Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Molecules ; 28(5)2023 Mar 05.
Article in English | MEDLINE | ID: covidwho-2250183

ABSTRACT

Tubulin isotypes are known to regulate microtubule stability and dynamics, as well as to play a role in the development of resistance to microtubule-targeted cancer drugs. Griseofulvin is known to disrupt cell microtubule dynamics and cause cell death in cancer cells through binding to tubulin protein at the taxol site. However, the detailed binding mode involved molecular interactions, and binding affinities with different human ß-tubulin isotypes are not well understood. Here, the binding affinities of human ß-tubulin isotypes with griseofulvin and its derivatives were investigated using molecular docking, molecular dynamics simulation, and binding energy calculations. Multiple sequence analysis shows that the amino acid sequences are different in the griseofulvin binding pocket of ßI isotypes. However, no differences were observed at the griseofulvin binding pocket of other ß-tubulin isotypes. Our molecular docking results show the favorable interaction and significant affinity of griseofulvin and its derivatives toward human ß-tubulin isotypes. Further, molecular dynamics simulation results show the structural stability of most ß-tubulin isotypes upon binding to the G1 derivative. Taxol is an effective drug in breast cancer, but resistance to it is known. Modern anticancer treatments use a combination of multiple drugs to alleviate the problem of cancer cells resistance to chemotherapy. Our study provides a significant understanding of the involved molecular interactions of griseofulvin and its derivatives with ß-tubulin isotypes, which may help to design potent griseofulvin analogues for specific tubulin isotypes in multidrug-resistance cancer cells in future.


Subject(s)
Griseofulvin , Tubulin , Humans , Tubulin/metabolism , Griseofulvin/analysis , Molecular Docking Simulation , Binding Sites , Microtubules , Paclitaxel/pharmacology
2.
Int J Mol Sci ; 23(7)2022 Mar 22.
Article in English | MEDLINE | ID: covidwho-2200270

ABSTRACT

Microtubule targeting agents (MTAs) have been exploited mainly as anti-cancer drugs because of their impact on cellular division and angiogenesis. Additionally, microtubules (MTs) are key structures for intracellular transport, which is frequently hijacked during viral infection. We have analyzed the antiviral activity of clinically used MTAs in the infection of DNA and RNA viruses, including SARS-CoV-2, to find that MT destabilizer agents show a higher impact than stabilizers in the viral infections tested, and FDA-approved anti-helminthic benzimidazoles were among the most active compounds. In order to understand the reasons for the observed antiviral activity, we studied the impact of these compounds in motor proteins-mediated intracellular transport. To do so, we used labeled peptide tools, finding that clinically available MTAs impaired the movement linked to MT motors in living cells. However, their effect on viral infection lacked a clear correlation to their effect in motor-mediated transport, denoting the complex use of the cytoskeleton by viruses. Finally, we further delved into the molecular mechanism of action of Mebendazole by combining biochemical and structural studies to obtain crystallographic high-resolution information of the Mebendazole-tubulin complex, which provided insights into the mechanisms of differential toxicity between helminths and mammalians.


Subject(s)
COVID-19 Drug Treatment , Mebendazole , Animals , Antiviral Agents/pharmacology , Mammals , Mebendazole/pharmacology , Microtubules , SARS-CoV-2 , Tubulin
3.
Proc Natl Acad Sci U S A ; 119(43): e2211467119, 2022 10 25.
Article in English | MEDLINE | ID: covidwho-2077262

ABSTRACT

Through a screen that combines functional and evolutionary analyses, we identified tripartite motif protein (Trim69), a poorly studied member of the Trim family, as a negative regulator of HIV-1 infection in interferon (IFN)-stimulated myeloid cells. Trim69 inhibits the early phases of infection of HIV-1, but also of HIV-2 and SIVMAC in addition to the negative and positive-strand RNA viruses vesicular stomatitis virus and severe acute respiratory syndrome coronavirus 2, with magnitudes that depend on the combination between cell type and virus. Mechanistically, Trim69 associates directly to microtubules and its antiviral activity is linked to its ability to promote the accumulation of stable microtubules, a program that we uncover to be an integral part of antiviral IFN-I responses in myeloid cells. Overall, our study identifies Trim69 as the antiviral innate defense factor that regulates the properties of microtubules to limit viral spread and highlights the cytoskeleton as an unappreciated battleground in the host-pathogen interactions that underlie viral infections.


Subject(s)
HIV Infections , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Virus Replication , Humans , Immunity, Innate , Interferons/immunology , Microtubules/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , HIV Infections/immunology
4.
Science ; 376(6595): eabn6020, 2022 05 20.
Article in English | MEDLINE | ID: covidwho-1861569

ABSTRACT

The detyrosination-tyrosination cycle involves the removal and religation of the C-terminal tyrosine of α-tubulin and is implicated in cognitive, cardiac, and mitotic defects. The vasohibin-small vasohibin-binding protein (SVBP) complex underlies much, but not all, detyrosination. We used haploid genetic screens to identify an unannotated protein, microtubule associated tyrosine carboxypeptidase (MATCAP), as a remaining detyrosinating enzyme. X-ray crystallography and cryo-electron microscopy structures established MATCAP's cleaving mechanism, substrate specificity, and microtubule recognition. Paradoxically, whereas abrogation of tyrosine religation is lethal in mice, codeletion of MATCAP and SVBP is not. Although viable, defective detyrosination caused microcephaly, associated with proliferative defects during neurogenesis, and abnormal behavior. Thus, MATCAP is a missing component of the detyrosination-tyrosination cycle, revealing the importance of this modification in brain formation.


Subject(s)
Carboxypeptidases , Microtubule-Associated Proteins , Microtubules , Protein Processing, Post-Translational , Tubulin , Tyrosine , Animals , Carboxypeptidases/genetics , Cryoelectron Microscopy , Crystallography, X-Ray , Humans , Mice , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Microtubules/chemistry , Tubulin/chemistry , Tyrosine/chemistry
5.
Vet Microbiol ; 269: 109448, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1829627

ABSTRACT

Porcine hemagglutinating encephalomyelitis virus (PHEV) is a typical neurotropic betacoronavirus causing digestive disease and/or neurological dysfunction in neonatal pigs. Actin filaments have been identified to implicate in PHEV invasion, but the effects of viral infection on microtubules (MTs) cytoskeleton are unknown. Here, we observed that PHEV infection induced MT depolymerization and was accompanied by the disappearance of microtubule organizing centers. Depolymerization of MTs induced by nocodazole significantly inhibited viral RNA replication, but over-polymerization of MTs induced by paclitaxel did not substantially affect PHEV infection. The expression of histone deacetylase 6 (HDAC6), an important regulator of MT acetylation, progressively increased during PHEV infection. Tramstatin A could alter HDAC6 deacetylase activity to enhance the acetylation of the substrate α-tubulin and MT polymerization, but does not increase PHEV proliferation. These findings suggest that PHEV could subvert host MT cytoskeleton to facilitate infection, and that MT depolymerization negatively affects viral replication independently of HDAC6 activity.


Subject(s)
Betacoronavirus 1 , Coronavirus Infections , Swine Diseases , Animals , Betacoronavirus , Coronavirus Infections/veterinary , Microtubules , Swine , Tubulin/genetics , Tubulin/metabolism , Virus Replication
6.
Clin Appl Thromb Hemost ; 26: 1076029620954911, 2020.
Article in English | MEDLINE | ID: covidwho-772058

ABSTRACT

Definitive pharmacological therapies for COVID-19 have yet to be identified. Several hundred trials are ongoing globally in the hope of a solution. However, nearly all treatments rely on systemic delivery but COVID-19 damages the lungs preferentially. The use of a targeted delivery approach is reviewed where engineered products are able to reach damaged lung tissue directly, which includes catheter-based and aerosol-based approaches. In this review we have outlined various target directed approaches which include microbubbles, extracellular vesicles including exosomes, adenosine nanoparticles, novel bio-objects, direct aerosol targeted pulmonary delivery and catheter-based drug delivery with reference to their relative effectiveness for the specific lesions. Currently several trials are ongoing to determine the effectiveness of such delivery systems alone and in conjunction with systemic therapies. Such approaches may prove to be very effective in the controlled and localized COVID-19 viral lesions in the lungs and potential sites. Moreover, localized delivery offered a safer delivery mode for such drugs which may have systemic adverse effects.


Subject(s)
Antiviral Agents/administration & dosage , Betacoronavirus , Coronavirus Infections/drug therapy , Pandemics , Pneumonia, Viral/drug therapy , COVID-19 , Coronavirus Infections/epidemiology , Humans , Lung , Microtubules , Pneumonia, Viral/epidemiology , SARS-CoV-2
7.
J Mol Cell Biol ; 12(12): 968-979, 2020 07 01.
Article in English | MEDLINE | ID: covidwho-676855

ABSTRACT

The emerging coronavirus (CoV) pandemic is threatening the public health all over the world. Cytoskeleton is an intricate network involved in controlling cell shape, cargo transport, signal transduction, and cell division. Infection biology studies have illuminated essential roles for cytoskeleton in mediating the outcome of host‒virus interactions. In this review, we discuss the dynamic interactions between actin filaments, microtubules, intermediate filaments, and CoVs. In one round of viral life cycle, CoVs surf along filopodia on the host membrane to the entry sites, utilize specific intermediate filament protein as co-receptor to enter target cells, hijack microtubules for transportation to replication and assembly sites, and promote actin filaments polymerization to provide forces for egress. During CoV infection, disruption of host cytoskeleton homeostasis and modification state is tightly connected to pathological processes, such as defective cytokinesis, demyelinating, cilia loss, and neuron necrosis. There are increasing mechanistic studies on cytoskeleton upon CoV infection, such as viral protein‒cytoskeleton interaction, changes in the expression and post-translation modification, related signaling pathways, and incorporation with other host factors. Collectively, these insights provide new concepts for fundamental virology and the control of CoV infection.


Subject(s)
Coronavirus Infections/virology , Coronavirus/pathogenicity , Cytoskeleton/virology , Host Microbial Interactions/physiology , Actin Cytoskeleton/physiology , Actin Cytoskeleton/virology , Animals , Biological Transport, Active , Brain/pathology , Cilia/pathology , Coronavirus/classification , Coronavirus/physiology , Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Cytoskeleton/pathology , Cytoskeleton/physiology , Humans , Intermediate Filaments/physiology , Intermediate Filaments/virology , Microtubules/physiology , Microtubules/virology , Models, Biological , Phylogeny , Receptors, Virus/physiology , Signal Transduction , Virus Assembly , Virus Internalization , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL