Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 360
Filter
1.
J Hosp Infect ; 137: 44-53, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20232613

ABSTRACT

OBJECTIVES: In Tuscany, Italy, New Delhi metallo-beta-lactamase-producing carbapenem-resistant Enterobacterales (NDM-CRE) in hospitalized patients has increasingly been observed since 2018, leading in 2019 to the implementation of enhanced control measures successfully reducing transmission. We describe the NDM-CRE epidemiology during the COVID-19 pandemic in Tuscany. METHODS: Data on NDM-CRE patients hospitalized in five Tuscan hospitals were collected from January 2019 to December 2021. Weekly rates of NDM-CRE cases on hospital days in medical and critical-care wards were calculated. In March-December 2020, NDM-CRE rates were stratified by COVID-19 diagnosis. Multi-variate regression analysis was performed to assess outcomes' differences among two periods analysed and between COVID-19 populations. RESULTS: Since March 2020, an increase in NDM-CRE cases was observed, associated with COVID-19 admissions. COVID-19 patients differed significantly from non-COVID-19 ones by several variables, including patient features (age, Charlson index) and clinical history and outcomes (NDM-CRE infection/colonization, intensive care unit stay, length of stay, mortality). During the pandemic, we observed a higher rate of NDM-CRE cases per hospital day in both non-COVID-19 patients (273/100,000) and COVID-19 patients (370/100,00) when compared with pre-pandemic period cases (187/100,00). CONCLUSIONS: Our data suggest a resurgence in NDM-CRE spread among hospitalized patients in Tuscany during the COVID-19 pandemic, as well as a change in patients' case-mix. The observed increase in hospital transmission of NDM-CRE could be related to changes in infection prevention and control procedures, aimed mainly at COVID-19 management, leading to new challenges in hospital preparedness and crisis management planning.


Subject(s)
COVID-19 , Gammaproteobacteria , Humans , Pandemics , COVID-19 Testing , COVID-19/epidemiology , beta-Lactamases , Hospitals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests
2.
Foodborne Pathog Dis ; 20(6): 237-243, 2023 06.
Article in English | MEDLINE | ID: covidwho-20238943

ABSTRACT

Salmonella is one of the most important foodborne pathogens. In this article, a total of 160 Salmonella isolates recovered from retail meats in June-July 2018 (before COVID-19 outbreak) and December 2020-April 2021 (after COVID-19 outbreak) in Nanchang, China, were characterized for serotyping, antimicrobial susceptibility, and specific resistance gene screening. The prevalence of Salmonella Typhimurium increased from 5.4% in 2018 to 19.1% in 2021, and Salmonella Enteritidis increased from 3.3% in 2018 to 8.8% in 2021. Compared with those in June-July 2018, Salmonella isolates in December 2020-April 2021 demonstrated a significant increase in resistance to 13 tested antibiotics except for doxycycline and nitrofurantoin (p < 0.05). The Salmonella isolates in December 2020-April 2021 showed a higher presence of plasmid-mediated quinolone resistance genes (qnrA, qnrB, and qnrS), and mutations in the quinolone resistance-determining region (gyrA Asp87Asn, gyrA Asp87Tyr, parC Thr57Ser, and parC Ser80Ile). Whole-genome sequencing was used to analyze four polymyxin B-resistant strains. Some common mutation sites in eptC and micA were found in the four strains. Based on the data in this article, it indicated that antibiotic resistance was facilitated and more gene mutations related to quinolone resistance were developed.


Subject(s)
COVID-19 , Quinolones , Humans , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Salmonella typhimurium , Meat , China/epidemiology
4.
Int J Mol Sci ; 24(10)2023 May 18.
Article in English | MEDLINE | ID: covidwho-20235991

ABSTRACT

A new series of 4-((7-methoxyquinolin-4-yl) amino)-N-(substituted) benzenesulfonamide 3(a-s) was synthesized via the reaction of 4-chloro-7-methoxyquinoline 1 with various sulfa drugs. The structural elucidation was verified based on spectroscopic data analysis. All the target compounds were screened for their antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria, and unicellular fungi. The results revealed that compound 3l has the highest effect on most tested bacterial and unicellular fungal strains. The highest effect of compound 3l was observed against E. coli and C. albicans with MIC = 7.812 and 31.125 µg/mL, respectively. Compounds 3c and 3d showed broad-spectrum antimicrobial activity, but the activity was lower than that of 3l. The antibiofilm activity of compound 3l was measured against different pathogenic microbes isolated from the urinary tract. Compound 3l could achieve biofilm extension at its adhesion strength. After adding 10.0 µg/mL of compound 3l, the highest percentage was 94.60% for E. coli, 91.74% for P. aeruginosa, and 98.03% for C. neoformans. Moreover, in the protein leakage assay, the quantity of cellular protein discharged from E. coli was 180.25 µg/mL after treatment with 1.0 mg/mL of compound 3l, which explains the creation of holes in the cell membrane of E. coli and proves compound 3l's antibacterial and antibiofilm properties. Additionally, in silico ADME prediction analyses of compounds 3c, 3d, and 3l revealed promising results, indicating the presence of drug-like properties.


Subject(s)
Anti-Infective Agents , Urinary Tract Infections , Escherichia coli , Structure-Activity Relationship , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Sulfanilamide/pharmacology , Sulfonamides/pharmacology , Fungi , Biofilms
5.
J Infect Dev Ctries ; 17(5): 597-609, 2023 05 31.
Article in English | MEDLINE | ID: covidwho-20243572

ABSTRACT

INTRODUCTION: Antimicrobial resistance (AMR) is a natural evolutionary process in bacteria that is accelerated by selection pressure from the frequent and irrational use of antimicrobial drugs. This study aimed to determine the variations in AMR patterns of priority bacterial pathogens at a tertiary care hospital in the Gaza Strip during pre- and post-COVID-19 pandemic. METHODOLOGY: This is a retrospective observational study to determine the AMR patterns of bacterial pathogens at a tertiary hospital in the Gaza Strip in the post-COVID-19 pandemic period compared to the pre-COVID-19 period. Positive-bacterial culture data of 2039 samples from pre-COVID-19 period and 1827 samples from post-COVID-19 period were obtained from microbiology laboratory records. These data were analysed and compared by Chi square test using Statistical Package for Social Sciences (SPSS) Program. RESULTS: Gram-positive and Gram-negative bacterial pathogens were isolated. Escherichia coli was the most prevalent in both study periods. The overall AMR rate was high. There was a statistically significant increase in resistance to cloxacillin, erythromycin, cephalexin, co-trimoxazole and amoxicillin/clavulanic acid in the post-COVID-19 period compared to pre-COVID-19 period. There was also a significant decrease in resistance to cefuroxime, cefotaxime, gentamicin, doxycycline, rifampicin, vancomycin and meropenem in the post-COVID-19 period. CONCLUSIONS: During the COVID-19 pandemic, the AMR rates of restricted and noncommunity-used antimicrobials declined. However, there was an increase in AMR to antimicrobials used without medical prescription. Therefore, restriction on the sale of antimicrobial drugs by community pharmacies without a prescription, hospital antimicrobial stewardship and awareness about the dangers of extensive use of antibiotics are recommended.


Subject(s)
Anti-Bacterial Agents , COVID-19 , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Tertiary Care Centers , Pandemics , Drug Resistance, Bacterial , COVID-19/epidemiology , Bacteria , Escherichia coli , Microbial Sensitivity Tests
6.
Int J Mol Sci ; 24(11)2023 May 31.
Article in English | MEDLINE | ID: covidwho-20243060

ABSTRACT

The efflux pumps, beside the class D carbapenem-hydrolysing enzymes (CHLDs), are being increasingly investigated as a mechanism of carbapenem resistance in Acinetobacter baumannii. This study investigates the contribution of efflux mechanism to carbapenem resistance in 61 acquired blaCHDL-genes-carrying A. baumannii clinical strains isolated in Warsaw, Poland. Studies were conducted using phenotypic (susceptibility testing to carbapenems ± efflux pump inhibitors (EPIs)) and molecular (determining expression levels of efflux operon with regulatory-gene and whole genome sequencing (WGS)) methods. EPIs reduced carbapenem resistance of 14/61 isolates. Upregulation (5-67-fold) of adeB was observed together with mutations in the sequences of AdeRS local and of BaeS global regulators in all 15 selected isolates. Long-read WGS of isolate no. AB96 revealed the presence of AbaR25 resistance island and its two disrupted elements: the first contained a duplicate ISAba1-blaOXA-23, and the second was located between adeR and adeA in the efflux operon. This insert was flanked by two copies of ISAba1, and one of them provides a strong promoter for adeABC, elevating the adeB expression levels. Our study for the first time reports the involvement of the insertion of the ΔAbaR25-type resistance island fragment with ISAba1 element upstream the efflux operon in the carbapenem resistance of A. baumannii.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Acinetobacter baumannii/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbapenems/pharmacology , Carbapenems/metabolism , Mutation , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics
7.
Acta Microbiol Immunol Hung ; 70(2): 142-146, 2023 Jun 16.
Article in English | MEDLINE | ID: covidwho-2326089

ABSTRACT

Many studies report an increase in antimicrobial resistance of Gram - negative bacteria during the COVID-19 pandemic. Our aim was to evaluate the epidemiological relationship between carbapenem-resistant (CR) Enterobacteriaceae isolates from patients in COVID-19 wards and to investigate the main mechanisms of carbapenem resistance in these isolates during the period April 2020-July 2021. A total of 45 isolates were studied: Klebsiella pneumoniae (n = 37), Klebsiella oxytoca (n = 2), Enterobacter cloacae complex (n = 4) and Escherichia coli (n = 2). Multiplex PCR was used for detection of genes encoding carbapenemases from different classes (blaKPC, blaIMP, blaVIM, blaNDM, blaOXA-48). For epidemiological typing and analysis, ERIC PCR was performed. Two clinical isolates of E. cloacae, previously identified as representatives of two dominant hospital clones from the period 2014-2017, were included in the study for comparison. In the CR K. pneumoniae group, 23 (62.2%) carried blaKPC, 13 (35.1%) blaNDM, 10 (27.0%) blaVIM, and 9 (24.3%) were positive for both blaKPC and blaVIM. The blaKPC was identified also in the two isolates of K. oxytoca and blaVIM in all E. cloacae complex isolates. The two CR isolates of E. coli possessed blaKPC and blaOXA-48 genes. Epidemiological typing identified 18 ERIC profiles among K. pneumoniae, some presented as clusters of identical and/or closely related isolates. The carbapenem resistance in the studied collection of isolates is mediated mainly by blaKPC. During the COVID-19 pandemic intrahospital dissemination of CR K. pneumoniae, producing carbapenemases of different molecular classes, as well as continuing circulation of dominant hospital clones of multidrug-resistant E. cloacae complex was documented.


Subject(s)
COVID-19 , Carbapenem-Resistant Enterobacteriaceae , Humans , Carbapenem-Resistant Enterobacteriaceae/genetics , Molecular Epidemiology , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Bulgaria , Pandemics , Microbial Sensitivity Tests , COVID-19/epidemiology , Klebsiella pneumoniae/genetics , Hospitals, University , Gram-Negative Bacteria/genetics , Carbapenems/pharmacology
8.
BMC Infect Dis ; 23(1): 252, 2023 Apr 20.
Article in English | MEDLINE | ID: covidwho-2325849

ABSTRACT

BACKGROUND: The World Health Organization recommends changing the first-line antimicrobial treatment for gonorrhoea when ≥ 5% of Neisseria gonorrhoeae cases fail treatment or are resistant. Susceptibility to ceftriaxone, the last remaining treatment option has been decreasing in many countries. We used antimicrobial resistance surveillance data and developed mathematical models to project the time to reach the 5% threshold for resistance to first-line antimicrobials used for N. gonorrhoeae. METHODS: We used data from the Gonococcal Resistance to Antimicrobials Surveillance Programme (GRASP) in England and Wales from 2000-2018 about minimum inhibitory concentrations (MIC) for ciprofloxacin, azithromycin, cefixime and ceftriaxone and antimicrobial treatment in two groups, heterosexual men and women (HMW) and men who have sex with men (MSM). We developed two susceptible-infected-susceptible models to fit these data and produce projections of the proportion of resistance until 2030. The single-step model represents the situation in which a single mutation results in antimicrobial resistance. In the multi-step model, the sequential accumulation of resistance mutations is reflected by changes in the MIC distribution. RESULTS: The single-step model described resistance to ciprofloxacin well. Both single-step and multi-step models could describe azithromycin and cefixime resistance, with projected resistance levels higher with the multi-step than the single step model. For ceftriaxone, with very few observed cases of full resistance, the multi-step model was needed to describe long-term dynamics of resistance. Extrapolating from the observed upward drift in MIC values, the multi-step model projected ≥ 5% resistance to ceftriaxone could be reached by 2030, based on treatment pressure alone. Ceftriaxone resistance was projected to rise to 13.2% (95% credible interval [CrI]: 0.7-44.8%) among HMW and 19.6% (95%CrI: 2.6-54.4%) among MSM by 2030. CONCLUSIONS: New first-line antimicrobials for gonorrhoea treatment are needed. In the meantime, public health authorities should strengthen surveillance for AMR in N. gonorrhoeae and implement strategies for continued antimicrobial stewardship. Our models show the utility of long-term representative surveillance of gonococcal antimicrobial susceptibility data and can be adapted for use in, and for comparison with, other countries.


Subject(s)
Gonorrhea , Sexual and Gender Minorities , Male , Humans , Female , Neisseria gonorrhoeae/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Cefixime/pharmacology , Cefixime/therapeutic use , Ceftriaxone/pharmacology , Ceftriaxone/therapeutic use , Azithromycin/pharmacology , Azithromycin/therapeutic use , Homosexuality, Male , Drug Resistance, Bacterial , Ciprofloxacin/pharmacology , Ciprofloxacin/therapeutic use , Microbial Sensitivity Tests
9.
PLoS Pathog ; 19(4): e1011268, 2023 04.
Article in English | MEDLINE | ID: covidwho-2321460

ABSTRACT

Candia auris is an emerging human pathogenic yeast; yet, despite phenotypic attributes and genomic evidence suggesting that it probably emerged from a natural reservoir, we know nothing about the environmental phase of its life cycle and the transmission pathways associated with it. The thermotolerant characteristics of C. auris have been hypothesised to be an environmental adaptation to increasing temperatures due to global warming (which may have facilitated its ability to tolerate the mammalian thermal barrier that is considered a protective strategy for humans against colonisation by environmental fungi with pathogenic potential). Thus, C. auris may be the first human pathogenic fungus to have emerged as a result of climate change. In addition, the release of antifungal chemicals, such as azoles, into the environment (from both pharmaceutical and agricultural sources) is likely to be responsible for the environmental enrichment of resistant strains of C. auris; however, the survival and dissemination of C. auris in the natural environment is poorly understood. In this paper, we critically review the possible pathways through which C. auris can be introduced into the environment and evaluate the environmental characteristics that can influence its persistence and transmission in natural environments. Identifying potential environmental niches and reservoirs of C. auris and understanding its emergence against a backdrop of climate change and environmental pollution will be crucial for the development of effective epidemiological and environmental management responses.


Subject(s)
Candida auris , Candida , Animals , Humans , Antifungal Agents/therapeutic use , Candida/genetics , Climate Change , Mammals , Microbial Sensitivity Tests
10.
Mycopathologia ; 188(1-2): 9-20, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2320653

ABSTRACT

INTRODUCTION: Fungal co-infections are considered an important complication in hospitalized patients with SARS-CoV-2 that can be attributed to disease aggravation, increased mortality, and poor outcomes. This study was conducted to determine the species distribution and antifungal susceptibility patterns of Candida isolates from hospitalized COVID-19 patients in Shiraz, Iran, in addition to associated risk factors and outcomes of co-infections with Candida species. MATERIALS AND METHODS: In this single-center study, a total of 106 hospitalized COVID-19 patients were evaluated for clinical characteristics and outcomes. Species identification was performed by ITS1-5.8S-ITS2 gene sequencing. Antifungal susceptibility testing to fluconazole, itraconazole, voriconazole, posaconazole, caspofungin, amphotericin B, and nystatin was determined according to the M27-A3/S4 CLSI protocol. RESULTS: Candida species were recovered from 48% (51/106) of hospitalized COVID-19 patients. Statistical analysis showed that patients who had heart failure, bacterial co-infection, and were receiving empirical antifungal therapy had a higher risk of developing Candida co-infection. In total, 71 Candida isolates were recovered, of which C. albicans (69%) was the most prevalent isolate. The majority of the Candida isolates were susceptible to all classes of tested antifungal drugs. DISCUSSION: Our results elucidate a high rate of Candida co-infections among hospitalized COVID-19 patients. Comorbidities such as heart failure, HTN, COPD, bacterial infections as well as therapeutic interventions including catheterization, mechanical ventilation, and ICU admission increased the risk of Candida spp. isolation from the bloodstream, respiratory tract and urine samples, which led to a higher in-hospital mortality rate. Additionally, obtained data clarified that empirical antifungal therapy was not as successful as anticipated.


Subject(s)
COVID-19 , Candidiasis , Coinfection , Heart Failure , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida , Coinfection/drug therapy , Coinfection/epidemiology , COVID-19/complications , COVID-19/epidemiology , SARS-CoV-2 , Fluconazole/therapeutic use , Candidiasis/microbiology , Candida albicans , Risk Factors , Heart Failure/drug therapy , Microbial Sensitivity Tests , Drug Resistance, Fungal
11.
Microbiol Spectr ; 11(3): e0084423, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2319398

ABSTRACT

The biological activity of polycations is usually associated with their biocidal properties. Their antibacterial features are well known, but in this work, observations on the antifungal properties of macromolecules obtained by methacrylamido propyl trimethyl ammonium chloride (MAPTAC) polymerization are presented. The results, not previously reported, make it possible to correlate antifungal properties directly with the structure of the macromolecule, in particular the molecular mass. The polymers described here have antifungal activity against some filamentous fungi. The strongest effect occurs for polymers with a mass of about 0.5 mDa which have confirmed activity against the multidrug-resistant species Scopulariopsis brevicaulis, Fusarium oxysporum, and Fusarium solani, as well as the dermatophytes Trichophyton mentagrophytes, Trichophyton rubrum, Trichophyton interdigitale, and Trichophyton tonsurans. In addition, this publication describes the effects of these macromolecular systems on serum and blood components and provides a preliminary assessment of toxicity on cell lines of skin-forming cells, i.e., fibroblasts and keratinocytes. Additionally, using a Franz diffusion chamber, a negligibly low transport of the active polymer through the skin was demonstrated, which is a desirable effect for externally applied antifungal drugs. IMPORTANCE Infectious diseases are a very big medical, social, and economic problem. Even before the COVID-19 pandemic, certain infections were among of the most common causes of death. The difficulties in the treatment of infectious diseases concern in particular fungal diseases, against which we have only a few classes of drugs represented by a few substances. The publication presents the preliminary results of the in vitro antifungal activity studies of four MAPTAC polymers on different fungal species and their cytotoxicity to human cells (fibroblasts and keratinocytes). The paper also compares these properties with analogous ones of two commonly used antifungal drugs, ciclopirox and terbinafine.


Subject(s)
Antifungal Agents , COVID-19 , Humans , Antifungal Agents/toxicity , Ammonium Chloride , Pandemics , Microbial Sensitivity Tests , Polymers/pharmacology
12.
J Antimicrob Chemother ; 78(Suppl 1): i17-i25, 2023 05 03.
Article in English | MEDLINE | ID: covidwho-2312169

ABSTRACT

OBJECTIVES: To investigate the levels of MDR in the predominant serotypes of invasive Streptococcus pneumoniae isolated in Canada over a 10 year period. METHODS: All isolates were serotyped and had antimicrobial susceptibility testing performed, in accordance with CLSI guidelines (M07-11 Ed., 2018). Complete susceptibility profiles were available for 13 712 isolates. MDR was defined as resistance to three or more classes of antimicrobial agents (penicillin MIC ≥2 mg/L defined as resistant). Serotypes were determined by Quellung reaction. RESULTS: In total, 14 138 invasive isolates of S. pneumoniae were tested in the SAVE study (S. pneumoniae Serotyping and Antimicrobial Susceptibility: Assessment for Vaccine Efficacy in Canada), a collaboration between the Canadian Antimicrobial Resistance Alliance and Public Health Agency of Canada-National Microbiology Laboratory. The rate of MDR S. pneumoniae in SAVE was 6.6% (902/13 712). Annual rates of MDR S. pneumoniae decreased between 2011 and 2015 (8.5% to 5.7%) and increased between 2016 and 2020 (3.9% to 9.4%). Serotypes 19A and 15A were the most common serotypes demonstrating MDR (25.4% and 23.5% of the MDR isolates, respectively); however, the serotype diversity index increased from 0.7 in 2011 to 0.9 in 2020 with a statistically significant linear increasing trend (P < 0.001). In 2020, MDR isolates were frequently serotypes 4 and 12F in addition to serotypes 15A and 19A. In 2020, 27.3%, 45.5%, 50.5%, 65.7% and 68.7% of invasive MDR S. pneumoniae were serotypes included in the PCV10, PCV13, PCV15, PCV20 and PPSV23 vaccines, respectively. CONCLUSIONS: Although current vaccine coverage of MDR S. pneumoniae in Canada is high, the increasing diversity of serotypes observed among the MDR isolates highlights the ability of S. pneumoniae to rapidly evolve.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Humans , Serogroup , Pneumococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Canada/epidemiology , Microbial Sensitivity Tests , Serotyping , Pneumococcal Vaccines
13.
Front Cell Infect Microbiol ; 13: 1162721, 2023.
Article in English | MEDLINE | ID: covidwho-2312110

ABSTRACT

Background: Antimicrobial resistance is a serious threat to public health globally. It is a slower-moving pandemic than COVID-19, so we are fast running out of treatment options. Purpose: Thus, this study was designed to search for an alternative biomaterial with broad-spectrum activity for the treatment of multidrug-resistant (MDR) bacterial and fungal pathogen-related infections. Methods: We isolated Streptomyces species from soil samples and identified the most active strains with antimicrobial activity. The culture filtrates of active species were purified, and the bioactive metabolite extracts were identified by thin-layer chromatography (TLC), preparative high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry (GC-MS). The minimum inhibitory concentrations (MICs) of the bioactive metabolites against MDR bacteria and fungi were determined using the broth microdilution method. Results: Preliminary screening revealed that Streptomyces misakiensis and S. coeruleorubidus exhibited antimicrobial potential. The MIC50 and MIC90 of S. misakiensis antibacterial bioactive metabolite (ursolic acid methyl ester) and antifungal metabolite (tetradecamethylcycloheptasiloxane) against all tested bacteria and fungi were 0.5 µg/ml and 1 µg/mL, respectively, versus S. coeruleorubidus metabolites: thiocarbamic acid, N,N-dimethyl, S-1,3-diphenyl-2-butenyl ester against bacteria (MIC50: 2 µg/ml and MIC90: 4 µg/mL) and fungi (MIC50: 4 µg/ml and MIC90: 8 µg/mL). Ursolic acid methyl ester was active against ciprofloxacin-resistant strains of Streptococcus pyogenes, S. agalactiae, Escherichia coli, Klebsiella pneumoniae, and Salmonella enterica serovars, colistin-resistant Aeromonas hydrophila and K. pneumoniae, and vancomycin-resistant Staphylococcus aureus. Tetradecamethylcycloheptasiloxane was active against azole- and amphotericin B-resistant Candida albicans, Cryptococcus neoformans, C. gattii, Aspergillus flavus, A. niger, and A. fumigatus. Ursolic acid methyl ester was applied in vivo for treating S. aureus septicemia and K. pneumoniae pneumonia models in mice. In the septicemia model, the ursolic acid methyl ester-treated group had a significant 4.00 and 3.98 log CFU/g decrease (P < 0.05) in liver and spleen tissue compared to the infected, untreated control group. Lung tissue in the pneumonia model showed a 2.20 log CFU/g significant decrease in the ursolic acid methyl ester-treated group in comparison to the control group. The haematological and biochemical markers in the ursolic acid methyl ester-treated group did not change in a statistically significant way. Moreover, no abnormalities were found in the histopathology of the liver, kidneys, lungs, and spleen of ursolic acid methyl ester-treated mice in comparison with the control group. Conclusion: S. misakiensis metabolite extracts are broad-spectrum antimicrobial biomaterials that can be further investigated for the potential against MDR pathogen infections. Hence, it opens up new horizons for exploring alternative drugs for current and reemerging diseases.


Subject(s)
Anti-Infective Agents , COVID-19 , Methicillin-Resistant Staphylococcus aureus , Pneumonia , Sepsis , Mice , Animals , Staphylococcus aureus , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Bacteria , Fungi , Microbial Sensitivity Tests , Pneumonia/drug therapy , Klebsiella pneumoniae , Sepsis/drug therapy
14.
ChemMedChem ; 18(6): e202200572, 2023 03 14.
Article in English | MEDLINE | ID: covidwho-2310186

ABSTRACT

Compounds containing arylpyrrole-, 1,2,4-triazole- and hydrazone structural frameworks have been widely studied and demonstrated to exhibit a wide range of pharmacological properties. Herein, an exploratory series of new 1,2,4-triazole derivatives designed by amalgamation of arylpyrrole and 1,2,4-triazole structural units via a hydrazone linkage is reported. The synthesised compounds were tested in vitro for their potential activity against Mycobacterium tuberculosis (MTB) H37 Rv strain. The most promising compound 13 - the derivative without the benzene ring appended to the pyrrole unit displayed acceptable activity (MIC90 =3.99 µM) against MTB H37 Rv, while other compounds from the series exhibited modest to weak antimycobacterial activity with MIC90 values in the range between 7.0 and >125 µM. Furthermore, in silico results, predicated using the SwissADME web tool, show that the prepared compounds display desirable ADME profile with parameters within acceptable range.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Triazoles/pharmacology , Triazoles/chemistry , Microbial Sensitivity Tests , Structure-Activity Relationship
15.
Drug Dev Res ; 84(3): 470-483, 2023 05.
Article in English | MEDLINE | ID: covidwho-2307551

ABSTRACT

In the quest to develop potent inhibitors for Mycobacterium tuberculosis, novel isoniazid-based pyridinium salts were designed, synthesized, and tested for their antimycobacterial activities against the H37 Rv strain of Mycobacterium tuberculosis using rifampicin as a standard. The pyridinium salts 4k, 4l, and 7d showed exceptional antimycobacterial activities with MIC90 at 1 µg/mL. The in vitro cytotoxicity and pharmacokinetics profiles of these compounds were established for the identification of a lead molecule using in vivo efficacy proof-of-concept studies and found that the lead compound 4k possesses LC50 value at 25 µg/mL. The in vitro antimycobacterial activity results were further supported by in silico studies with good binding affinities ranging from -9.8 to -11.6 kcal/mol for 4k, 4l, and 7d with the target oxidoreductase DprE1 enzyme. These results demonstrate that pyridinium salts derived from isoniazid can be a potentially promising pharmacophore for the development of novel antitubercular candidates.


Subject(s)
Isoniazid , Mycobacterium tuberculosis , Isoniazid/pharmacology , Molecular Docking Simulation , Salts , Antitubercular Agents/chemistry , Microbial Sensitivity Tests
16.
mBio ; 14(3): e0065923, 2023 06 27.
Article in English | MEDLINE | ID: covidwho-2306496

ABSTRACT

The continued challenges of the COVID-19 pandemic combined with the growing problem of antimicrobial-resistant bacterial infections has severely impacted global health. Specifically, the Gram-negative pathogen Klebsiella pneumoniae is one of the most prevalent causes of secondary bacterial infection in COVID-19 patients, with approximately an 83% mortality rate observed among COVID-19 patients with these bacterial coinfections. K. pneumoniae belongs to the ESKAPE group of pathogens, a group that commonly gives rise to severe infections that are often life-threatening. Recently, K. pneumoniae carbapenemase (KPC)-producing K. pneumoniae has drawn wide public attention, as the mortality rate for this infection can be as high as 71%. The most predominant and clinically important multidrug efflux system in K. pneumoniae is the acriflavine resistance B (AcrB) multidrug efflux pump. This pump mediates resistance to different classes of structurally diverse antimicrobial agents, including quinolones, ß-lactams, tetracyclines, macrolides, aminoglycosides, and chloramphenicol. We here report single-particle cryo-electron microscopy (cryo-EM) structures of K. pneumoniae AcrB, in both the absence and the presence of the antibiotic erythromycin. These structures allow us to elucidate specific pump-drug interactions and pinpoint exactly how this pump recognizes antibiotics. IMPORTANCE Klebsiella pneumoniae has emerged as one of the most problematic and highly antibiotic-resistant pathogens worldwide. It is the second most common causative agent involved in secondary bacterial infection in COVID-19 patients. K. pneumoniae carbapenemase (KPC)-producing K. pneumoniae is a major concern in global public health because of the high mortality rate of this infection. Its drug resistance is due, in a significant part, to active efflux of these bactericides, a major mechanism that K. pneumoniae uses to resist to the action of multiple classes of antibiotics. Here, we report cryo-electron microscopy (cryo-EM) structures of the prevalent and clinically important K. pneumoniae AcrB multidrug efflux pump, in both the absence and the presence of the erythromycin antibiotic. These structures allow us to understand the action mechanism for drug recognition in this pump. Our studies will ultimately inform an era in structure-guided drug design to combat multidrug resistance in these Gram-negative pathogens.


Subject(s)
COVID-19 , Klebsiella Infections , Humans , Acriflavine/pharmacology , Klebsiella pneumoniae , Cryoelectron Microscopy , Pandemics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/pharmacology , Erythromycin , Klebsiella Infections/microbiology , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests
17.
Biosens Bioelectron ; 228: 115213, 2023 May 15.
Article in English | MEDLINE | ID: covidwho-2306423

ABSTRACT

Droplet microfluidic technology has revolutionized biomolecular analytical research, as it has the capability to reserve the genotype-to-phenotype linkage and assist for revealing the heterogeneity. Massive and uniform picolitre droplets feature dividing solution to the level that single cell and single molecule in each droplet can be visualized, barcoded, and analyzed. Then, the droplet assays can unfold intensive genomic data, offer high sensitivity, and screen and sort from a large number of combinations or phenotypes. Based on these unique advantages, this review focuses on up-to-date research concerning diverse screening applications utilizing droplet microfluidic technology. The emerging progress of droplet microfluidic technology is first introduced, including efficient and scaling-up in droplets encapsulation, and prevalent batch operations. Then the new implementations of droplet-based digital detection assays and single-cell muti-omics sequencing are briefly examined, along with related applications such as drug susceptibility testing, multiplexing for cancer subtype identification, interactions of virus-to-host, and multimodal and spatiotemporal analysis. Meanwhile, we specialize in droplet-based large-scale combinational screening regarding desired phenotypes, with an emphasis on sorting for immune cells, antibodies, enzymatic properties, and proteins produced by directed evolution methods. Finally, some challenges, deployment and future perspective of droplet microfluidics technology in practice are also discussed.


Subject(s)
Biosensing Techniques , Microfluidic Analytical Techniques , Mycobacterium tuberculosis , Microfluidics/methods , Microbial Sensitivity Tests , Proteins , Microfluidic Analytical Techniques/methods , High-Throughput Screening Assays/methods
19.
Sci Total Environ ; 881: 163322, 2023 Jul 10.
Article in English | MEDLINE | ID: covidwho-2295234

ABSTRACT

International high-risk clones of Klebsiella pneumoniae are important human pathogens that are spreading to the environment. In the COVID-19 pandemic scenario, the frequency of carbapenemase-producing strains increased, which can contribute to the contamination of the environment, impacting the surrounding and associated ecosystems. In this regard, KPC-producing strains were recovered from aquatic ecosystems located in commercial, industrial, or agricultural areas and were submitted to whole-genome characterization. K. pneumoniae and Klebsiella quasipneumoniae subsp. quasipneumoniae strains were assigned to high-risk clones (ST11, ST340, ST307) and the new ST6325. Virulome analysis showed genes related to putative hypervirulence. Strains were resistant to almost all antimicrobials tested, being classified as extensively drug-resistant or multidrug-resistant. In this context, a broad resistome (clinically important antimicrobials and hazardous metal) was detected. Single replicon (IncX5, IncN-pST15, IncU) and multireplicon [IncFII(K1)/IncFIB(pQil), IncFIA(HI1)/IncR] plasmids were identified carrying the blaKPC-2 gene with Tn4401 and non-Tn4401 elements. An unusual association of blaKPC-2 and qnrVC1 and the coexistence of blaKPC-2 and mer operon (mercury tolerance) was found. Comparative analysis revealed that blaKPC-2-bearing plasmids were most similar to plasmids from Enterobacterales of Brazil, China, and the United States, evidencing the long persistence of plasmids at the human-animal-environmental interface. Furthermore, the presence of uncommon plasmids, displaying the interspecies, intraspecies, and clonal transmission, was highlighted. These findings alert for the spread of high-risk clones producing blaKPC-2 in the environmental sector and call attention to rapid dispersion in a post-pandemic world.


Subject(s)
COVID-19 , Klebsiella Infections , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , beta-Lactamases/genetics , Clone Cells , Ecosystem , Klebsiella Infections/epidemiology , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Pandemics , Plasmids/genetics
20.
Microbiol Spectr ; 11(3): e0297222, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2303928

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a devastating effect, globally. We describe, for the first time, the occurrence of carbapenem-resistant bacteria colonizing SARS-CoV-2 patients who developed hospital-associated infections with carbapenemase-producing, Gram-negative bacteria at some isolation centers of SARS-CoV-2 in the eastern part of Libya. In total, at first, 109 samples were collected from 43 patients, with the samples being recovered from oral (n = 35), nasal (n = 45), and rectal (n = 29) cavities. Strain identification was performed via matrix assisted laser desorption ionization-time of flight (MALDI-TOF). Antibiotic susceptibility testing was carried out on Mueller-Hinton agar, using the standard disk diffusion method. MIC determination was confirmed via E-TEST and microdilution standard methods. A molecular study was carried out to characterize the carbapenem and colistin resistance in Gram-negative bacterial strains. All of the positive results were confirmed via sequencing. Klebsiella pneumoniae (n = 32), Citrobacter freundii (n = 21), Escherichia coli (n = 7), and Acinetobacter baumannii (n = 21) were the predominant isolated bacteria. Gram-negative isolates were multidrug-resistant and carried different carbapenem resistance-associated genes, including NDM-1 (56/119; 47.05%), OXA-48 (15/119; 12.60%), OXA-23 (19/119; 15.96%), VIM (10/119; 8.40%), and the colistin resistance mobile gene mcr-1 (4/119; 3.36%). The overuse of antimicrobials, particularly carbapenem antibiotics, during the SARS-CoV-2 pandemic has led to the emergence of multidrug-resistant bacteria, mainly K. pneumoniae, A. baumannii, and colistin-resistant E. coli strains. Increased surveillance as well as the rational use of carbapenem antibiotics and, recently, colistin are required to reduce the propagation of multidrug-resistant strains and to optimally maintain the efficacy of these antibiotics. IMPORTANCE In this work, we describe, for the first time, the occurrence of carbapenem-resistant bacteria colonizing COVID-19 patients who developed hospital-associated infections with carbapenemase-producing, Gram-negative bacteria at some isolation centers of COVID-19 in the eastern part of Libya. Our results confirmed that the overuse of antimicrobials, such as carbapenem antibiotics, during the COVID-19 pandemic has led to the emergence of multidrug-resistant bacteria, mainly K. pneumoniae and A. baumannii, as well as colistin resistance.


Subject(s)
COVID-19 , Colistin , Humans , Colistin/pharmacology , Carbapenems/pharmacology , SARS-CoV-2 , Escherichia coli , Pandemics , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Hospitals , beta-Lactamases/genetics , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL