Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Comp Biochem Physiol C Toxicol Pharmacol ; 257: 109340, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1767945

ABSTRACT

Over the last decade, pollution of plastics and antibiotics has increased in its threat to the environment and human health. However, very limited information is available concerning impact of co-presence of plastics and antibiotics on environment and human health. Moreover, the potential ingestion and inhalation of nano(micro)plastics due to the disposable materials has dramatically increased. With the outbreak and spread of the COVID-19 in the world, disposable surgical masks and plastic bottles have been widely used by the public, and their rapid use and improper dispensing can cause to increase plastic pollution risk on human. However, impacts of co-presence of nano(micro)plastics and antibiotics on pathogens have yet been demonstrated. Therefore, this study aims to investigate the impact the individual and combined influences of nano-sized plastics (surgical mask and plastic bottles) and antibiotics (amoxicillin and spiramycin) towards the main susceptible bacterium (Staphylococcus epidermidis, Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa) by microbial activity, biofilm formation and their biochemical characteristics. The results showed that antimicrobial efficiencies of the tested antibiotics were reduced (approximately 10-98%) with the plastics. Moreover, the biochemical pathways of the microbial activity changed by the plastics entrance. Polymer structure and sorption play the role on the reduction in the inhibition of pathogens. In the meantime, the biofilm formation changed and characteristic of the extracellular polymeric substance with the co-presence of plastics and antibiotics mostly depended on the polymer structure, exposure time and sorption.


Subject(s)
COVID-19 , Masks , Anti-Bacterial Agents/pharmacology , Escherichia coli , Extracellular Polymeric Substance Matrix , Humans , Microplastics , Plastics , Polymers , SARS-CoV-2
2.
Ecotoxicol Environ Saf ; 233: 113353, 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1719635

ABSTRACT

The deposition is an important process of microplastics transporting from atmosphere to water and soil. But the spatial and temporal distribution of microplastics in urban atmospheric deposition and its influencing factors are poorly understood. The current study investigated the possible sources, spatial and temporal distribution, and potential ecological risk of microplastics in deposition from the valley basin of Lanzhou city during the COVID-19 pandemic (from February to August, 2020). The deposition flux of microplastics was 353.83 n m-2 d-1. Most plastic samples were small sized (50~500 µm) and transparent. The dominant chemical composition and shapes were PET, fragments and fibers, respectively. A modified method was conducted to identify the sources of microplastics, and the local sources were suggested as the main possible sources. The distribution of microplastics investigated through the inverse distance weight interpolation showed spatial variation and temporal differentiation which was dominated by the human activity. The rainfall also affected the temporal distribution. The preliminary assessment indicated higher potential ecological risk of microplastics in deposition. This study suggested the dominant effect of human activity on the source and distribution of atmospheric microplastic deposition in city.


Subject(s)
COVID-19 , Water Pollutants, Chemical , China , Environmental Monitoring , Humans , Microplastics , Pandemics , Plastics , SARS-CoV-2 , Water Pollutants, Chemical/analysis
3.
J Environ Manage ; 309: 114698, 2022 May 01.
Article in English | MEDLINE | ID: covidwho-1693286

ABSTRACT

A literature review was carried out to analyze the current status of microplastic research in Latin America and the Caribbean (LAC). Specifically, this work focused on publications pertaining to (1) occurrence and distribution of microplastics in the environment, including water, sediments, and soil and (2) the environmental impact of MPs, particularly their presence and effects on aquatic and terrestrial organisms. The review included peer-reviewed articles from Scopus, Science Direct, Web of Science, Google Scholar and two iberoamerican open access databases (Redalyc and SciELO). It was found that LAC has only contributed to 5% of the global scientific output on microplastics, and overall the highest contributor within the region was Brazil (52%), followed by Chile (16%) and Mexico (13%). An additional section analyzing the barriers to conducting microplastic research in LAC and their exacerbation by the current COVID-19 pandemic was included to provide additional context behind the relatively low scientific production and improve recommendations encouraging research in this region.


Subject(s)
COVID-19 , Microplastics , Caribbean Region/epidemiology , Humans , Latin America/epidemiology , Pandemics , Plastics , SARS-CoV-2
4.
Environ Int ; 161: 107146, 2022 03.
Article in English | MEDLINE | ID: covidwho-1689284

ABSTRACT

Microplastics (MPs) have been considered as a new vector for the long-distance transport of pathogens in aquatic ecosystems. However, the composition of viral communities attached on MPs and their environmental risk are largely unknown. Here, we profiled the viral diversity and potential risk in five different MPs collected from the Beilun River based on metagenomic analysis. Nearly 2863 million raw reads were produced and assembled, and annotation resulted in the identification of 1719 different species of viruses in MPs. Viruses in polypropylene (PP) displayed the highest diversity, with about 250 specific viruses detected. Source tracking of viruses in MPs by the fast expectation-maximization microbial source tracking method (FEAST) demonstrated that viruses in upstream and downstream MPs are two major sources of viruses in estuary. Furthermore, the MP-type-dependent potential environmental risk of viruses was significant based on both antibiotic resistance genes (ARGs) and virulence factors (VFs) detected in viral metagenomes, and PP was confirmed with the highest potential environmental risk. This study reveals the high diversity and potential environmental risk of viruses in different MPs, and provides an important guidance for future environmental monitoring and understanding the potential risks associated with both viral transmission and MPs pollution.


Subject(s)
Microplastics , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Metagenome , Plastics , Rivers , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
5.
Environ Sci Pollut Res Int ; 29(1): 284-292, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1594192

ABSTRACT

The demand of wet wipes and masks has been rising worldwide since the outbreak of global COVID-19; however, with more reports about improper handling of wipes and masks, their potential threats to the environment are gradually emerging. Wipes and masks are made of a large number of plastic fibers, which are easily broken and fragmented into microplastic fibers under the influence of environmental factors. Weathered wipes or masks can release billions of microplastic fibers, which is a great challenge to the local ecological security. Wipes and masks as new microplastic pollution sources and their potential role in the ecosystem have not been fully recognized and considered. Microplastic fiber pollution is a huge environmental issue, and how to prevent a large number of discarded wipes and masks from entering the environment and how to deal with them are an important issue for all countries and regions in the world. In the post era of global COVID-19, disposable wipes and masks, as new sources of environmental microplastic fiber pollution, should be given concern. It is urgent to recognize this potential environmental threat and prevent it from becoming the next microplastic problem.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Humans , Masks , Microplastics , Plastics , SARS-CoV-2 , Water Pollutants, Chemical/analysis
6.
Int J Environ Res Public Health ; 19(1)2021 12 28.
Article in English | MEDLINE | ID: covidwho-1580804

ABSTRACT

The research aims at washing processes as possible sources of microplastics, specifical microfibers in wastewater, and the behavior of the virus particles SARS-CoV-2 in wastewater after the washing process as well as their ability to sorb to the surface of microfibers, released from washing processes. The conclusions of the research point to the ability of the virus to attach to possible solid impurities such as textile fibers (microfibers) occurring in the sewer and to the ability of wash water to influence their possible occurrence in the sewer. The highest efficiency (more than 99%) of removal virus particles was after washing process, using liquid washing powder, and washing soda. These findings may gradually contribute to a better understanding of the behavior of the virus particles in the sewer.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Humans , Microplastics , Plastics , SARS-CoV-2 , Textiles , Waste Water , Water Pollutants, Chemical/analysis
7.
Environ Res ; 208: 112634, 2022 05 15.
Article in English | MEDLINE | ID: covidwho-1587832

ABSTRACT

The outbreak of the COVID-19 pandemic has exacerbated plastic pollution worldwide. So has the COVID-19 pandemic changed the research on plastic pollution? This work aims to explore the impact of the pandemic on plastic pollution research by comprehensively assessing the current status and prospects of plastic pollution research before and during the COVID-19 pandemic. A collection of publications on the topic of plastic pollution in the Web of Science database concludes that the COVID-19 pandemic has reshaped the plastic pollution research: (i) The COVID-19 pandemic has changed the trend of plastic pollution publication output. Since the COVID-19 pandemic, the number of publications on the topic of plastic pollution has shown a significant increase trend; (ii) The COVID-19 pandemic has reversed the global research landscape of research on the plastic pollution. Since the outbreak of the pandemic, more and more countries have begun to pay attention to plastic pollution. Before the pandemic, developed countries were global leaders in plastic pollution research. However, during the pandemic, developing countries began to have a significant share in the quality, quantity and international cooperation of publications; (iii) The COVID-19 pandemic has redefined the major hotspots of plastic pollution research. The focus of research has changed significantly since the pandemic. Solving plastic pollution has become a major research content. During the epidemic, in-depth research on microplastics was conducted. The results of mining the publications on plastic pollution show that there is currently no effective solution to plastic pollution caused by the COVID-19. However, given the seriousness of controlling plastic pollution, it is very necessary to continue to carry out more research.


Subject(s)
COVID-19 , COVID-19/epidemiology , Humans , Microplastics , Pandemics , Plastics , SARS-CoV-2
8.
J Hazard Mater ; 426: 128076, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1587274

ABSTRACT

Usage of disposable plastic products and disinfectants has been skyrocketing due to the COVID-19 pandemic. The random disposal of plastic products may result in greater microplastic pollution. Benzalkonium chloride is known as one of the most common ingredients of disinfectants. In this study, the adsorption behavior of benzalkonium chlorides (BAC12, BAC14, BAC16) on polyethylene microplastics (PE-MPs) and the combined toxic effects were investigated using batch adsorption experiment and Daphnia magna. The results showed that PE-MPs had strong adsorption capacity for BACs and the adsorption capacity increased (11.03-22.77 mg g-1) with their octanol-water distribution coefficients. The effect of pH was negligible while dissolved organic matter inhibited the adsorption. A slightly inverse relationship between particle size of PE-MPs and adsorption was observed. Additionally, the MP aging with UV/H2O2 increased the adsorption of BAC12 but decreased that of relatively hydrophobic BAC14 and BAC16. The survival rate of Daphnia magna increased up to 100% in the presence of PE-MPs depending upon their adsorption capacities, suggesting that PE-MPs do not act as a carrier but rather as a scavenger for BACs. This study provides important information necessary for environmental risk assessment with regard to the combined pollution of MPs and toxic chemicals.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Adsorption , Benzalkonium Compounds/toxicity , Chlorides , Humans , Hydrogen Peroxide , Microplastics , Pandemics , Plastics , Polyethylene/toxicity , SARS-CoV-2 , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
9.
Environ Sci Process Impacts ; 24(1): 17-31, 2022 Jan 26.
Article in English | MEDLINE | ID: covidwho-1541261

ABSTRACT

Microplastics (MPs) are a group of emerging contaminants that have attracted increasing scientific and societal attention over the past decade due to their ubiquitous detection in all environmental compartments. So far, most studies on MPs focus on characterizing their occurrence, fate, and impact in the aquatic environment. Therefore, very little is known about the magnitude, patterns, and associated risks of human exposure to MPs, particularly indoors. This is a significant research gap given that people spend most of their time (up to 90%) indoors, which is exacerbated over the past year by COVID-19 lockdown measures. Critical evaluation of the existing literature revealed the presence of MPs at higher concentrations in indoor air and dust (from homes and offices) compared to outdoors. This was attributed to several factors including: indoor MPs sources (e.g. furniture, textiles), increased deposition of atmospheric MPs indoors, and less atmospheric mixing and dilution compared to outdoor air. Current understanding is that indoor human exposure to MPs occurs via a combination of inhalation, ingestion, and dermal contact. Dietary intake was considered the major pathway of human exposure to MPs until recent studies revealed potential high exposure via inhalation. Moreover, exposure via inadvertent dust ingestion and dermal contact cannot be neglected, particularly for young children. This is alarming due to the potential toxic implications of MPs exposure. Early toxicological evidence indicates that small MPs (<20 µm) can cause oxidative stress and inflammation, while particles <5 µm can be engulfed by cells and translocated to accumulate in different organs. Also, there is increasing concern over potential leaching of toxic chemicals used as plastic additives (e.g. plasticizers and flame retardants) upon exposure to MPs due to their large surface area. However, MPs exposure and risk assessment in humans is still in its infancy and more research is necessary to provide the knowledge base required for regulations to protect human health and environment against MPs.


Subject(s)
Air Pollution, Indoor , COVID-19 , Flame Retardants , Air Pollution, Indoor/analysis , Child, Preschool , Communicable Disease Control , Dust/analysis , Environmental Exposure/analysis , Environmental Monitoring , Flame Retardants/analysis , Humans , Microplastics , Plastics , SARS-CoV-2
10.
Environ Pollut ; 292(Pt A): 118299, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1525784

ABSTRACT

Microplastics (MPs) have been reported in the outdoor/indoor air of urban centres, raising health concerns due to the potential for human exposure. Since aerosols are considered one of the routes of Coronavirus disease 2019 (COVID-19) transmission and may bind to the surface of airborne MPs, we hypothesize that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could be associated with the levels of MPs in the air. Our goal was to quantify the SARS-CoV-2 RNA and MPs present in the total suspended particles (TSP) collected in the area surrounding the largest medical centre in Latin America and to elucidate a possible association among weather variables, MPs, and SARS-CoV-2 in the air. TSP were sampled from three outdoor locations in the areas surrounding a medical centre. MPs were quantified and measured under a fluorescence microscope, and their polymeric composition was characterized by Fourier transform infrared (FT-IR) microspectroscopy coupled with attenuated total reflectance (ATR). The viral load of SARS-CoV-2 was quantified by an in-house real-time PCR assay. A generalized linear model (GzLM) was employed to evaluate the effect of the SARS-CoV-2 quantification on MPs and weather variables. TSP samples tested positive for SARS-CoV-2 in 22 out of 38 samples at the three sites. Polyester was the most frequent polymer (80%) found in the samples. The total amount of MPs was positively associated with the quantification of SARS-CoV-2 envelope genes and negatively associated with weather variables (temperature and relative humidity). Our findings show that SARS-CoV-2 aerosols may bind to TSP, such as MPs, and facilitate virus entry into the human body.


Subject(s)
COVID-19 , SARS-CoV-2 , Aerosols , Humans , Latin America , Microplastics , Plastics , RNA, Viral , Spectroscopy, Fourier Transform Infrared
11.
Sci Total Environ ; 816: 151650, 2022 Apr 10.
Article in English | MEDLINE | ID: covidwho-1510286

ABSTRACT

Disposable face masks are widely used as primary personal protective equipment to control the spread of the SARS-CoV-2 virus. Disposable face masks have been identified as a source of microplastics and a new threat to the environment when improperly handled. To understand the release of microplastics from discarded masks into water, the release quantities of microplastics from three types of disposable face masks (N95, medical surgical, and normal medical masks) were measured within 24 h and their release kinetics were analyzed over seven days. Results showed that polypropylene microplastics fibers and debris of various colors were released. N95 masks released 801 ± 71-2667 ± 97 microplastic particles/(piece·d), medical surgical masks released 1136 ± 87-2343 ± 168 microplastic particles/(piece·d), and normal medical masks released 1034 ± 119-2547 ± 185 microplastic particles/(piece·d), irrespective of the price, weight, or type of mask. The microplastics were first released fast and then slow. The Elovich equation described the release kinetics (R2 > 0.990), and the release rate did not differ with the type of mask. Microplastics of 100-500 µm and of <100 µm were released in large quantities and at rapid rates. Fiber and transparent microplastics accounted for a large proportion of those released, and their daily release proportion increased with time. Fiber microplastics <500 µm in length were predominant in the microplastics released from disposable face masks, indicating that disposable face masks could be a critical source of these in the aqueous environment. There is an urgent need to take action to implement a waste management system limiting the number of masks entering the environment.


Subject(s)
COVID-19 , Microplastics , Humans , Kinetics , Masks , Plastics , SARS-CoV-2 , Water
12.
J Hazard Mater ; 424(Pt A): 127391, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1446842

ABSTRACT

Personal protective equipment (PPE) such as face masks is vital in battling the COVID-19 crisis, but the dominant polypropylene-based PPE are lack of antiviral/antibacterial activities and environmental friendliness, and have hazardous impact on the soil and aquatic ecosystems. The work presented herein focused on developing biodegradable, antiviral, and antibacterial cellulose nonwovens (AVAB-CNWs) as a multi-functional bioprotective layer for better protection against coronavirus SARS-CoV-2 and addressing environmental concerns raised by the piling of COVID-19 related wastes. Both guanidine-based polymer and neomycin sulfate (NEO) were reactive-modified and covalently grafted onto the surface of cellulose nonwovens, thereby conferring outstanding antiviral and antibacterial activities to the nonwovens without deteriorating the microstructure and biodegradability. Through adjusting the grafting amount of active components and selecting appropriate reagents for pretreatment, the antimicrobial activity and hydrophobicity for self-cleaning of the nonwovens can be tuned. More importantly, we demonstrated for the first time that such multi-functional nonwovens are capable of inactivating SARS-CoV-2 instantly, leading to high virucidal activity (> 99.35%), which is unachievable by conventional masks used nowadays. Meanwhile, the robust breathability and biodegradability of AVAB-CNWs were well maintained. The applications of the as-prepared nonwovens as high-performance textile can be readily extended to other areas in the fight against COVID-19.


Subject(s)
Antiviral Agents , COVID-19 , Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , Cellulose , Ecosystem , Humans , Microplastics , Plastics , SARS-CoV-2
13.
Sci Total Environ ; 779: 146433, 2021 Jul 20.
Article in English | MEDLINE | ID: covidwho-1379217

ABSTRACT

Microplastics (MPs) are widely distributed and extensively found within marine ecosystems, and approximately 8 million tons of plastics are being dumped into the sea annually. Once reached the marine environment, plastics tend to get fragmented into smaller particles through photo-degradation, mechanical and biological processes. These MPs have raised concerns globally due to their potential toxic impacts on a wide variety of aquatic fauna and humans. Ingested microplastics can cause severe health implications in fishes, including reduced feeding intensity, improper gill functioning, immuno-suppression, and compromised reproducibility. Several studies were also conducted to scrutinize MPs trophic transfer through the food chain from primary producers to top predators and their bioaccumulation. This paper briefly summarizes all the possible sources, routes, bioavailability, trophic transfer, and consequences of microplastics in fishes. The review article also intended to highlight various mitigation strategies like implementing Four R's concept (refuse, reduce, reuse, and recycle), integrated strategies, ban on single-use plastics, use bioplastics, and create behavioural changes with public awareness.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring , Fishes , Humans , Plastics/toxicity , Reproducibility of Results , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
14.
J Hazard Mater ; 422: 126945, 2022 01 15.
Article in English | MEDLINE | ID: covidwho-1364230

ABSTRACT

Since the emergence of Coronavirus disease (COVID-19), the threat of plastic waste pollution has grown exponentially, with a strong attention on the environmental and human health consequences of millions of personal protective equipment (PPE) (e.g., face masks, shields, gloves, and wipes) being used and discarded. In response, a massive research effort has been launched to understand, characterize, and estimate the exposure risks of PPE associated contaminants. While the number of studies examining the impacts of PPE is increasing, this review aimed to provide a quick update on the research conducted to date of this topic, as well as to identify priorities for future research. Specifically, we analyzed recent global peer-reviewed articles on PPE to synthesize methods, control measures, and documented evidence to (1) investigate the discarded PPE in a variety of environments; (2) determine the microplastics discharge in the aquatic environment; (3) examine the intentionally or unintentionally added chemicals in the production of PPE; and (4) assess potential human health hazards and exposure pathways. Despite progress, more research is needed in the future to fully understand the chemical emissions from PPE degradation mechanisms (mechanical, chemical, and biological), as well as the magnitude and density of PPE pollution in the environment.


Subject(s)
COVID-19 , Personal Protective Equipment , Humans , Microplastics , Plastics/toxicity , SARS-CoV-2
15.
Chemosphere ; 286(Pt 3): 131898, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1356165

ABSTRACT

Microplastics (MPs) are ubiquitous anthropogenic contaminants, and their abundance in the entire ecosystem raises the question of how far is the impact of these MPs on the biota, humans, and the environment. Recent research has overemphasized the occurrence, characterization, and direct toxicity of MPs; however, determining and understanding their genotoxic effect is still limited. Thus, the present review addresses the genotoxic potential of these emerging contaminants in aquatic organisms and in human peripheral lymphocytes and identified the research gaps in this area. Several genotoxic endpoints were implicated, including the frequency of micronuclei (MN), nucleoplasmic bridge (NPB), nuclear buds (NBUD), DNA strand breaks, and the percentage of DNA in the tail (%Tail DNA). In addition, the mechanism of MPs-induced genotoxicity seems to be closely associated with reactive oxygen species (ROS) production, inflammatory responses, and DNA repair interference. However, the gathered information urges the need for more studies that present environmentally relevant conditions. Taken into consideration, the lifestyle changes within the COVID-19 pandemic, we discussed the impact of the pandemic on enhancing the genotoxic potential of MPs whether through increasing human exposure to MPs via inappropriate disposal and overconsumption of plastic-based products or by disrupting the defense system owing to unhealthy food and sleep deprivation as well as stress. Overall, this review provided a reference for the genotoxic effect of MPs, their mechanism of action, as well as the contribution of COVID-19 to increase the genotoxic risk of MPs.


Subject(s)
COVID-19 , Water Pollutants, Chemical , DNA Damage , Ecosystem , Humans , Microplastics , Pandemics , Plastics/toxicity , SARS-CoV-2 , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
16.
Sci Total Environ ; 800: 149555, 2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1347823

ABSTRACT

Environmental pollution from microplastics (MPs) in air is a matter of growing concern because of human health implications. Airborne MPs can be directly and continuously inhaled in air environments. Especially high MPs contributions can be found in indoor air due to the erosion and breakage of consumer, domestic and construction products, although there is little information available on their sources and concentrations and the risks they might pose. This is in part due to the fact that sampling and analysis of airborne MPs is a complex and multistep procedure where techniques used are not yet standardized. In this study, we provide an overview on the presence of MPs in indoor air, potential health impacts, the available methods for their sampling and detection and implications from the use of face masks during the COVID-19 pandemic.


Subject(s)
Air Pollution, Indoor , COVID-19 , Air Pollution, Indoor/analysis , Environmental Monitoring , Humans , Masks , Microplastics , Pandemics , Plastics , SARS-CoV-2
17.
IUBMB Life ; 74(1): 62-73, 2022 01.
Article in English | MEDLINE | ID: covidwho-1318714

ABSTRACT

Airborne pollution has become a leading cause of global death in industrialized cities and the exposure to environmental pollutants has been demonstrated to have adverse effects on human health. Among the pollutants, particulate matter (PM) is one of the most toxic and although its exposure has been more commonly correlated with respiratory diseases, gastrointestinal (GI) complications have also been reported as a consequence to PM exposure. Due to its composition, PM is able to exert on intestinal mucosa both direct damaging effects, (by reaching it either via direct ingestion of contaminated food and water or indirect inhalation and consequent macrophagic mucociliary clearance) and indirect ones via generation of systemic inflammation. The relationship between respiratory and GI conditions is well described by the lung-gut axis and more recently, has become even clearer during coronavirus disease 2019 (COVID-19) pandemic, when respiratory symptoms were associated with gastrointestinal conditions. This review aims at pointing out the mechanisms and the models used to evaluate PM induced GI tract damage.


Subject(s)
COVID-19/etiology , Gastrointestinal Tract/injuries , Particulate Matter/toxicity , SARS-CoV-2 , Administration, Inhalation , Administration, Oral , COVID-19/physiopathology , COVID-19/prevention & control , Gastrointestinal Tract/physiopathology , Humans , Intestinal Mucosa/injuries , Intestinal Mucosa/physiopathology , Masks , Microplastics/toxicity , Models, Biological , Mucociliary Clearance/physiology , Nutrition Policy , Pandemics/prevention & control , Particulate Matter/administration & dosage , Respiratory System/injuries , Respiratory System/physiopathology
18.
Environ Pollut ; 288: 117748, 2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1300762

ABSTRACT

Billions of disposable face masks are consumed daily due to the COVID-19 pandemic. The role of these masks as a source of nanoplastics (NPs) and microplastics (MPs) in the environment has not been studied in previous studies. We quantified and characterized face mask released particles and evaluated their potential for accumulation in humans and marine organisms. More than one billion of NPs and MPs were released from each surgical or N95 face mask. These irregularly-shaped particles sized from c. 5 nm to c. 600 µm. But most of them were nano scale sized <1 µm. The middle layers of the masks had released more particles than the outer and inner layers. That MPs were detected in the nasal mucus of mask wearers suggests they can be inhaled while wearing a mask. Mask released particles also adsorbed onto diatom surfaces and were ingested by marine organisms of different trophic levels. This data is useful for assessing the health and environmental risks of face masks.


Subject(s)
COVID-19 , Microplastics , Bioaccumulation , Humans , Masks , Pandemics , Plastics , SARS-CoV-2
19.
Int J Environ Res Public Health ; 18(13)2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1299422

ABSTRACT

Single-use disposable facemasks have been used as a preventive measure against the ongoing COVID-19 pandemic. However, many researchers have found evidence that these facemasks are being dumped into lakes, rivers, and open garbage dumps. Facemasks have the potential of releasing microplastic fibers into the environment; a phenomenon that has been poorly investigated. Moreover, microplastic fibers composed of plastics have the potential of affecting the flora and fauna of many ecosystems. In this preliminary study, we investigate how many microplastic fibers had been released to the water by KF-AD, KF94, surgical, and FFP1 standard facemasks, which are the most widely available facemask standards in South Korea. The waterbody in our research was mechanically agitated for 24, 48, and 72 h. Findings showed that most of the layers of facemasks are composed of polypropylene. The surgical and KF94 standard facemasks released the highest number of microplastic fibers. Furthermore, under our research conditions, a single facemask can release at least 47 microplastic fibers per day (e.g., KF-AD standard mask), which can lead to the release of at least 1381 million microplastic fibers per day in total in South Korea if 70% of the urban population uses a single mask every day. Moreover, the released microplastic fibers significantly increased when the agitation time extended from 24 to 48 h. This finding suggests that the number of released microplastic fibers is likely to increase drastically.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Humans , Masks , Microplastics , Pandemics , Plastics , Republic of Korea/epidemiology , SARS-CoV-2 , Water Pollutants, Chemical/analysis
20.
J Hazard Mater ; 419: 126507, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1284212

ABSTRACT

Wearing face masks is a fundamental prevention and control measure to limit the spread of COVID-19. The universal use and improper disposal of single-use face masks are raising serious concerns for their environmental impact, owing to the foregone contribution to plastic water pollution during and beyond the pandemic. This study aims to uncover the release of micro/nanoplastics generated from face mask nonwoven textiles once discarded in the aquatic environment. As assessed by microscopy and flow cytometry, the exposure to different levels of mechanical stress forces (from low to high shear stress intensities) was proved effective in breaking and fragmenting face mask fabrics into smaller debris, including macro-, micro-, and nano-plastics. Even at the low level of fabric deterioration following the first second of treatment, a single mask could release in water thousands of microplastic fibers and up to 108 submicrometric particles, mostly comprised in the nano-sized domain. By contributing to the current lack of knowledge regarding the potential environmental hazards posed by universal face masking, we provided novel quantitative data, through a suitable technological approach, on the release of micro/nanoplastics from single-use face masks that can threaten the aquatic ecosystems to which they finally end-up.


Subject(s)
COVID-19 , Masks , Ecosystem , Humans , Microplastics , Plastics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL