Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
Add filters

Document Type
Year range
1.
Int J Med Sci ; 18(3): 763-767, 2021.
Article in English | MEDLINE | ID: covidwho-1524479

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is an emerging disease. There has been a rapid increase in cases and deaths since it was identified in Wuhan, China, in early December 2019, with over 4,000,000 cases of COVID-19 including at least 250,000 deaths worldwide as of May 2020. However, limited data about the clinical characteristics of pregnant women with COVID-19 have been reported. Given the maternal physiologic and immune function changes during pregnancy, pregnant women may be at a higher risk of being infected with SARS-CoV-2 and developing more complicated clinical events. Information on severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) may provide insights into the effects of COVID-19's during pregnancy. Even though SARS and MERS have been associated with miscarriage, intrauterine death, fetal growth restriction and high case fatality rates, the clinical course of COVID-19 pneumonia in pregnant women has been reported to be similar to that in non-pregnant women. In addition, pregnant women do not appear to be at a higher risk of catching COVID-19 or suffering from more severe disease than other adults of similar age. Moreover, there is currently no evidence that the virus can be transmitted to the fetus during pregnancy or during childbirth. Babies and young children are also known to only experience mild forms of COVID-19. The aims of this systematic review were to summarize the possible symptoms, treatments, and pregnancy outcomes of women infected with COVID-19 during pregnancy.


Subject(s)
COVID-19/epidemiology , Infectious Disease Transmission, Vertical , Pregnancy Complications, Infectious/epidemiology , Pregnancy Outcome , SARS-CoV-2/immunology , Adult , COVID-19/immunology , COVID-19/therapy , COVID-19/transmission , Female , Humans , Infant, Newborn , Maternal Exposure , Middle East Respiratory Syndrome Coronavirus/immunology , Pregnancy , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/therapy , Pregnancy Complications, Infectious/virology , SARS Virus/immunology , SARS-CoV-2/isolation & purification , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Severity of Illness Index
2.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: covidwho-1481965

ABSTRACT

Self-amplifying RNA replicons are promising platforms for vaccine generation. Their defects in one or more essential functions for viral replication, particle assembly, or dissemination make them highly safe as vaccines. We previously showed that the deletion of the envelope (E) gene from the Middle East respiratory syndrome coronavirus (MERS-CoV) produces a replication-competent propagation-defective RNA replicon (MERS-CoV-ΔE). Evaluation of this replicon in mice expressing human dipeptidyl peptidase 4, the virus receptor, showed that the single deletion of the E gene generated an attenuated mutant. The combined deletion of the E gene with accessory open reading frames (ORFs) 3, 4a, 4b, and 5 resulted in a highly attenuated propagation-defective RNA replicon (MERS-CoV-Δ[3,4a,4b,5,E]). This RNA replicon induced sterilizing immunity in mice after challenge with a lethal dose of a virulent MERS-CoV, as no histopathological damage or infectious virus was detected in the lungs of challenged mice. The four mutants lacking the E gene were genetically stable, did not recombine with the E gene provided in trans during their passage in cell culture, and showed a propagation-defective phenotype in vivo. In addition, immunization with MERS-CoV-Δ[3,4a,4b,5,E] induced significant levels of neutralizing antibodies, indicating that MERS-CoV RNA replicons are highly safe and promising vaccine candidates.


Subject(s)
Coronavirus Infections/prevention & control , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , RNA, Viral/administration & dosage , Replicon , Viral Vaccines/administration & dosage , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/virology , Defective Viruses/genetics , Defective Viruses/immunology , Female , Gene Deletion , Genes, env , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle East Respiratory Syndrome Coronavirus/pathogenicity , RNA, Viral/genetics , RNA, Viral/immunology , Vaccines, DNA , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology , Virulence/genetics , Virulence/immunology
3.
Microbiol Spectr ; 9(2): e0141621, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1495015

ABSTRACT

The rapid worldwide spread of SARS-CoV-2 has accelerated research and development for controlling the COVID-19 pandemic. A multi-coronavirus protein microarray was created containing full-length proteins, overlapping protein fragments of various lengths, and peptide libraries from SARS-CoV-2 and four other human coronaviruses. Sera from confirmed COVID-19 patients as well as unexposed individuals were applied to multicoronavirus arrays to identify specific antibody reactivity. High-level IgG, IgM, and IgA reactivity to structural proteins S, M, and N of SARS-CoV-2, as well as accessory proteins such as ORF3a and ORF7a, were observed that were specific to COVID-19 patients. Antibody reactivity against overlapping 100-, 50-, and 30-amino acid fragments of SARS-CoV-2 proteins was used to identify antigenic regions. Numerous proteins of SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), and the endemic human coronaviruses HCoV-NL63 and HCoV-OC43 were also more reactive with IgG, IgM, and IgA in COVID-19 patient sera than in unexposed control sera, providing further evidence of immunologic cross-reactivity between these viruses. Whereas unexposed individuals had minimal reactivity against SARS-CoV-2 proteins that poorly correlated with reactivity against HCoV-NL63 and HCoV-OC43 S2 and N proteins, COVID-19 patient sera had higher correlation between SARS-CoV-2 and HCoV responses, suggesting that de novo antibodies against SARS-CoV-2 cross-react with HCoV epitopes. Array responses were compared with validated spike protein-specific IgG enzyme-linked immunosorbent assays (ELISAs), showing agreement between orthologous methods. SARS-CoV-2 microneutralization titers were low in the COVID-19 patient sera but correlated with array responses against S and N proteins. The multi-coronavirus protein microarray is a useful tool for mapping antibody reactivity in COVID-19 patients. IMPORTANCE With novel mutant SARS-CoV-2 variants of concern on the rise, knowledge of immune specificities against SARS-CoV-2 proteins is increasingly important for understanding the impact of structural changes in antibody-reactive protein epitopes on naturally acquired and vaccine-induced immunity, as well as broader topics of cross-reactivity and viral evolution. A multi-coronavirus protein microarray used to map the binding of COVID-19 patient antibodies to SARS-CoV-2 proteins and protein fragments as well as to the proteins of four other coronaviruses that infect humans has shown specific regions of SARS-CoV-2 proteins that are highly reactive with patient antibodies and revealed cross-reactivity of these antibodies with other human coronaviruses. These data and the multi-coronavirus protein microarray tool will help guide further studies of the antibody response to COVID-19 and to vaccination against this worldwide pandemic.


Subject(s)
Antibodies, Viral/immunology , Coronavirus NL63, Human/immunology , Coronavirus OC43, Human/immunology , Epitopes/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , SARS-CoV-2/immunology , Antibodies, Viral/blood , Binding Sites, Antibody/immunology , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Cross Reactions/immunology , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Phosphoproteins/immunology , Protein Array Analysis , Spike Glycoprotein, Coronavirus/immunology , Viral Proteins/immunology , Viroporin Proteins/immunology
4.
Cell Rep ; 37(5): 109929, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1466097

ABSTRACT

Current coronavirus (CoV) vaccines primarily target immunodominant epitopes in the S1 subunit, which are poorly conserved and susceptible to escape mutations, thus threatening vaccine efficacy. Here, we use structure-guided protein engineering to remove the S1 subunit from the Middle East respiratory syndrome (MERS)-CoV spike (S) glycoprotein and develop stabilized stem (SS) antigens. Vaccination with MERS SS elicits cross-reactive ß-CoV antibody responses and protects mice against lethal MERS-CoV challenge. High-throughput screening of antibody-secreting cells from MERS SS-immunized mice led to the discovery of a panel of cross-reactive monoclonal antibodies. Among them, antibody IgG22 binds with high affinity to both MERS-CoV and severe acute respiratory syndrome (SARS)-CoV-2 S proteins, and a combination of electron microscopy and crystal structures localizes the epitope to a conserved coiled-coil region in the S2 subunit. Passive transfer of IgG22 protects mice against both MERS-CoV and SARS-CoV-2 challenge. Collectively, these results provide a proof of principle for cross-reactive CoV antibodies and inform the development of pan-CoV vaccines and therapeutic antibodies.


Subject(s)
Antibodies, Viral/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Cell Line , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Cross Reactions , Drug Design , Epitope Mapping , Female , Immunoglobulin G/immunology , Male , Mice , Mice, Inbred BALB C , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Viral Vaccines/immunology
5.
Front Immunol ; 12: 727989, 2021.
Article in English | MEDLINE | ID: covidwho-1450808

ABSTRACT

Background: A growing number of experiments have suggested potential cross-reactive immunity between severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and previous human coronaviruses. We conducted the present retrospective cohort study to investigate the relationship between previous Middle East respiratory syndrome-coronavirus (MERS-CoV) infection and the risk of SARS-CoV-2 infection as well as the relationship between previous MERS-CoV and COVID-19-related hospitalization and mortality. Methods: Starting in March 2020, we prospectively followed two groups of individuals who tested negative for COVID-19 infection. The first group had a previously confirmed MERS-CoV infection, which was compared to a control group of MERS-negative individuals. The studied cohort was then followed until November 2020 to track evidence of contracting COVID-19 infection. Findings: A total of 82 (24%) MERS-positive and 260 (31%) MERS-negative individuals had COVID-19 infection. Patients in the MERS-positive group had a lower risk of COVID-19 infection than those in the MERS-negative group (Risk ratio [RR] 0.696, 95% confidence interval [CI] 0.522-0.929; p =0.014). The risk of COVID-19-related hospitalization in the MERS-positive group was significantly higher (RR 4.036, 95% CI 1.705-9.555; p =0.002). The case fatality rate (CFR) from COVID-19 was 4.9% in the MERS-positive group and 1.2% in the MERS-negative group (p =0.038). The MERS-positive group had a higher risk of death than the MERS-negative group (RR 6.222, 95% CI 1.342-28.839; p =0.019). However, the risk of mortality was similar between the two groups when death was adjusted for age (p =0.068) and age and sex (p =0.057). After controlling for all the independent variables, only healthcare worker occupation and >1 comorbidity were independent predictors of SARS-CoV-2 infection. Interpretation: Individuals with previous MERS-CoV infection can exhibit a cross-reactive immune response to SARS-CoV-2 infection. Our study demonstrated that patients with MERS-CoV infection had higher risks of COVID-19-related hospitalization and death than MERS-negative individuals.


Subject(s)
COVID-19/epidemiology , COVID-19/mortality , Cross Reactions/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Hospitalization/statistics & numerical data , Humans , Infant , Infant, Newborn , Male , Middle Aged , Prospective Studies , Retrospective Studies , Saudi Arabia/epidemiology , Young Adult
6.
mBio ; 12(4): e0157221, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-1349194

ABSTRACT

Tissue- and cell-specific expression patterns are highly variable within and across individuals, leading to altered host responses after acute virus infection. Unraveling key tissue-specific response patterns provides novel opportunities for defining fundamental mechanisms of virus-host interaction in disease and the identification of critical tissue-specific networks for disease intervention in the lung. Currently, there are no approved therapeutics for Middle East respiratory syndrome coronavirus (MERS-CoV) patients, and little is understood about how lung cell types contribute to disease outcomes. MERS-CoV replicates equivalently in primary human lung microvascular endothelial cells (MVE) and fibroblasts (FB) and to equivalent peak titers but with slower replication kinetics in human airway epithelial cell cultures (HAE). However, only infected MVE demonstrate observable virus-induced cytopathic effect. To explore mechanisms leading to reduced MVE viability, donor-matched human lung MVE, HAE, and FB were infected, and their transcriptomes, proteomes, and lipidomes were monitored over time. Validated functional enrichment analysis demonstrated that MERS-CoV-infected MVE were dying via an unfolded protein response (UPR)-mediated apoptosis. Pharmacologic manipulation of the UPR in MERS-CoV-infected primary lung cells reduced viral titers and in male mice improved respiratory function with accompanying reductions in weight loss, pathological signatures of acute lung injury, and times to recovery. Systems biology analysis and validation studies of global kinetic transcript, protein, and lipid data sets confirmed that inhibition of host stress pathways that are differentially regulated following MERS-CoV infection of different tissue types can alleviate symptom progression to end-stage lung disease commonly seen following emerging coronavirus outbreaks. IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe atypical pneumonia in infected individuals, but the underlying mechanisms of pathogenesis remain unknown. While much has been learned from the few reported autopsy cases, an in-depth understanding of the cells targeted by MERS-CoV in the human lung and their relative contribution to disease outcomes is needed. The host response in MERS-CoV-infected primary human lung microvascular endothelial (MVE) cells and fibroblasts (FB) was evaluated over time by analyzing total RNA, proteins, and lipids to determine the cellular pathways modulated postinfection. Findings revealed that MERS-CoV-infected MVE cells die via apoptotic mechanisms downstream of the unfolded protein response (UPR). Interruption of enzymatic processes within the UPR in MERS-CoV-infected male mice reduced disease symptoms, virus-induced lung injury, and time to recovery. These data suggest that the UPR plays an important role in MERS-CoV infection and may represent a host target for therapeutic intervention.


Subject(s)
Acute Lung Injury/pathology , Apoptosis/physiology , Coronavirus Infections/pathology , Unfolded Protein Response/physiology , Acute Lung Injury/virology , Animals , Cell Line , Endothelial Cells/metabolism , Endothelial Cells/virology , Female , Fibroblasts/metabolism , Fibroblasts/virology , Humans , Male , Mice , Middle East Respiratory Syndrome Coronavirus/immunology
7.
Nat Commun ; 12(1): 5652, 2021 09 27.
Article in English | MEDLINE | ID: covidwho-1440473

ABSTRACT

The emergence of numerous variants of SARS-CoV-2, the causative agent of COVID-19, has presented new challenges to the global efforts to control the COVID-19 pandemic. Here, we obtain two cross-neutralizing antibodies (7D6 and 6D6) that target Sarbecoviruses' receptor-binding domain (RBD) with sub-picomolar affinities and potently neutralize authentic SARS-CoV-2. Crystal structures show that both antibodies bind a cryptic site different from that recognized by existing antibodies and highly conserved across Sarbecovirus isolates. Binding of these two antibodies to the RBD clashes with the adjacent N-terminal domain and disrupts the viral spike. Both antibodies confer good resistance to mutations in the currently circulating SARS-CoV-2 variants. Thus, our results have direct relevance to public health as options for passive antibody therapeutics and even active prophylactics. They can also inform the design of pan-sarbecovirus vaccines.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/therapy , Immunization, Passive/methods , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/metabolism , Antibodies, Viral/administration & dosage , Antibodies, Viral/isolation & purification , Antibodies, Viral/metabolism , Binding Sites/genetics , Binding Sites/immunology , Broadly Neutralizing Antibodies/administration & dosage , Broadly Neutralizing Antibodies/isolation & purification , Broadly Neutralizing Antibodies/metabolism , CHO Cells , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Cricetulus , Epitopes/immunology , HEK293 Cells , Humans , Mice , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Neutralization Tests , Pandemics/prevention & control , Protein Multimerization , Receptors, Virus/metabolism , SARS-CoV-2/genetics , Sf9 Cells , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
8.
Endocr Metab Immune Disord Drug Targets ; 21(7): 1242-1251, 2021.
Article in English | MEDLINE | ID: covidwho-1394672

ABSTRACT

Coronaviruses are a big family of viruses that can infect mammalians and birds. In humans they mainly cause respiratory tract infections, with a large spectrum of severity, from mild, self-limited infections to highly lethal forms as severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and Coronavirus Disease 2019 (COVID-19). Scanty data are reported for the involvement of endocrine glands in human coronaviruses, in particular SARS-CoV-2. In this review, we summarize endocrinological involvement in human coronaviruses, including data on animal coronaviruses. Avians, ferrets and bovine are affected by specific coronavirus syndromes, with variable involvement of endocrine glands. SARS-CoV and SARS-CoV-2 use angiotensin-converting enzyme 2 (ACE2) as a target receptor, so ACE2 plays a central role in viral transmission and initial organ involvement. Autoptic studies on SARS patients revealed that thyroid, parathyroid, pituitary gland, endocrine pancreas and especially adrenals and testis could be impaired by different mechanisms (direct damage by SARS-CoV, inflammation, vascular derangement and autoimmune reactions) and few clinical studies have evidenced functional endocrine impairment. Only few data are available for COVID-19 and gonads and endocrine pancreas seem to be involved. International endocrinological societies have brought some recommendations for the COVID-19 pandemic, but further studies need to be performed, especially to detect long-term hormonal sequelae.


Subject(s)
COVID-19/metabolism , Endocrine Glands/metabolism , Endocrine System Diseases/metabolism , Middle East Respiratory Syndrome Coronavirus/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/epidemiology , COVID-19/immunology , Endocrine Glands/immunology , Endocrine System/immunology , Endocrine System/metabolism , Endocrine System Diseases/epidemiology , Endocrine System Diseases/immunology , Humans , Middle East Respiratory Syndrome Coronavirus/immunology , SARS-CoV-2/immunology
9.
HLA ; 96(3): 277-298, 2020 09.
Article in English | MEDLINE | ID: covidwho-1388402

ABSTRACT

We report detailed peptide-binding affinities between 438 HLA Class I and Class II proteins and complete proteomes of seven pandemic human viruses, including coronaviruses, influenza viruses and HIV-1. We contrast these affinities with HLA allele frequencies across hundreds of human populations worldwide. Statistical modelling shows that peptide-binding affinities classified into four distinct categories depend on the HLA locus but that the type of virus is only a weak predictor, except in the case of HIV-1. Among the strong HLA binders (IC50 ≤ 50), we uncovered 16 alleles (the top ones being A*02:02, B*15:03 and DRB1*01:02) binding more than 1% of peptides derived from all viruses, 9 (top ones including HLA-A*68:01, B*15:25, C*03:02 and DRB1*07:01) binding all viruses except HIV-1, and 15 (top ones A*02:01 and C*14:02) only binding coronaviruses. The frequencies of strongest and weakest HLA peptide binders differ significantly among populations from different geographic regions. In particular, Indigenous peoples of America show both higher frequencies of strongest and lower frequencies of weakest HLA binders. As many HLA proteins are found to be strong binders of peptides derived from distinct viral families, and are hence promiscuous (or generalist), we discuss this result in relation to possible signatures of natural selection on HLA promiscuous alleles due to past pathogenic infections. Our findings are highly relevant for both evolutionary genetics and the development of vaccine therapies. However they should not lead to forget that individual resistance and vulnerability to diseases go beyond the sole HLA allelic affinity and depend on multiple, complex and often unknown biological, environmental and other variables.


Subject(s)
Coronavirus Infections/epidemiology , HIV Infections/epidemiology , HLA Antigens/chemistry , Influenza, Human/epidemiology , Pandemics , Peptides/chemistry , Pneumonia, Viral/epidemiology , Severe Acute Respiratory Syndrome/epidemiology , Viral Proteins/chemistry , Africa/epidemiology , Americas/epidemiology , Amino Acid Sequence , Asia/epidemiology , Australia/epidemiology , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , Computational Biology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Europe/epidemiology , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , HIV-1/immunology , HLA Antigens/classification , HLA Antigens/genetics , HLA Antigens/immunology , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/immunology , Influenza, Human/virology , Kinetics , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Peptides/genetics , Peptides/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Protein Binding , SARS Virus/genetics , SARS Virus/immunology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Viral Proteins/genetics , Viral Proteins/immunology
10.
Front Immunol ; 11: 565521, 2020.
Article in English | MEDLINE | ID: covidwho-1389164

ABSTRACT

Neurological disorders caused by neuroviral infections are an obvious pathogenic manifestation. However, non-neurotropic viruses or peripheral viral infections pose a considerable challenge as their neuropathological manifestations do not emerge because of primary infection. Their secondary or bystander pathologies develop much later, like a syndrome, during and after the recovery of patients from the primary disease. Massive inflammation caused by peripheral viral infections can trigger multiple neurological anomalies. These neurological damages may range from a general cognitive and motor dysfunction up to a wide spectrum of CNS anomalies, such as Acute Necrotizing Hemorrhagic Encephalopathy, Guillain-Barré syndrome, Encephalitis, Meningitis, anxiety, and other audio-visual disabilities. Peripheral viruses like Measles virus, Enteroviruses, Influenza viruses (HIN1 series), SARS-CoV-1, MERS-CoV, and, recently, SARS-CoV-2 are reported to cause various neurological manifestations in patients and are proven to be neuropathogenic even in cellular and animal model systems. This review presents a comprehensive picture of CNS susceptibilities toward these peripheral viral infections and explains some common underlying themes of their neuropathology in the human brain.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/complications , Coronavirus Infections/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Neurogenic Inflammation/complications , Neurogenic Inflammation/immunology , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , SARS Virus/immunology , Severe Acute Respiratory Syndrome/complications , Animals , Blood-Brain Barrier/immunology , Blood-Brain Barrier/virology , COVID-19 , Coronavirus Infections/virology , Cytokines/blood , Disease Models, Animal , Humans , Microglia/immunology , Microglia/virology , Neurogenic Inflammation/virology , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology
11.
Viruses ; 13(8)2021 08 10.
Article in English | MEDLINE | ID: covidwho-1348697

ABSTRACT

The novel coronavirus SARS-CoV-2 is the seventh identified human coronavirus. Understanding the extent of pre-existing immunity induced by seropositivity to endemic seasonal coronaviruses and the impact of cross-reactivity on COVID-19 disease progression remains a key research question in immunity to SARS-CoV-2 and the immunopathology of COVID-2019 disease. This paper describes a panel of lentiviral pseudotypes bearing the spike (S) proteins for each of the seven human coronaviruses (HCoVs), generated under similar conditions optimized for high titre production allowing a high-throughput investigation of antibody neutralization breadth. Optimal production conditions and most readily available permissive target cell lines were determined for spike-mediated entry by each HCoV pseudotype: SARS-CoV-1, SARS-CoV-2 and HCoV-NL63 best transduced HEK293T/17 cells transfected with ACE2 and TMPRSS2, HCoV-229E and MERS-CoV preferentially entered HUH7 cells, and CHO cells were most permissive for the seasonal betacoronavirus HCoV-HKU1. Entry of ACE2 using pseudotypes was enhanced by ACE2 and TMPRSS2 expression in target cells, whilst TMPRSS2 transfection rendered HEK293T/17 cells permissive for HCoV-HKU1 and HCoV-OC43 entry. Additionally, pseudotype viruses were produced bearing additional coronavirus surface proteins, including the SARS-CoV-2 Envelope (E) and Membrane (M) proteins and HCoV-OC43/HCoV-HKU1 Haemagglutinin-Esterase (HE) proteins. This panel of lentiviral pseudotypes provides a safe, rapidly quantifiable and high-throughput tool for serological comparison of pan-coronavirus neutralizing responses; this can be used to elucidate antibody dynamics against individual coronaviruses and the effects of antibody cross-reactivity on clinical outcome following natural infection or vaccination.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , Coronavirus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Viral/blood , Broadly Neutralizing Antibodies/blood , Cell Line , Coronavirus 229E, Human/immunology , Coronavirus 229E, Human/physiology , Coronavirus NL63, Human/immunology , Coronavirus NL63, Human/physiology , Coronavirus OC43, Human/immunology , Coronavirus OC43, Human/physiology , Cross Reactions , Humans , Lentivirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/physiology , Neutralization Tests , Plasmids , SARS-CoV-2/physiology , Transfection , Virus Internalization
12.
Front Immunol ; 12: 694355, 2021.
Article in English | MEDLINE | ID: covidwho-1348489

ABSTRACT

Background: Severe Acute Respiratory Syndrome (SARS) corona virus (CoV) infections are a serious public health threat because of their pandemic-causing potential. This work is the first to analyze mRNA expression data from SARS infections through meta-analysis of gene signatures, possibly identifying therapeutic targets associated with major SARS infections. Methods: This work defines 37 gene signatures representing SARS-CoV, Middle East Respiratory Syndrome (MERS)-CoV, and SARS-CoV2 infections in human lung cultures and/or mouse lung cultures or samples and compares them through Gene Set Enrichment Analysis (GSEA). To do this, positive and negative infectious clone SARS (icSARS) gene panels are defined from GSEA-identified leading-edge genes between two icSARS-CoV derived signatures, both from human cultures. GSEA then is used to assess enrichment and identify leading-edge icSARS panel genes between icSARS gene panels and 27 other SARS-CoV gene signatures. The meta-analysis is expanded to include five MERS-CoV and three SARS-CoV2 gene signatures. Genes associated with SARS infection are predicted by examining the intersecting membership of GSEA-identified leading-edges across gene signatures. Results: Significant enrichment (GSEA p<0.001) is observed between two icSARS-CoV derived signatures, and those leading-edge genes defined the positive (233 genes) and negative (114 genes) icSARS panels. Non-random significant enrichment (null distribution p<0.001) is observed between icSARS panels and all verification icSARSvsmock signatures derived from human cultures, from which 51 over- and 22 under-expressed genes are shared across leading-edges with 10 over-expressed genes already associated with icSARS infection. For the icSARSvsmock mouse signature, significant, non-random significant enrichment held for only the positive icSARS panel, from which nine genes are shared with icSARS infection in human cultures. Considering other SARS strains, significant, non-random enrichment (p<0.05) is observed across signatures derived from other SARS strains for the positive icSARS panel. Five positive icSARS panel genes, CXCL10, OAS3, OASL, IFIT3, and XAF1, are found across mice and human signatures regardless of SARS strains. Conclusion: The GSEA-based meta-analysis approach used here identifies genes with and without reported associations with SARS-CoV infections, highlighting this approach's predictability and usefulness in identifying genes that have potential as therapeutic targets to preclude or overcome SARS infections.


Subject(s)
COVID-19/immunology , Gene Expression Regulation/immunology , Lung/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , SARS Virus/immunology , SARS-CoV-2/immunology , Severe Acute Respiratory Syndrome/immunology , Animals , Humans , Lung/virology , Mice
13.
Sci Rep ; 11(1): 15431, 2021 07 29.
Article in English | MEDLINE | ID: covidwho-1332853

ABSTRACT

Currently, no approved vaccine is available against the Middle East respiratory syndrome coronavirus (MERS-CoV), which causes severe respiratory disease. The spike glycoprotein is typically considered a suitable target for MERS-CoV vaccine candidates. A computational strategy can be used to design an antigenic vaccine against a pathogen. Therefore, we used immunoinformatics and computational approaches to design a multi-epitope vaccine that targets the spike glycoprotein of MERS-CoV. After using numerous immunoinformatics tools and applying several immune filters, a poly-epitope vaccine was constructed comprising cytotoxic T-cell lymphocyte (CTL)-, helper T-cell lymphocyte (HTL)-, and interferon-gamma (IFN-γ)-inducing epitopes. In addition, various physicochemical, allergenic, and antigenic profiles were evaluated to confirm the immunogenicity and safety of the vaccine. Molecular interactions, binding affinities, and the thermodynamic stability of the vaccine were examined through molecular docking and dynamic simulation approaches, during which we identified a stable and strong interaction with Toll-like receptors (TLRs). In silico immune simulations were performed to assess the immune-response triggering capabilities of the vaccine. This computational analysis suggested that the proposed vaccine candidate would be structurally stable and capable of generating an effective immune response to combat viral infections; however, experimental evaluations remain necessary to verify the exact safety and immunogenicity profile of this vaccine.


Subject(s)
Epitopes/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Vaccines/immunology , Computational Biology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Humans , Immunogenicity, Vaccine/immunology , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Models, Molecular , Molecular Docking Simulation , Phylogeny , Protein Binding , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Helper-Inducer/immunology , Vaccines/pharmacology , Vaccines, DNA , Vaccines, Subunit/immunology , Viral Vaccines/immunology
14.
Front Immunol ; 12: 688758, 2021.
Article in English | MEDLINE | ID: covidwho-1304592

ABSTRACT

Coronaviruses (CoVs) are a known global threat, and most recently the ongoing COVID-19 pandemic has claimed more than 2 million human lives. Delays and interference with IFN responses are closely associated with the severity of disease caused by CoV infection. As the most abundant viral protein in infected cells just after the entry step, the CoV nucleocapsid (N) protein likely plays a key role in IFN interruption. We have conducted a comprehensive comparative analysis and report herein that the N proteins of representative human and animal CoVs from four different genera [swine acute diarrhea syndrome CoV (SADS-CoV), porcine epidemic diarrhea virus (PEDV), severe acute respiratory syndrome CoV (SARS-CoV), SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), infectious bronchitis virus (IBV) and porcine deltacoronavirus (PDCoV)] suppress IFN responses by multiple strategies. In particular, we found that the N protein of SADS-CoV interacted with RIG-I independent of its RNA binding activity, mediating K27-, K48- and K63-linked ubiquitination of RIG-I and its subsequent proteasome-dependent degradation, thus inhibiting the host IFN response. These data provide insight into the interaction between CoVs and host, and offer new clues for the development of therapies against these important viruses.


Subject(s)
Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , DEAD Box Protein 58/metabolism , Interferons/antagonists & inhibitors , Interferons/immunology , Receptors, Immunologic/metabolism , Amino Acid Sequence/genetics , Animals , COVID-19/pathology , DEAD Box Protein 58/immunology , Deltacoronavirus/genetics , Deltacoronavirus/immunology , Humans , Infectious bronchitis virus/genetics , Infectious bronchitis virus/immunology , Interferon Regulatory Factor-3/metabolism , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Phosphorylation , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/immunology , Receptors, Immunologic/immunology , SARS Virus/genetics , SARS Virus/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Swine , Ubiquitination/physiology
15.
Methods Mol Biol ; 2099: 195-204, 2020.
Article in English | MEDLINE | ID: covidwho-1292553

ABSTRACT

Innate immune cells play a vital role in mounting an effective host response to a variety of pathogen challenges. Myeloid cells such as neutrophils and monocyte-macrophages are major innate leukocytes that orchestrate protective immunity to viral lung infections. However, a dysregulated cytokine response can promote excessive infiltration and robust pro-inflammatory activity of neutrophils and monocyte-macrophages, leading to fatal disease. Following virus infection, the beneficial or deleterious role of infiltrating neutrophils and monocyte-macrophages is determined largely by their ability to secrete inflammatory cytokines and chemokines. A majority of studies use the total number of infiltrating cells and their activation status as measures to demonstrate their role during an infection. Consequently, the ability of neutrophils and Inflammatory Monocyte Macrophages (IMMs) to secrete inflammatory cytokines and chemokines, and its correlation with the disease severity, is not well defined. In this chapter, we report useful markers to identify lung infiltrating innate immune cells and define their activation status. We also describe a simple method to measure intracellular cytokine production to evaluate the inflammatory activity of neutrophils and IMMs in a mouse model of human coronavirus infection.


Subject(s)
Chemokines/immunology , Coronavirus Infections/immunology , Cytokines/immunology , Inflammation/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Myeloid Cells/immunology , SARS Virus/immunology , Animals , Coronavirus Infections/virology , Disease Models, Animal , Humans , Immunity, Innate , Leukocytes/immunology , Lung/immunology , Macrophages/immunology , Mice , Mice, Inbred BALB C , Monocytes/immunology , Neutrophils/immunology
16.
Methods Mol Biol ; 2099: 107-116, 2020.
Article in English | MEDLINE | ID: covidwho-1292549

ABSTRACT

The microneutralization (MN) assay is a standard and important technique in virology, immunology, and epidemiology. It is a highly specific and sensitive assay for evaluating virus-specific neutralizing antibodies (nAbs) in human and animal sera. It provides the most precise answer to whether or not an individual or animal has antibodies that can neutralize or inhibit the infectivity of a specific virus strain. However, using live virus-based MN assay might require working under high containment facilities especially when dealing with high-risk pathogens such as the Middle East respiratory syndrome-coronavirus (MERS-CoV). In this chapter, we describe the isolation, amplification, and titration of MERS-CoV, as well as detailed MN assay to measure nAb levels in sera from different mammalian species.


Subject(s)
Antibodies, Neutralizing/blood , Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/immunology , Animals , Chlorocebus aethiops , Cytopathogenic Effect, Viral , Humans , Mammals , Neutralization Tests , Vero Cells
17.
Methods Mol Biol ; 2099: 89-97, 2020.
Article in English | MEDLINE | ID: covidwho-1292547

ABSTRACT

The Middle East respiratory syndrome (MERS) is the second novel zoonotic disease infecting humans caused by coronavirus (CoV) in this century. To date, more than 2200 laboratory-confirmed human cases have been identified in 27 countries, and more than 800 MERS-CoV associated deaths have been reported since its outbreak in 2012. Rapid laboratory diagnosis of MERS-CoV is the key to successful containment and prevention of the spread of infection. Though the gold standard for diagnosing MERS-CoV infection in humans is still nucleic acid amplification test (NAAT) of the up-E region, an antigen capture enzyme-linked immunosorbent assay (ELISA) could also be of use for early diagnosis in less developed locations. In the present method, a step-by-step guide to perform a MERS-CoV nucleocapsid protein (NP) capture ELISA using two NP-specific monoclonal antibodies is provided for readers to develop their in-house workflow or diagnostic kit for clinical use and for mass-screening project of animals (e.g., dromedaries and bats) to better understand the spread and evolution of the virus.


Subject(s)
Antigens, Viral/immunology , Coronavirus Infections/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Middle East Respiratory Syndrome Coronavirus/immunology , Nucleocapsid Proteins/immunology , Animals , Camelus/virology , Chiroptera/virology , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Humans , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Zoonoses
18.
Methods Mol Biol ; 2099: 53-68, 2020.
Article in English | MEDLINE | ID: covidwho-1292546

ABSTRACT

Over the past two decades, several coronavirus (CoV) infectious clones have been engineered, allowing for the manipulation of their large viral genomes (~30 kb) using unique reverse genetic systems. These reverse genetic systems include targeted recombination, in vitro ligation, vaccinia virus vectors, and bacterial artificial chromosomes (BACs). Quickly after the identification of Middle East respiratory syndrome-CoV (MERS-CoV), both in vitro ligation and BAC-based reverse genetic technologies were engineered for MERS-CoV to study its basic biological properties, develop live-attenuated vaccines, and test antiviral drugs. Here, I will describe how lambda red recombination can be used with the MERS-CoV BAC to quickly and efficiently introduce virtually any type of genetic modification (point mutations, insertions, deletions) into the MERS-CoV genome and recover recombinant virus.


Subject(s)
Bacteriophage lambda/genetics , Chromosomes, Artificial, Bacterial/genetics , Coronavirus Infections/virology , Genome, Viral/genetics , Middle East Respiratory Syndrome Coronavirus/genetics , Viral Vaccines/genetics , Coronavirus Infections/prevention & control , Deoxyribonuclease I/genetics , Deoxyribonuclease I/metabolism , Genetic Engineering , Homologous Recombination , Humans , Middle East Respiratory Syndrome Coronavirus/immunology , Mutation , Vaccines, Attenuated/genetics , Vaccinia virus/genetics
19.
Front Immunol ; 12: 688758, 2021.
Article in English | MEDLINE | ID: covidwho-1295641

ABSTRACT

Coronaviruses (CoVs) are a known global threat, and most recently the ongoing COVID-19 pandemic has claimed more than 2 million human lives. Delays and interference with IFN responses are closely associated with the severity of disease caused by CoV infection. As the most abundant viral protein in infected cells just after the entry step, the CoV nucleocapsid (N) protein likely plays a key role in IFN interruption. We have conducted a comprehensive comparative analysis and report herein that the N proteins of representative human and animal CoVs from four different genera [swine acute diarrhea syndrome CoV (SADS-CoV), porcine epidemic diarrhea virus (PEDV), severe acute respiratory syndrome CoV (SARS-CoV), SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), infectious bronchitis virus (IBV) and porcine deltacoronavirus (PDCoV)] suppress IFN responses by multiple strategies. In particular, we found that the N protein of SADS-CoV interacted with RIG-I independent of its RNA binding activity, mediating K27-, K48- and K63-linked ubiquitination of RIG-I and its subsequent proteasome-dependent degradation, thus inhibiting the host IFN response. These data provide insight into the interaction between CoVs and host, and offer new clues for the development of therapies against these important viruses.


Subject(s)
Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , DEAD Box Protein 58/metabolism , Interferons/antagonists & inhibitors , Interferons/immunology , Receptors, Immunologic/metabolism , Amino Acid Sequence/genetics , Animals , COVID-19/pathology , DEAD Box Protein 58/immunology , Deltacoronavirus/genetics , Deltacoronavirus/immunology , Humans , Infectious bronchitis virus/genetics , Infectious bronchitis virus/immunology , Interferon Regulatory Factor-3/metabolism , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Phosphorylation , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/immunology , Receptors, Immunologic/immunology , SARS Virus/genetics , SARS Virus/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Swine , Ubiquitination/physiology
20.
mBio ; 12(3): e0122921, 2021 06 29.
Article in English | MEDLINE | ID: covidwho-1286719

ABSTRACT

We sought to discover links between antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and patient clinical variables, cytokine profiles, and antibodies to endemic coronaviruses. Serum samples from 30 patients of younger (26 to 39 years) and older (69 to 83 years) age groups and with varying clinical severities ranging from outpatient to mechanically ventilated were collected and used to probe a novel multi-coronavirus protein microarray. This microarray contained variable-length overlapping fragments of SARS-CoV-2 spike (S), envelope (E), membrane (M), nucleocapsid (N), and open reading frame (ORF) proteins created through in vitro transcription and translation (IVTT). The array also contained SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), human coronavirus OC43 (HCoV-OC43), and HCoV-NL63 proteins. IgG antibody responses to specific epitopes within the S1 protein region spanning amino acids (aa) 500 to 650 and within the N protein region spanning aa 201 to 300 were found to be significantly higher in older patients and further significantly elevated in those older patients who were ventilated. Additionally, there was a noticeable overlap between antigenic regions and known mutation locations in selected emerging SARS-CoV-2 variants of current clinical consequence (B.1.1.7, B1.351, P.1, CAL20.C, and B.1.526). Moreover, the older age group displayed more consistent correlations of antibody reactivity with systemic cytokine and chemokine responses than the younger adult group. A subset of patients, however, had little or no response to SARS-CoV-2 antigens and disproportionately severe clinical outcomes. Further characterization of these slow-low-responding individuals with cytokine analysis revealed significantly higher interleukin-10 (IL-10), IL-15, and interferon gamma-induced protein 10 (IP-10) levels and lower epidermal growth factor (EGF) and soluble CD40 ligand (sCD40L) levels than those of seroreactive patients in the cohort. IMPORTANCE As numerous viral variants continue to emerge in the coronavirus disease 2019 (COVID-19) pandemic, determining antibody reactivity to SARS-CoV-2 epitopes becomes essential in discerning changes in the immune response to infection over time. This study enabled us to identify specific areas of antigenicity within the SARS-CoV-2 proteome, allowing us to detect correlations of epitopes with clinical metadata and immunological signals to gain holistic insight into SARS-CoV-2 infection. This work also emphasized the risk of mutation accumulation in viral variants and the potential for evasion of the adaptive immune responses in the event of reinfection. We additionally highlighted the correlation of antigenicity between structural proteins of SARS-CoV-2 and endemic HCoVs, raising the possibility of cross-protection between homologous lineages. Finally, we identified a subset of patients with minimal antibody reactivity to SARS-CoV-2 infection, prompting discussion of the potential consequences of this alternative immune response.


Subject(s)
Antibodies, Viral/blood , Coronavirus NL63, Human/immunology , Coronavirus OC43, Human/immunology , Cytokines/blood , Middle East Respiratory Syndrome Coronavirus/immunology , SARS-CoV-2/immunology , Adult , Age Factors , Aged , Aged, 80 and over , Antibodies, Viral/immunology , COVID-19/immunology , Coronavirus Envelope Proteins/immunology , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Immunoglobulin G/immunology , Male , Phosphoproteins/immunology , Protein Array Analysis , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...