Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add filters

Document Type
Year range
1.
Mol Cells ; 44(12): 861-878, 2021 Dec 31.
Article in English | MEDLINE | ID: covidwho-1592997

ABSTRACT

The human genome contains many retroviral elements called human endogenous retroviruses (HERVs), resulting from the integration of retroviruses throughout evolution. HERVs once were considered inactive junk because they are not replication-competent, primarily localized in the heterochromatin, and silenced by methylation. But HERVs are now clearly shown to actively regulate gene expression in various physiological and pathological conditions such as developmental processes, immune regulation, cancers, autoimmune diseases, and neurological disorders. Recent studies report that HERVs are activated in patients suffering from coronavirus disease 2019 (COVID-19), the current pandemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection. In this review, we describe internal and external factors that influence HERV activities. We also present evidence showing the gene regulatory activity of HERV LTRs (long terminal repeats) in model organisms such as mice, rats, zebrafish, and invertebrate models of worms and flies. Finally, we discuss several molecular and cellular pathways involving various transcription factors and receptors, through which HERVs affect downstream cellular and physiological events such as epigenetic modifications, calcium influx, protein phosphorylation, and cytokine release. Understanding how HERVs participate in various physiological and pathological processes will help develop a strategy to generate effective therapeutic approaches targeting HERVs.


Subject(s)
Autoimmune Diseases/genetics , Endogenous Retroviruses/genetics , Gene Expression Regulation , Models, Animal , Neoplasms/genetics , Terminal Repeat Sequences/genetics , Animals , Autoimmune Diseases/virology , COVID-19/genetics , COVID-19/virology , Humans , Neoplasms/virology , SARS-CoV-2/physiology
2.
Int J Dev Biol ; 65(7-8-9): 457-464, 2021.
Article in English | MEDLINE | ID: covidwho-1571997

ABSTRACT

The Spanish Society for Developmental Biology (SEBD) organized its 17th meeting in November 2020 (herein referred to as SEBD2020). This meeting, originally programmed to take place in the city of Bilbao, was forced onto an online format due to the SARS-CoV2, COVID-19 pandemic. Although, we missed the live personal interactions and missed out on the Bilbao social scene, we were able to meet online to present our work and discuss our latest results. An overview of the activities that took place around the meeting, the different scientific sessions and the speakers involved are presented here. The pros and cons of virtual meetings are discussed.


Subject(s)
Developmental Biology/methods , Developmental Biology/trends , Animals , Cell Biology/trends , Developmental Biology/education , Humans , Internet , Models, Animal , Nervous System , Peer Review , Publications , Publishing , Regeneration , Schools , Societies, Medical , Spain
3.
Elife ; 92020 06 08.
Article in English | MEDLINE | ID: covidwho-1497819

ABSTRACT

SARS-CoV-2 presents an unprecedented international challenge, but it will not be the last such threat. Here, we argue that the world needs to be much better prepared to rapidly detect, define and defeat future pandemics. We propose that a Global Immunological Observatory and associated developments in systems immunology, therapeutics and vaccine design should be at the heart of this enterprise.


Subject(s)
Communicable Disease Control/organization & administration , Communicable Diseases, Emerging/prevention & control , Coronavirus Infections/epidemiology , Disaster Planning/organization & administration , Global Health , International Cooperation , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Population Surveillance , Animals , Anti-Infective Agents , COVID-19 , Climate Change , Cohort Studies , Communicable Disease Control/methods , Communicable Diseases, Emerging/diagnosis , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/immunology , Drug Development , Forecasting , Global Health/trends , Humans , Interdisciplinary Communication , Mass Screening/organization & administration , Models, Animal , Population Surveillance/methods , Serologic Tests , Vaccines , Weather , Zoonoses
4.
Sci Rep ; 11(1): 21308, 2021 10 29.
Article in English | MEDLINE | ID: covidwho-1493219

ABSTRACT

The aim of this study was to present and evaluate novel oral vaccines, based on self-amplifying RNA lipid nanparticles (saRNA LNPs), saRNA transfected Lactobacillus plantarum LNPs, and saRNA transfected Lactobacillus plantarum, to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) variants alpha and delta. After invitro evaluation of the oral vaccines on HEK293T/17 cells, we found that saRNA LNPs, saRNA transfected Lactobacillus plantarum LNPs, and saRNA transfected Lactobacillus plantarum could express S-protein at both mRNA and protein levels. In the next step, BALB/c mice were orally vaccinated with saRNA LNPs, saRNA transfected Lactobacillus plantarum LNPs, and saRNA transfected Lactobacillus plantarum at weeks 1 and 3. Importantly, a high titer of IgG and IgA was observed by all of them, sharply in week 6 (P < 0.05). In all study groups, their ratio of IgG2a/IgG1 was upper 1, indicating Th1-biased responses. Wild-type viral neutralization assay showed that the secreted antibodies in vaccinated mice and recovered COVID-19 patients could neutralize SARS-COV-2 variants alpha and delta. After oral administration of oral vaccines, biodistribution assay was done. It was found that all of them had the same biodistribution pattern. The highest concentration of S-protein was seen in the small intestine, followed by the large intestine and liver.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Lactobacillus plantarum/genetics , Lipids/chemistry , Nanoparticles/chemistry , SARS-CoV-2/immunology , Transfection/methods , Vaccination/methods , Vaccines, Synthetic/administration & dosage , Administration, Oral , Adult , Animals , COVID-19/blood , COVID-19/virology , COVID-19 Vaccines/pharmacokinetics , Female , HEK293 Cells , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Intestine, Small/metabolism , Lactobacillus plantarum/metabolism , Male , Mice , Mice, Inbred BALB C , Middle Aged , Models, Animal , Neutralization Tests , RNA, Messenger/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Tissue Distribution
5.
PLoS One ; 16(10): e0258368, 2021.
Article in English | MEDLINE | ID: covidwho-1468173

ABSTRACT

Effective treatment of respiratory infections continues to be a major challenge. In high doses (≥160 ppm), inhaled Nitric Oxide (iNO) has been shown to act as a broad-spectrum antimicrobial agent, including its efficacy in vitro for coronavirus family. However, the safety of prolonged in vivo implementation of high-dose iNO therapy has not been studied. Herein we aim to explore the feasibility and safety of delivering continuous high-dose iNO over an extended period of time using an in vivo animal model. Yorkshire pigs were randomized to one of the following two groups: group 1, standard ventilation; and group 2, standard ventilation + continuous iNO 160 ppm + methylene blue (MB) as intravenous bolus, whenever required, to maintain metHb <6%. Both groups were ventilated continuously for 6 hours, then the animals were weaned from sedation, mechanical ventilation and followed for 3 days. During treatment, and on the third post-operative day, physiologic assessments were performed to monitor lung function and other significative markers were assessed for potential pulmonary or systemic injury. No significant change in lung function, or inflammatory markers were observed during the study period. Both gas exchange function, lung tissue cytokine analysis and histology were similar between treated and control animals. During treatment, levels of metHb were maintained <6% by administration of MB, and NO2 remained <5 ppm. Additionally, considering extrapulmonary effects, no significant changes were observed in biochemistry markers. Our findings showed that high-dose iNO delivered continuously over 6 hours with adjuvant MB is clinically feasible and safe. These findings support the development of investigations of continuous high-dose iNO treatment of respiratory tract infections, including SARS-CoV-2.


Subject(s)
Anti-Infective Agents/administration & dosage , Nitric Oxide/administration & dosage , Administration, Inhalation , Animals , Cytokines/analysis , Cytokines/blood , Drug Evaluation, Preclinical , Hemodynamics , Hemoglobin A/analysis , Lung/metabolism , Lung/pathology , Male , Methemoglobin/analysis , Methylene Blue/administration & dosage , Models, Animal , Nitrates/analysis , Nitrites/analysis , Swine
6.
J Invest Surg ; 33(1): 59-66, 2020 Jan.
Article in English | MEDLINE | ID: covidwho-1455005

ABSTRACT

Background: Bipolar sealing devices are routinely used to seal blood vessels. The aim of the study is to evaluate the feasibility and safety of colonic sealing with the use of the bipolar energy devices in rats as model for experimental appendectomy. Methods: Seventy-five male Wistar rats underwent a cecal resection with four different bipolar sealing devices or a linear stapler. The harvesting procedure was performed immediately or at postoperative day (POD) 7. The sealing front bursting pressure (BP) was measured in both groups. At POD7, the resection line was clinically examined and the hydroxyproline (HDP) levels were determined. Hematoxylin and Eosin (H&E) staining was used for histopathological evaluation of the sealing front as well. Results: There was no mortality and no insufficiency. The BPs between the bipolar sealing devices showed no statistical differences. The early phase of the seal (POD 0) provides a low BP with an 30.8% increase until POD 7. The BPs in the stapler group showed significant better values. The hydroxyproline levels did not differ statistically between the groups. Histopathologically, there were more signs of ischemic necrosis in the stapler group than in the sealing devices groups. Conclusion: The resection and sealing of the cecum as an experimental appendectomy model with the use of bipolar energy devices proved feasible and safe in rats. The different energy devices in this study produce comparable results. To justify clinical practice in humans, several studies on the underlying mechanisms of early stage wound healing are needed.


Subject(s)
Appendectomy/instrumentation , Cecum/surgery , Electrocoagulation/instrumentation , Hemostasis, Surgical/instrumentation , Wound Closure Techniques/instrumentation , Animals , Appendectomy/adverse effects , Appendectomy/methods , Electrocoagulation/methods , Feasibility Studies , Hemostasis, Surgical/adverse effects , Hemostasis, Surgical/methods , Male , Models, Animal , Rats , Rats, Wistar , Surgical Staplers/adverse effects , Wound Closure Techniques/adverse effects
8.
BMC Genomics ; 22(1): 662, 2021 Sep 14.
Article in English | MEDLINE | ID: covidwho-1430394

ABSTRACT

BACKGROUND: Deer mice (genus Peromyscus) are the most common rodents in North America. Despite the availability of reference genomes for some species, a comprehensive database of polymorphisms, especially in those maintained as living stocks and distributed to academic investigators, is missing. In the present study we surveyed two populations of P. maniculatus that are maintained at the Peromyscus Genetic Stock Center (PGSC) for polymorphisms across their 2.5 × 109 bp genome. RESULTS: High density of variation was identified, corresponding to one SNP every 55 bp for the high altitude stock (SM2) or 207 bp for the low altitude stock (BW) using snpEff (v4.3). Indels were detected every 1157 bp for BW or 311 bp for SM2. The average Watterson estimator for the BW and SM2 populations is 248813.70388 and 869071.7671 respectively. Some differences in the distribution of missense, nonsense and silent mutations were identified between the stocks, as well as polymorphisms in genes associated with inflammation (NFATC2), hypoxia (HIF1a) and cholesterol metabolism (INSIG1) and may possess value in modeling pathology. CONCLUSIONS: This genomic resource, in combination with the availability of P. maniculatus from the PGSC, is expected to promote genetic and genomic studies with this animal model.


Subject(s)
Altitude , Peromyscus , Animals , Genomics , Models, Animal , Peromyscus/genetics , Polymorphism, Genetic
9.
Biosci Rep ; 41(9)2021 09 30.
Article in English | MEDLINE | ID: covidwho-1406416

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global pandemic of the Coronavirus disease in late 2019 (COVID-19). Vaccine development efforts have predominantly been aimed at 'Extra-viral' Spike (S) protein as vaccine vehicles, but there are concerns regarding 'viral immune escape' since multiple mutations may enable the mutated virus strains to escape from immunity against S protein. The 'Intra-viral' Nucleocapsid (N-protein) is relatively conserved among mutant strains of coronaviruses during spread and evolution. Herein, we demonstrate novel vaccine candidates against SARS-CoV-2 by using the whole conserved N-protein or its fragment/peptides. Using ELISA assay, we showed that high titers of specific anti-N antibodies (IgG, IgG1, IgG2a, IgM) were maintained for a reasonably long duration (> 5 months), suggesting that N-protein is an excellent immunogen to stimulate host immune system and robust B-cell activation. We synthesized three peptides located at the conserved regions of N-protein among CoVs. One peptide showed as a good immunogen for vaccination as well. Cytokine arrays on post-vaccination mouse sera showed progressive up-regulation of various cytokines such as IFN-γ and CCL5, suggesting that TH1 associated responses are also stimulated. Furthermore, vaccinated mice exhibited an elevated memory T cells population. Here, we propose an unconventional vaccine strategy targeting the conserved N-protein as an alternative vaccine target for coronaviruses. Moreover, we generated a mouse monoclonal antibody specifically against an epitope shared between SARS-CoV and SARS-CoV-2, and we are currently developing the First-in-Class humanized anti-N-protein antibody to potentially treat patients infected by various CoVs in the future.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Coronavirus Nucleocapsid Proteins/immunology , Animals , Antibodies, Monoclonal, Murine-Derived , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Coronavirus Nucleocapsid Proteins/genetics , Epitopes/immunology , Humans , Immune Evasion , Immunogenicity, Vaccine , Mice , Models, Animal , Pandemics/prevention & control , SARS Virus/genetics , SARS Virus/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/immunology , Th1 Cells/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology
10.
Brief Bioinform ; 22(2): 1006-1022, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1387712

ABSTRACT

Interaction of SARS-CoV-2 spike glycoprotein with the ACE2 cell receptor is very crucial for virus attachment to human cells. Selected mutations in SARS-CoV-2 S-protein are reported to strengthen its binding affinity to mammalian ACE2. The N501T mutation in SARS-CoV-2-CTD furnishes better support to hotspot 353 in comparison with SARS-CoV and shows higher affinity for receptor binding. Recombination analysis exhibited higher recombination events in SARS-CoV-2 strains, irrespective of their geographical origin or hosts. Investigation further supports a common origin among SARS-CoV-2 and its predecessors, SARS-CoV and bat-SARS-like-CoV. The recombination events suggest a constant exchange of genetic material among the co-infecting viruses in possible reservoirs and human hosts before SARS-CoV-2 emerged. Furthermore, a comprehensive analysis of codon usage bias (CUB) in SARS-CoV-2 revealed significant CUB among the S-genes of different beta-coronaviruses governed majorly by natural selection and mutation pressure. Various indices of codon usage of S-genes helped in quantifying its adaptability in other animal hosts. These findings might help in identifying potential experimental animal models for investigating pathogenicity for drugs and vaccine development experiments.


Subject(s)
Biological Evolution , Codon Usage , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Humans , Models, Animal , Mutation , RNA, Transfer/genetics , Spike Glycoprotein, Coronavirus/metabolism
11.
Animal Model Exp Med ; 4(1): 1, 2021 03.
Article in English | MEDLINE | ID: covidwho-1377578
12.
Med Sci (Basel) ; 9(3)2021 07 30.
Article in English | MEDLINE | ID: covidwho-1335151

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a new pathogen agent causing the coronavirus infectious disease (COVID-19). This novel virus originated the most challenging pandemic in this century, causing economic and social upheaval internationally. The extreme infectiousness and high mortality rates incentivized the development of vaccines to control this pandemic to prevent further morbidity and mortality. This international scenario led academic scientists, industries, and governments to work and collaborate strongly to make a portfolio of vaccines available at an unprecedented pace. Indeed, the robust collaboration between public systems and private companies led to resolutive actions for accelerating therapeutic interventions and vaccines mechanism. These strategies contributed to rapidly identifying safe and effective vaccines as quickly and efficiently as possible. Preclinical research employed animal models to develop vaccines that induce protective and long-lived immune responses. A spectrum of vaccines is worldwide under investigation in various preclinical and clinical studies to develop both individual protection and safe development of population-level herd immunity. Companies employed and developed different technological approaches for vaccines production, including inactivated vaccines, live-attenuated, non-replicating viral vector vaccines, as well as acid nucleic-based vaccines. In this view, the present narrative review provides an overview of current vaccination strategies, taking into account both preclinical studies and clinical trials in humans. Furthermore, to better understand immunization, animal models on SARS-CoV-2 pathogenesis are also briefly discussed.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Pandemics/prevention & control , Animals , COVID-19 Vaccines/classification , Humans , Models, Animal , Randomized Controlled Trials as Topic , Vaccines, Attenuated , Vaccines, DNA
13.
Int J Biol Sci ; 17(8): 2080-2088, 2021.
Article in English | MEDLINE | ID: covidwho-1271049

ABSTRACT

Coronavirus disease 2019 (COVID-19), an infectious disease caused by Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed a persistent global threat. The transmission of SARS-CoV-2 is wide and swift. Rapid detection of the viral RNA and effective therapy are imperative to prevent the worldwide spread of the new infectious disease. Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR)- CRISPR-associated protein (Cas) system is an RNA-directed adaptive immune system, and it has been transformed into a gene editing tool. Applications of CRISPR-Cas system involves in many fields, such as human gene therapy, drug discovery and disease diagnosis. Under the background of COVID-19 pandemic, CRISPR-Cas system shows hidden capacity to fight the emergency in many aspects. This review will focus on the role of gene editing in COVID-19 diagnosis and treatment. We will describe the potential use of CRISPR-Cas-based system in combating COVID-19, from diagnosis to treatment. Furthermore, the limitation and perspectives of this novel technology are also evaluated.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , COVID-19/therapy , CRISPR-Cas Systems , Gene Editing/methods , Gene Expression Regulation, Viral/genetics , RNA, Viral/analysis , SARS-CoV-2/genetics , Animals , Fluorometry/methods , Forecasting , Gene Knockout Techniques , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions , Humans , Mice , Mice, Transgenic , Models, Animal , Molecular Targeted Therapy , Nasopharynx/virology , Oropharynx/virology , RNA, Viral/genetics , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
14.
Vaccine ; 39(30): 4108-4116, 2021 07 05.
Article in English | MEDLINE | ID: covidwho-1267950

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), initially originated in China in year 2019 and spread rapidly across the globe within 5 months, causing over 96 million cases of infection and over 2 million deaths. Huge efforts were undertaken to bring the COVID-19 vaccines in clinical development, so that it can be made available at the earliest, if found to be efficacious in the trials. We developed a candidate vaccine ZyCoV-D comprising of a DNA plasmid vector carrying the gene encoding the spike protein (S) of the SARS-CoV-2 virus. The S protein of the virus includes the receptor binding domain (RBD), responsible for binding to the human angiotensin converting enzyme (ACE-2) receptor. The DNA plasmid construct was transformed into E. coli cells for large scale production. The immunogenicity potential of the plasmid DNA has been evaluated in mice, guinea pig, and rabbit models by intradermal route at 25, 100 and 500 µg dose. Based on the animal studies proof-of-concept has been established and preclinical toxicology (PCT) studies were conducted in rat and rabbit model. Preliminary animal study demonstrates that the candidate DNA vaccine induces antibody response including neutralizing antibodies against SARS-CoV-2 and also elicited Th-1 response as evidenced by elevated IFN-γ levels.


Subject(s)
COVID-19 , Vaccines, DNA , Animals , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19 Vaccines , China , Escherichia coli , Guinea Pigs , Humans , Mice , Models, Animal , Rabbits , Rats , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
15.
Int J Biol Sci ; 17(8): 1925-1939, 2021.
Article in English | MEDLINE | ID: covidwho-1266906

ABSTRACT

Background: Angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) allow entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into host cells and play essential roles in cancer therapy. However, the functions of ACE2 and TMPRSS2 in kidney cancer remain unclear, especially as kidneys are targets for SARS-CoV-2 infection. Methods: UCSC Xena project, the Cancer Genome Atlas (TCGA), and Gene Expression Omnibus (GEO) databases (GSE30589 and GSE59185) were searched for gene expression in human tissues, gene expression data, and clinical information. Several bioinformatics methods were utilized to analyze the correlation between ACE2 and TMPRSS2 with respect to the prognosis of kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP). Results: ACE2 expression was significantly upregulated in tumor tissue, while its downregulation was associated with low survival in KIRC and KIRP patients. TMPRSS2 was downregulated in KIRC and KIRP, and its expression was not correlated with patient survival. According to clinical risk factor-based prediction models, ACE2 exhibits predictive accuracy for kidney cancer prognosis and is correlated with metabolism and immune infiltration. In an animal model, ACE2 expression was remarkably downregulated in SARS-CoV-2-infected cells compared to in the control. Conclusion: ACE2 expression is highly correlated with various metabolic pathways and is involved in immune infiltration.it plays a crucial role than TMPRSS2 in diagnosing and prognosis of kidney cancer patients. The overlap in ACE2 expression between kidney cancer and SARS-CoV-2 infection suggests that patients with KIRC or KIRP are at high risk of developing serious symptoms.


Subject(s)
Angiotensin-Converting Enzyme 2/biosynthesis , COVID-19/complications , Carcinoma, Renal Cell/complications , Kidney Neoplasms/complications , Receptors, Virus/biosynthesis , SARS-CoV-2 , Adult , Aged , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/physiology , Animals , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/mortality , Chlorocebus aethiops , Down-Regulation , Drug Resistance, Neoplasm , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Kaplan-Meier Estimate , Kidney Neoplasms/immunology , Kidney Neoplasms/metabolism , Kidney Neoplasms/mortality , Lymphocytes, Tumor-Infiltrating/immunology , Male , Middle Aged , Models, Animal , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Organ Specificity , Prognosis , Proportional Hazards Models , Receptors, Virus/genetics , Renin-Angiotensin System/physiology , Serine Endopeptidases/biosynthesis , Serine Endopeptidases/genetics , Serine Endopeptidases/physiology , Tissue Array Analysis , Vero Cells
16.
Per Med ; 18(4): 389-398, 2021 07.
Article in English | MEDLINE | ID: covidwho-1259310

ABSTRACT

Immunomodulatory and analgesic effects of dexamethasone are clinically well established, and this synthetic corticosteroid acts as an agonist of glucocorticoid receptors. Early results of the RECOVERY Trial from the United Kingdom and others suggest certain benefits of dexamethasone against COVID-19 chronic patients. The efforts have been acknowledged by World Health Organization with an interim guideline to use in patients with a severe and critical illness. The inherent genetic variations in genes such as CYP3A5, NR3C1, NR3C2, etc., involved in the pharmacokinetic and pharmacodynamic processes may influence dexamethasone's effects as an anti-inflammatory drug. Besides, the drug may influence transcriptome or metabolic changes in the individuals. In the present review, we summarize the reported genetic variations that impact dexamethasone response and discuss dexamethasone-induced changes in transcriptome and metabolome that may influence potential treatment outcome against COVID-19.


Lay abstract The surge of COVID-19 cases has increased the need for the development of a cure. This has pushed the barriers of the regulatory controls for randomized controlled trials. There has been the usage of immunomodulatory drugs, such as dexamethasone, with promising results in severe COVID-19 patients to reduce mortality. However, there is a need to consider the inherent genetic factors of an individual that may influence the dexamethasone drug's metabolism and action. To understand this, there is a need to evaluate the genes involved in the pharmacokinetics and pharmacodynamic pathways of the drug and study the effects of the drug. This will aid in choosing the right individuals who will benefit from the therapy. Hence, the present review summarized the reported genetic variations that impact dexamethasone drug response.


Subject(s)
COVID-19/drug therapy , COVID-19/genetics , Dexamethasone/pharmacology , Drug Repositioning , Glucocorticoids/therapeutic use , Pharmacogenetics , SARS-CoV-2 , Animals , Female , Gene Frequency , Genetic Variation , Humans , Male , Metabolome , Models, Animal , Pharmaceutical Preparations , Practice Guidelines as Topic , Transcriptome
17.
Br J Haematol ; 194(1): 44-52, 2021 07.
Article in English | MEDLINE | ID: covidwho-1247138

ABSTRACT

The inflammatory response to SARS/CoV-2 (COVID-19) infection may contribute to the risk of thromboembolic complications. α-Defensins, antimicrobial peptides released from activated neutrophils, are anti-fibrinolytic and prothrombotic in vitro and in mouse models. In this prospective study of 176 patients with COVID-19 infection, we found that plasma levels of α-defensins were elevated, tracked with disease progression/mortality or resolution and with plasma levels of interleukin-6 (IL-6) and D-dimers. Immunohistochemistry revealed intense deposition of α-defensins in lung vasculature and thrombi. IL-6 stimulated the release of α-defensins from neutrophils, thereby accelerating coagulation and inhibiting fibrinolysis in human blood, imitating the coagulation pattern in COVID-19 patients. The procoagulant effect of IL-6 was inhibited by colchicine, which blocks neutrophil degranulation. These studies describe a link between inflammation and the risk of thromboembolism, and they identify a potential new approach to mitigate this risk in patients with COVID-19 and potentially in other inflammatory prothrombotic conditions.


Subject(s)
COVID-19/metabolism , Inflammation/metabolism , Thromboembolism/prevention & control , alpha-Defensins/blood , Adult , Aged , Animals , Blood Coagulation/drug effects , COVID-19/complications , COVID-19/diagnosis , COVID-19/virology , Case-Control Studies , Colchicine/pharmacology , Female , Fibrin Fibrinogen Degradation Products/analysis , Humans , Inflammation/complications , Interleukin-6/blood , Interleukin-6/pharmacology , Male , Mice , Middle Aged , Models, Animal , Neutrophils/drug effects , Prospective Studies , Risk Factors , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Severity of Illness Index , Thromboembolism/etiology , Thrombosis/etiology , Thrombosis/metabolism , Tubulin Modulators/pharmacology , alpha-Defensins/pharmacology
18.
Chem Commun (Camb) ; 57(51): 6229-6232, 2021 Jun 24.
Article in English | MEDLINE | ID: covidwho-1246405

ABSTRACT

Tracking the viral progression of SARS-CoV-2 in COVID-19 infected body tissues is an emerging need of the current pandemic. Imaging at near infrared second biological window (NIR-II) offers striking benefits over the other technologies to explore deep-tissue information. Here we design, synthesise and characterise a molecular probe that selectively targets the N-gene of SARS-CoV-2. Highly specific antisense oligonucleotides (ASOs) were conjugated to lead sulfide quantum dots using a UV-triggered thiol-ene click chemistry for the recognition of viral RNA. Our ex vivo imaging studies demonstrated that the probe exhibits aggregation induced NIR-II emission only in presence of SARS-CoV-2 RNA which can be attributed to the efficient hybridisation of the ASOs with their target RNA strands.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , Fluorescent Dyes/chemistry , Oligonucleotides, Antisense/chemistry , Quantum Dots/chemistry , SARS-CoV-2/isolation & purification , Spectroscopy, Near-Infrared/methods , Animals , COVID-19/diagnostic imaging , COVID-19/metabolism , Click Chemistry/methods , Fluorescent Dyes/chemical synthesis , Humans , Lung/diagnostic imaging , Lung/metabolism , Lung/virology , Metal Nanoparticles/chemistry , Mice , Mice, Inbred BALB C , Models, Animal , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
19.
J Med Primatol ; 50(4): 225-227, 2021 08.
Article in English | MEDLINE | ID: covidwho-1243620

ABSTRACT

This report aims to analyze the experimental monkey shortage generated by the COVID-19 lockdown. The supply capability of the monkey breeding farms is insufficient to meet demand, and the sales prices have skyrocketed since 2018. The contradiction will be further aggravated with import prohibition although the countermeasures suggested.


Subject(s)
Breeding/statistics & numerical data , COVID-19 , Haplorhini , Models, Animal , Animals , China
20.
Commun Biol ; 4(1): 597, 2021 05 19.
Article in English | MEDLINE | ID: covidwho-1236095

ABSTRACT

The COVID-19 pandemic continues to wreak havoc as worldwide SARS-CoV-2 infection, hospitalization, and death rates climb unabated. Effective vaccines remain the most promising approach to counter SARS-CoV-2. Yet, while promising results are emerging from COVID-19 vaccine trials, the need for multiple doses and the challenges associated with the widespread distribution and administration of vaccines remain concerns. Here, we engineered the coat protein of the MS2 bacteriophage and generated nanoparticles displaying multiple copies of the SARS-CoV-2 spike (S) protein. The use of these nanoparticles as vaccines generated high neutralizing antibody titers and protected Syrian hamsters from a challenge with SARS-CoV-2 after a single immunization with no infectious virus detected in the lungs. This nanoparticle-based vaccine platform thus provides protection after a single immunization and may be broadly applicable for protecting against SARS-CoV-2 and future pathogens with pandemic potential.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , Pandemics , SARS-CoV-2 , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Drug Delivery Systems , Female , Humans , Immunization/methods , Levivirus/genetics , Levivirus/immunology , Mesocricetus , Microscopy, Electron, Transmission , Models, Animal , Nanoparticles/administration & dosage , Nanoparticles/ultrastructure , Nanotechnology , Pandemics/prevention & control , Protein Engineering , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/administration & dosage , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Combined/administration & dosage , Vaccines, Combined/genetics , Vaccines, Combined/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...