ABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) uses Angiotensin- converting enzyme 2 (ACE2) receptors to infect host cells which may lead to coronavirus disease (COVID-19). Given the presence of ACE2 receptors in the brain and the critical role of the renin-angiotensin system (RAS) in brain functions, special attention to brain microcirculation and neuronal inflammation is warranted during COVID-19 treatment. Neurological complications reported among COVID-19 patients range from mild dizziness, headache, hypogeusia, hyposmia to severe like encephalopathy, stroke, Guillain-Barre Syndrome (GBS), CNS demyelination, infarcts, microhemorrhages and nerve root enhancement. The pathophysiology of these complications is likely via direct viral infection of the CNS and PNS tissue or through indirect effects including post- viral autoimmune response, neurological consequences of sepsis, hyperpyrexia, hypoxia and hypercoagulability among critically ill COVID-19 patients. Further, decreased deformability of red blood cells (RBC) may be contributing to inflammatory conditions and hypoxia in COVID-19 patients. Haptoglobin, hemopexin, heme oxygenase-1 and acetaminophen may be used to maintain the integrity of the RBC membrane.
Subject(s)
Brain/physiopathology , COVID-19/physiopathology , Erythrocytes/pathology , Hemolysis , Nervous System Diseases/physiopathology , Brain/blood supply , COVID-19/complications , Erythrocytes/drug effects , Hemolysis/drug effects , Humans , Models, Neurological , Molecular Targeted Therapy/methods , Nervous System Diseases/complications , Nervous System Diseases/drug therapy , Pandemics , SARS-CoV-2ABSTRACT
COVID-19 is a pandemic viral infection caused by a novel coronavirus, SARS-CoV2, which is a global concern of the twenty-first century for its rapid spreading in a short period. Apart from its known acute respiratory involvements, the CNS manifestations of COVID-19 are common. These neurological symptoms are diverse and could range from mild nonspecific or specific symptoms such as the loss of various sensory perceptions, the worrying autoimmune Guillain-Barré syndrome, to the life-threatening acute disseminated encephalomyelitis, and the CNS-mediated respiratory distress. An autopsy report documented the presence of SARS-CoV2 in brain tissues of a COVID-19 patient. However, there is no definite conclusion on the mechanisms of SARS-CoV2 neuroinvasion. These proposed mechanisms include the direct viral invasion, the systemic blood circulation, or the distribution of infected immune cells. Concerning these different neuropathophysiologies, COVID-19 patients who are presenting with either the early-onset, multiple, and severe CNS symptoms or rapid respiratory deterioration should be suspected for the direct viral neuroinvasion, and appropriate management options should be considered. This article reviews the neurological manifestations, the proposed neuroinvasive mechanisms, and the potential neurological sequelae of SARS-CoV2.
Subject(s)
COVID-19/complications , Nervous System Diseases/etiology , Pandemics , SARS-CoV-2/pathogenicity , Animals , Brain/virology , Brain Ischemia/epidemiology , Brain Ischemia/etiology , COVID-19/epidemiology , Delirium/epidemiology , Delirium/etiology , Encephalitis, Viral/epidemiology , Encephalitis, Viral/etiology , Ethmoid Bone/virology , Guillain-Barre Syndrome/epidemiology , Guillain-Barre Syndrome/etiology , Humans , Mice , Mice, Transgenic , Models, Neurological , Nervous System Diseases/epidemiology , Nervous System Diseases/virology , Olfactory Bulb/virology , Organ Specificity , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/physiopathology , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiologyABSTRACT
SARS-CoV-2 neurotropism has been increasingly recognized by its imaging and syndromic manifestations in the literature. The purpose of this report is to explore the limited yet salient current evidence that SARS-CoV-2's host genomic targets PTBP1 and the 14-3-3 protein isoform encoding genes YWHAE and YWHAZ may be hold the key to understanding how neurotropism triggers neurodegeneration and how it may contribute to the onset of neurodegenerative disease. Considering that PTBP1 silencing in particular has recently been shown to reverse clinical parkinsonism and induce neurogenesis, as well as the known interactions of PTBP1 and YWHAE/Z with coronaviruses - most notably 14-3-3 and SARS-CoV, recent studies reinvigorate the infectious etiology hypotheses on major neurodegenerative disease such as AD and iPD. Considering that human coronaviruses with definite neurotropism have been shown to achieve long-term latency within the mammalian CNS as a result of specific accommodating mutations, the corroboration of genomic-level evidence with neuroimaging has vast potential implications for neurodegenerative disease.
Subject(s)
14-3-3 Proteins/genetics , COVID-19/complications , COVID-19/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/genetics , Polypyrimidine Tract-Binding Protein/genetics , COVID-19/virology , Gene Expression Regulation , Host Microbial Interactions/genetics , Humans , Models, Neurological , Nerve Degeneration/etiology , Nerve Degeneration/genetics , Pandemics , SARS-CoV-2/pathogenicityABSTRACT
The global pandemic of novel coronavirus disease 2019 (COVID-19) has taken the entire human race by surprise and led to an unprecedented number of mortalities worldwide so far. Current clinical studies have interpreted that angiotensin-converting enzyme 2 (ACE2) is the host receptor for severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). In addition, ACE2 is the major component of the renin-angiotensin system. ACE2 deteriorates angiotensin II, a peptide that is responsible for the promotion of stroke. The downregulation of ACE2 further activates an immunological cascade. Thus, researchers need to explore and examine the possible links between COVID-19 and ischemic stroke (IS). Human ACE2 expression level and pattern in various tissues might be decisive for the vulnerability, symptoms, and treatment outcomes of the SARS-CoV-2 infection. The swift increase in the knowledge of SARS-CoV-2 has given creditable evidence that SARS-CoV-2 infected patients also encounter neurological deficits. As the SARS-CoV-2 binds to ACE2, it will hamper the activity of ACE2 in providing neuroprotection, especially in the case of stroke patients. Due to the downregulation of ACE2, the inflammatory response is activated in the ischemic penumbra. The COVID-19 pandemic has affected people with various pre-existing diseases, including IS, in such a way that these patients need special care and attention for their survival. Several clinical trials are currently ongoing worldwide as well as many other projects are in different stages of conceptualization and planning to facilitate the effective management of stroke patients with COVID-19 infection.
Subject(s)
Betacoronavirus , Brain Ischemia/etiology , Coronavirus Infections/physiopathology , Pandemics , Pneumonia, Viral/physiopathology , Renin-Angiotensin System/physiology , Stroke/etiology , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , Blood-Brain Barrier , Brain Ischemia/epidemiology , Brain Ischemia/immunology , Brain Ischemia/physiopathology , COVID-19 , Chemotaxis, Leukocyte , Comorbidity , Coronavirus Infections/complications , Coronavirus Infections/epidemiology , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/physiopathology , Cytokines/physiology , Encephalitis, Viral/complications , Encephalitis, Viral/physiopathology , Hemodynamics , Humans , Inflammation , Models, Immunological , Models, Neurological , Multiple Organ Failure/etiology , Multiple Organ Failure/physiopathology , Nervous System Diseases/epidemiology , Nervous System Diseases/etiology , Peptidyl-Dipeptidase A/physiology , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , Receptors, Virus/physiology , Risk , SARS-CoV-2 , Stroke/epidemiology , Stroke/immunology , Stroke/physiopathologyABSTRACT
Since the outbreak of Coronavirus Disease 2019 (COVID-19), loss of smell has increasingly been reported as a frequent clinical sign. Understanding the underlying mechanism and the prognostic value of this symptom will help better manage patients. SARS-CoV-2, as SARS-CoV-1, may likely spread to the central nervous system (CNS) via the olfactory nerve, a known gateway for respiratory neurotropic viruses. We hypothesise that sudden loss of smell due to COVID-19 is the consequence of a protective host defence mechanism involving apoptosis of olfactory receptor neurons. Sacrificing smelling over neuroprotection is a logical strategy, even more so as olfaction is the only sense with the ability to regenerate in adults. Induced apoptosis of olfactory neurons has been shown in mice, successfully preventing neuroinvasion. On the other hand, adult olfactory neurogenesis has been shown to be regulated in part by the immune system, allowing to restore olfactory function. Understanding anosmia as part of a defence mechanism would support the concept of sudden anosmia as being a positive prognostic factor in the short term. Also, it may orient research to investigate the risk of future neurodegenerative disease linked to persisting coronavirus in neurons.
Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Olfaction Disorders/etiology , Pandemics , Pneumonia, Viral/complications , Animals , Apoptosis , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Humans , Mice , Models, Immunological , Models, Neurological , Olfaction Disorders/immunology , Olfaction Disorders/physiopathology , Olfactory Receptor Neurons/pathology , Olfactory Receptor Neurons/physiology , Phenotype , Pneumonia, Viral/immunology , Pneumonia, Viral/physiopathology , Prognosis , SARS-CoV-2ABSTRACT
INTRODUCTION: SARS-CoV-2 was first detected in December 2019 in the Chinese city of Wuhan and has since spread across the world. At present, the virus has infected over 1.7 million people and caused over 100 000 deaths worldwide. Research is currently focused on understanding the acute infection and developing effective treatment strategies. In view of the magnitude of the epidemic, we conducted a speculative review of possible medium- and long-term neurological consequences of SARS-CoV-2 infection, with particular emphasis on neurodegenerative and neuropsychiatric diseases of neuroinflammatory origin, based on the available evidence on neurological symptoms of acute SARS-CoV-2 infection. DEVELOPMENT: We systematically reviewed the available evidence about the pathogenic mechanisms of SARS-CoV-2 infection, the immediate and lasting effects of the cytokine storm on the central nervous system, and the consequences of neuroinflammation for the central nervous system. CONCLUSIONS: SARS-CoV-2 is a neuroinvasive virus capable of triggering a cytokine storm, with persistent effects in specific populations. Although our hypothesis is highly speculative, the impact of SARS-CoV-2 infection on the onset and progression of neurodegenerative and neuropsychiatric diseases of neuroinflammatory origin should be regarded as the potential cause of a delayed pandemic that may have a major public health impact in the medium to long term. Cognitive and neuropsychological function should be closely monitored in COVID-19 survivors.