while miRNA-146 correlated with disease duration. Two further miRNAs correlated with the existing biomarker, HbA1c.


Subject(s)
Diabetes Mellitus, Type 1 , Hyperglycemia , MicroRNAs , Biomarkers , Child , Diabetes Mellitus, Type 1/genetics , Egypt , Humans , Hyperglycemia/genetics , MicroRNAs/genetics
6.
Int J Mol Sci ; 23(6)2022 Mar 19.
Article in English | MEDLINE | ID: covidwho-1760653

ABSTRACT

Lung cancer (LC) is the leading cause of cancer-related death worldwide. Although the diagnosis and treatment of non-small cell lung cancer (NSCLC), which accounts for approximately 80% of LC cases, have greatly improved in the past decade, there is still an urgent need to find more sensitive and specific screening methods. Recently, new molecular biomarkers are emerging as potential non-invasive diagnostic agents to screen NSCLC, including multiple microRNAs (miRNAs) that show an unusual expression profile. Moreover, peripheral blood mononuclear cells' (PBMCs) miRNA profile could be linked with NSCLC and used for diagnosis. We developed a molecular beacon (MB)-based miRNA detection strategy for NSCLC. Following PBMCs isolation and screening of the expression profile of a panel of miRNA by RT-qPCR, we designed a MB targeting of up-regulated miR-21-5p. This MB 21-5p was characterized by FRET-melting, CD, NMR and native PAGE, allowing the optimization of an in-situ approach involving miR-21-5p detection in PBMCs via MB. Data show the developed MB approach potential for miR-21-5p detection in PBMCs from clinical samples towards NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Gene Expression Regulation, Neoplastic , Humans , Leukocytes, Mononuclear/metabolism , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , MicroRNAs/metabolism
8.
Int J Mol Sci ; 23(5)2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1736948

ABSTRACT

Following the discovery of nucleic acids by Friedrich Miescher in 1868, DNA and RNA were recognized as the genetic code containing the necessary information for proper cell functioning. In the years following these discoveries, vast knowledge of the seemingly endless roles of RNA have become better understood. Additionally, many new types of RNAs were discovered that seemed to have no coding properties (non-coding RNAs), such as microRNAs (miRNAs). The discovery of these new RNAs created a new avenue for treating various human diseases. However, RNA is relatively unstable and is degraded fairly rapidly once administered; this has led to the development of novel delivery mechanisms, such as nanoparticles to increase stability as well as to prevent off-target effects of these molecules. Current advances in RNA-based therapies have substantial promise in treating and preventing many human diseases and disorders through fixing the pathology instead of merely treating the symptomology similarly to traditional therapeutics. Although many RNA therapeutics have made it to clinical trials, only a few have been FDA approved thus far. Additionally, the results of clinical trials for RNA therapeutics have been ambivalent to date, with some studies demonstrating potent efficacy, whereas others have limited effectiveness and/or toxicity. Momentum is building in the clinic for RNA therapeutics; future clinical care of human diseases will likely comprise promising RNA therapeutics. This review focuses on the current advances of RNA therapeutics and addresses current challenges with their development.


Subject(s)
MicroRNAs , Nanoparticles , Nucleic Acids , Humans , MicroRNAs/genetics , Nanoparticles/therapeutic use , RNA, Small Interfering/genetics , RNA, Untranslated/genetics
9.
EBioMedicine ; 76: 103861, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1734342

ABSTRACT

BACKGROUND: Since late 2019, SARS-CoV-2 infection has resulted in COVID-19 accompanied by diverse clinical manifestations. However, the underlying mechanism of how SARS-CoV-2 interacts with host and develops multiple symptoms is largely unexplored. METHODS: Bioinformatics analysis determined the sequence similarity between SARS-CoV-2 and human genomes. Diverse fragments of SARS-CoV-2 genome containing Human Identical Sequences (HIS) were cloned into the lentiviral vector. HEK293T, MRC5 and HUVEC were infected with laboratory-packaged lentivirus or transfected with plasmids or antagomirs for HIS. Quantitative RT-PCR and chromatin immunoprecipitation assay detected gene expression and H3K27ac enrichment, respectively. UV-Vis spectroscopy assessed the interaction between HIS and their target locus. Enzyme-linked immunosorbent assay evaluated the hyaluronan (HA) levels of culture supernatant and plasma of COVID-19 patients. FINDINGS: Five short sequences (24-27 nt length) sharing identity between SARS-CoV-2 and human genome were identified. These RNA elements were highly conserved in primates. The genomic fragments containing HIS were predicted to form hairpin structures in silico similar to miRNA precursors. HIS may function through direct genomic interaction leading to activation of host enhancers, and upregulation of adjacent and distant genes, including cytokine genes and hyaluronan synthase 2 (HAS2). HIS antagomirs and Cas13d-mediated HIS degradation reduced HAS2 expression. Severe COVID-19 patients displayed decreased lymphocytes and elevated D-dimer, and C-reactive proteins, as well as increased plasma hyaluronan. Hymecromone inhibited hyaluronan production in vitro, and thus could be further investigated as a therapeutic option for preventing severe outcome in COVID-19 patients. INTERPRETATION: HIS of SARS-CoV-2 could promote COVID-19 progression by upregulating hyaluronan, providing novel targets for treatment. FUNDING: The National Key R&D Program of China (2018YFC1005004), Major Special Projects of Basic Research of Shanghai Science and Technology Commission (18JC1411101), and the National Natural Science Foundation of China (31872814, 32000505).


Subject(s)
Gene Regulatory Networks/genetics , Genome, Human , Hyaluronic Acid/metabolism , RNA, Viral/genetics , SARS-CoV-2/genetics , Antagomirs/metabolism , Argonaute Proteins/genetics , Base Sequence , COVID-19/pathology , COVID-19/virology , Cell Line , Disease Progression , Enhancer Elements, Genetic/genetics , Humans , Hyaluronan Synthases/genetics , Hyaluronan Synthases/metabolism , Hyaluronic Acid/blood , MicroRNAs/genetics , RNA, Viral/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Up-Regulation
10.
J Am Soc Nephrol ; 33(3): 565-582, 2022 03.
Article in English | MEDLINE | ID: covidwho-1731641

ABSTRACT

BACKGROUND: Endothelial cell injury is a common nidus of renal injury in patients and consistent with the high prevalence of AKI reported during the coronavirus disease 2019 pandemic. This cell type expresses integrin α5 (ITGA5), which is essential to the Tie2 signaling pathway. The microRNA miR-218-5p is upregulated in endothelial progenitor cells (EPCs) after hypoxia, but microRNA regulation of Tie2 in the EPC lineage is unclear. METHODS: We isolated human kidney-derived EPCs (hkEPCs) and surveyed microRNA target transcripts. A preclinical model of ischemic kidney injury was used to evaluate the effect of hkEPCs on capillary repair. We used a genetic knockout model to evaluate the effect of deleting endogenous expression of miR-218 specifically in angioblasts. RESULTS: After ischemic in vitro preconditioning, miR-218-5p was elevated in hkEPCs. We found miR-218-5p bound to ITGA5 mRNA transcript and decreased ITGA5 protein expression. Phosphorylation of 42/44 MAPK decreased by 73.6% in hkEPCs treated with miR-218-5p. Cells supplemented with miR-218-5p downregulated ITGA5 synthesis and decreased 42/44 MAPK phosphorylation. In a CD309-Cre/miR-218-2-LoxP mammalian model (a conditional knockout mouse model designed to delete pre-miR-218-2 exclusively in CD309+ cells), homozygotes at e18.5 contained avascular glomeruli, whereas heterozygote adults showed susceptibility to kidney injury. Isolated EPCs from the mouse kidney contained high amounts of ITGA5 and showed decreased migratory capacity in three-dimensional cell culture. CONCLUSIONS: These results demonstrate the critical regulatory role of miR-218-5p in kidney EPC migration, a finding that may inform efforts to treat microvascular kidney injury via therapeutic cell delivery.


Subject(s)
Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/pathology , Integrin alpha5/metabolism , MicroRNAs/physiology , Acute Kidney Injury/pathology , Animals , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptor, TIE-2/physiology , Signal Transduction/physiology
11.
Nat Cell Biol ; 23(12): 1240-1254, 2021 12.
Article in English | MEDLINE | ID: covidwho-1699219

ABSTRACT

Extracellular vesicles and exomere nanoparticles are under intense investigation as sources of clinically relevant cargo. Here we report the discovery of a distinct extracellular nanoparticle, termed supermere. Supermeres are morphologically distinct from exomeres and display a markedly greater uptake in vivo compared with small extracellular vesicles and exomeres. The protein and RNA composition of supermeres differs from small extracellular vesicles and exomeres. Supermeres are highly enriched with cargo involved in multiple cancers (glycolytic enzymes, TGFBI, miR-1246, MET, GPC1 and AGO2), Alzheimer's disease (APP) and cardiovascular disease (ACE2, ACE and PCSK9). The majority of extracellular RNA is associated with supermeres rather than small extracellular vesicles and exomeres. Cancer-derived supermeres increase lactate secretion, transfer cetuximab resistance and decrease hepatic lipids and glycogen in vivo. This study identifies a distinct functional nanoparticle replete with potential circulating biomarkers and therapeutic targets for a host of human diseases.


Subject(s)
Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Nanoparticles/metabolism , Alzheimer Disease/pathology , Angiotensin-Converting Enzyme 2/metabolism , Biological Transport/physiology , Biomarkers/metabolism , COVID-19/pathology , Cardiovascular Diseases/pathology , Cell Communication/physiology , Cell Line, Tumor , HeLa Cells , Humans , Lactic Acid/metabolism , MicroRNAs/genetics , Nanoparticles/classification , Neoplasms/pathology , Tumor Microenvironment
12.
Genes (Basel) ; 13(2)2022 02 14.
Article in English | MEDLINE | ID: covidwho-1686686

ABSTRACT

The use of high-throughput small RNA sequencing is well established as a technique to unveil the miRNAs in various tissues. The miRNA profiles are different between infected and non-infected tissues. We compare the SARS-CoV-2 positive and SARS-CoV-2 negative RNA samples extracted from human nasopharynx tissue samples to show different miRNA profiles. We explored differentially expressed miRNAs in response to SARS-CoV-2 in the RNA extracted from nasopharynx tissues of 10 SARS-CoV-2-positive and 10 SARS-CoV-2-negative patients. miRNAs were identified by small RNA sequencing, and the expression levels of selected miRNAs were validated by real-time RT-PCR. We identified 943 conserved miRNAs, likely generated through posttranscriptional modifications. The identified miRNAs were expressed in both RNA groups, NegS and PosS: miR-148a, miR-21, miR-34c, miR-34b, and miR-342. The most differentially expressed miRNA was miR-21, which is likely closely linked to the presence of SARS-CoV-2 in nasopharynx tissues. Our results contribute to further understanding the role of miRNAs in SARS-CoV-2 pathogenesis, which may be crucial for understanding disease symptom development in humans.


Subject(s)
MicroRNAs/metabolism , Nasopharynx/metabolism , SARS-CoV-2/physiology , COVID-19/pathology , COVID-19/virology , Down-Regulation , High-Throughput Nucleotide Sequencing , Humans , MicroRNAs/chemistry , Nasopharynx/virology , Principal Component Analysis , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sequence Analysis, RNA , Transcriptome , Up-Regulation
13.
Cells ; 11(3)2022 01 26.
Article in English | MEDLINE | ID: covidwho-1686619

ABSTRACT

MicroRNAs (miRs) are short non-coding RNAs that regulate the translation and stability of mRNAs to fine-tune gene expression [...].


Subject(s)
MicroRNAs , MicroRNAs/metabolism , RNA, Messenger
14.
Viruses ; 14(1)2021 12 29.
Article in English | MEDLINE | ID: covidwho-1628815

ABSTRACT

Outbreaks of influenza, caused by the influenza A virus (IAV), occur almost every year in various regions worldwide, seriously endangering human health. Studies have shown that host non-coding RNA is an important regulator of host-virus interactions in the process of IAV infection. In this paper, we comprehensively analyzed the research progress on host non-coding RNAs with regard to the regulation of IAV replication. According to the regulation mode of host non-coding RNAs, the signal pathways involved, and the specific target genes, we found that a large number of host non-coding RNAs directly targeted the PB1 and PB2 proteins of IAV. Nonstructural protein 1 and other key genes regulate the replication of IAV and indirectly participate in the regulation of the retinoic acid-induced gene I-like receptor signaling pathway, toll-like receptor signaling pathway, Janus kinase signal transducer and activator of transcription signaling pathway, and other major intracellular viral response signaling pathways to regulate the replication of IAV. Based on the above findings, we mapped the regulatory network of host non-coding RNAs in the innate immune response to the influenza virus. These findings will provide a more comprehensive understanding of the function and mechanism of host non-coding RNAs in the cellular anti-virus response as well as clues to the mechanism of cell-virus interactions and the discovery of antiviral drug targets.


Subject(s)
Host-Pathogen Interactions , Influenza A virus/genetics , Influenza, Human/immunology , RNA, Untranslated , Virus Replication , Antiviral Agents/immunology , Cell Cycle , Humans , Immunity, Innate , Influenza, Human/virology , MicroRNAs , RNA, Circular , Signal Transduction
15.
Emerg Microbes Infect ; 11(1): 676-688, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1672036

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) have a crucial role in regulating immune response against infectious diseases, showing changes early in disease onset and before the detection of the pathogen. Thus, we aimed to analyze the plasma miRNA profile at COVID-19 onset to identify miRNAs as early prognostic biomarkers of severity and survival. METHODS AND RESULTS: Plasma miRNome of 96 COVID-19 patients that developed asymptomatic/mild, moderate and severe disease was sequenced together with a group of healthy controls. Plasma immune-related biomarkers were also assessed. COVID-19 patients showed 200 significant differentially expressed (SDE) miRNAs concerning healthy controls, with upregulated putative targets of SARS-CoV-2, and inflammatory miRNAs. Among COVID-19 patients, 75 SDE miRNAs were observed in asymptomatic/mild compared to symptomatic patients, which were involved in platelet aggregation and cytokine pathways, among others. Moreover, 137 SDE miRNAs were identified between severe and moderate patients, where miRNAs targeting the SARS CoV-2 genome were the most strongly disrupted. Finally, we constructed a mortality predictive risk score (miRNA-MRS) with ten miRNAs. Patients with higher values had a higher risk of 90-days mortality (hazard ratio = 4.60; p-value < 0.001). Besides, the discriminant power of miRNA-MRS was significantly higher than the observed for age and gender (AUROC = 0.970 vs. 0.881; p = 0.042). CONCLUSIONS: SARS-CoV-2 infection deeply disturbs the plasma miRNome from an early stage of COVID-19, making miRNAs highly valuable as early predictors of severity and mortality.


Subject(s)
COVID-19 , MicroRNAs , Biomarkers , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , SARS-CoV-2
16.
Cells ; 11(3)2022 01 30.
Article in English | MEDLINE | ID: covidwho-1667057

ABSTRACT

The global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing, as is research on the molecular mechanisms underlying cellular infection by coronaviruses, with the hope of developing therapeutic agents against this pandemic. Other important respiratory viruses such as 2009 pandemic H1N1 and H7N9 avian influenza virus (AIV), influenza A viruses, are also responsible for a possible outbreak due to their respiratory susceptibility. However, the interaction of these viruses with host cells and the regulation of post-transcriptional genes remains unclear. In this study, we detected and analyzed the comparative transcriptome profiling of SARS-CoV-2, panH1N1 (A/California/07/2009), and H7N9 (A/Shanghai/1/2013) infected cells. The results showed that the commonly upregulated genes among the three groups were mainly involved in autophagy, pertussis, and tuberculosis, which indicated that autophagy plays an important role in viral pathogenicity. There are three groups of commonly downregulated genes involved in metabolic pathways. Notably, unlike panH1N1 and H7N9, SARS-CoV-2 infection can inhibit the m-TOR pathway and activate the p53 signaling pathway, which may be responsible for unique autophagy induction and cell apoptosis. Particularly, upregulated expression of IRF1 was found in SARS-CoV-2, panH1N1, and H7N9 infection. Further analysis showed SARS-CoV-2, panH1N1, and H7N9 infection-induced upregulation of lncRNA-34087.27 could serve as a competitive endogenous RNA to stabilize IRF1 mRNA by competitively binding with miR-302b-3p. This study provides new insights into the molecular mechanisms of influenza A virus and SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , Immunity/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/immunology , RNA/immunology , Transcriptome/immunology , A549 Cells , Animals , COVID-19/genetics , COVID-19/virology , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Immunity/genetics , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H7N9 Subtype/physiology , Influenza, Human/genetics , Influenza, Human/virology , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/immunology , Interferon Regulatory Factor-1/metabolism , MicroRNAs/genetics , MicroRNAs/immunology , MicroRNAs/metabolism , Pandemics/prevention & control , RNA/genetics , RNA/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/immunology , RNA, Messenger/metabolism , RNA-Seq/methods , SARS-CoV-2/physiology , Signal Transduction/genetics , Signal Transduction/immunology , Transcriptome/genetics
17.
Mech Ageing Dev ; 202: 111636, 2022 03.
Article in English | MEDLINE | ID: covidwho-1665255

ABSTRACT

The stratification of mortality risk in COVID-19 patients remains extremely challenging for physicians, especially in older patients. Innovative minimally invasive molecular biomarkers are needed to improve the prediction of mortality risk and better customize patient management. In this study, aimed at identifying circulating miRNAs associated with the risk of COVID-19 in-hospital mortality, we analyzed serum samples of 12 COVID-19 patients by small RNA-seq and validated the findings in an independent cohort of 116 COVID-19 patients by qRT-PCR. Thirty-four significantly deregulated miRNAs, 25 downregulated and 9 upregulated in deceased COVID-19 patients compared to survivors, were identified in the discovery cohort. Based on the highest fold-changes and on the highest expression levels, 5 of these 34 miRNAs were selected for the analysis in the validation cohort. MiR-320b and miR-483-5p were confirmed to be significantly hyper-expressed in deceased patients compared to survived ones. Kaplan-Meier and Cox regression models, adjusted for relevant confounders, confirmed that patients with the 20% highest miR-320b and miR-483-5p serum levels had three-fold increased risk to die during in-hospital stay for COVID-19. In conclusion, high levels of circulating miR-320b and miR-483-5p can be useful as minimally invasive biomarkers to stratify older COVID-19 patients with an increased risk of in-hospital mortality.


Subject(s)
COVID-19/blood , COVID-19/mortality , Circulating MicroRNA/blood , Hospital Mortality , Hospitalization , MicroRNAs/blood , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/diagnosis , COVID-19/genetics , Circulating MicroRNA/genetics , Female , Humans , Male , MicroRNAs/genetics , Predictive Value of Tests , Prognosis , RNA-Seq , Risk Assessment , Risk Factors , Time Factors , Up-Regulation
18.
Int J Oncol ; 60(2)2022 Feb.
Article in English | MEDLINE | ID: covidwho-1662722

ABSTRACT

miR­1291 exerts an anti­tumor effect in a subset of human carcinomas, including pancreatic cancer. However, its role in colorectal cancer (CRC) is largely unknown. In the present study, the expression and effect of miR­1291 in CRC cells was investigated. It was identified that miR­1291 significantly suppressed the proliferation, invasion, cell mobility and colony formation of CRC cells. Additionally, miR­1291 induced cell apoptosis. A luciferase reporter assay revealed that miR­1291 directly bound the 3'­untranslated region sequence of doublecortin­like kinase 1 (DCLK1). miR­1291 also suppressed DCLK1 mRNA and protein expression in HCT116 cells that expressed DCLK1. Furthermore, miR­1291 suppressed cancer stem cell markers BMI1 and CD133, and inhibited sphere formation. The inhibitory effects on sphere formation, invasion and mobility in HCT116 cells were also explored and verified using DCLK1 siRNAs. Furthermore, miR­1291 induced CDK inhibitors p21WAF1/CIP1 and p27KIP1 in three CRC cell lines, and the overexpression of DCLK1 in HCT116 cells led to a decrease of p21WAF1/CIP1 and p27KIP1. Intravenous administration of miR­1291 loaded on the super carbonate apatite delivery system significantly inhibited tumor growth in the DLD­1 xenograft mouse model. Additionally, the resultant tumors exhibited significant upregulation of the p21WAF1/CIP1 and p27KIP1 protein with treatment of miR­1291. Taken together, the results indicated that miR­1291 served an anti­tumor effect by modulating multiple functions, including cancer stemness and cell cycle regulation. The current data suggested that miR­1291 may be a promising nucleic acid medicine against CRC.


Subject(s)
Cell Line/metabolism , Colonic Neoplasms/drug therapy , MicroRNAs/pharmacology , Cell Line/immunology , Colonic Neoplasms/physiopathology , /metabolism , Humans , MicroRNAs/administration & dosage
19.
Cell Reprogram ; 24(1): 26-37, 2022 02.
Article in English | MEDLINE | ID: covidwho-1662095

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was primarily noted as a respiratory pathogen, but later clinical reports highlighted its extrapulmonary effects particularly on the gastrointestinal (GI) tract. The aim of the current study was the prediction of crucial genes associated with the regulatory network motifs, probably responsible for the SARS-CoV-2 effects on the GI tract. The data were obtained from a published study on the effect of SARS-CoV-2 on the Caco-2 (colon carcinoma) cell line. We used transcription factors-microRNA-gene interaction databases to find the key regulatory molecules, then analyzed the data using the FANMOD software for detection of the crucial regulatory motifs. Cytoscape software was then used to construct and analyze the regulatory network of these motifs and identify their crucial genes. Finally, GEPIA2 (Gene Expression Profiling Interactive Analysis 2) and UALCAN datasets were used to evaluate the possible relationship between crucial genes and colon cancer development. Using bioinformatics tools, we demonstrated one 3edge feed-forward loop motifs and recognized 10 crucial genes in relationship with Caco-2 cell infected by SARS-CoV-2, including SP1, TSC22D2, POU2F1, REST, NFIC, CHD7, E2F1, CEBPA, TCF7L2, and TSC22D1. The box plot analysis indicated the significant overexpression of CEBPA in colon cancer compared to normal colon tissues, while it was in contrast with the results of stage plot. However, the overall survival analysis indicated that high expression of CEBPA has positive effect on colon cancer patient survivability, verifying the results of CEBPA stage plot. We predict that the SARS-CoV-2 GI infections may cause a serious risk in colon cancer patients. However, further experimental studies are required.


Subject(s)
COVID-19 , MicroRNAs , Caco-2 Cells , DNA-Binding Proteins , Gene Expression Profiling , Humans , SARS-CoV-2 , Transcription Factors
20.
Cell Mol Life Sci ; 79(2): 75, 2022 Jan 17.
Article in English | MEDLINE | ID: covidwho-1630170

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a new member of the Betacoronaviridae family, responsible for the recent pandemic outbreak of COVID-19. To start exploring the molecular events that follow host cell infection, we queried VirusCircBase and identified a circular RNA (circRNA) predicted to be synthesized by SARS-CoV-2, circ_3205, which we used to probe: (i) a training cohort comprised of two pools of cells from three nasopharyngeal swabs of SARS-CoV-2 infected (positive) or uninfected (negative, UCs) individuals; (ii) a validation cohort made up of 12 positive and 3 negative samples. The expression of circRNAs, miRNAs and miRNA targets was assayed through real-time PCR. CircRNA-miRNA interactions were predicted by TarpMiR, Analysis of Common Targets for circular RNAs (ACT), and STarMir tools. Enrichment of the biological processes and the list of predicted miRNA targets were retrieved from DIANA miRPath v3.0. Our results showed that the predicted SARS-CoV-2 circ_3205 was expressed only in positive samples and its amount positively correlated with that of SARS-CoV-2 Spike (S) mRNA and the viral load (r values = 0.80952 and 0.84867, Spearman's correlation test, respectively). Human (hsa) miR-298 was predicted to interact with circ_3205 by all three predictive tools. KCNMB4 and PRKCE were predicted as hsa-miR-298 targets. Interestingly, the function of both is correlated with blood coagulation and immune response. KCNMB4 and PRKCE mRNAs were upregulated in positive samples as compared to UCs (6 and 8.1-fold, p values = 0.049 and 0.02, Student's t test, respectively) and their expression positively correlated with that of circ_3205 (r values = 0.6 and 0.25, Spearman's correlation test, respectively). We propose that our results convincingly suggest that circ_3205 is a circRNA synthesized by SARS-CoV-2 upon host cell infection and that it may behave as a competitive endogenous RNA (ceRNA), sponging hsa-miR-298 and contributing to the upregulation of KCNMB4 and PRKCE mRNAs.


Subject(s)
COVID-19/genetics , COVID-19/metabolism , RNA, Circular/genetics , RNA, Viral , SARS-CoV-2/genetics , Computational Biology , Gene Expression Regulation, Viral , Gene Regulatory Networks , Humans , Large-Conductance Calcium-Activated Potassium Channel beta Subunits/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Nasopharynx/virology , Nerve Tissue Proteins/genetics , Protein Interaction Mapping , Protein Kinase C-epsilon/genetics , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL