Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 324
Filter
1.
Parasitol Res ; 121(7): 1867-1885, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-2174153

ABSTRACT

Malaria control measures have been in use for years but have not completely curbed the spread of infection. Ultimately, global elimination is the goal. A major playmaker in the various approaches to reaching the goal is the issue of proper diagnosis. Various diagnostic techniques were adopted in different regions and geographical locations over the decades, and these have invariably produced diverse outcomes. In this review, we looked at the various approaches used in malaria diagnostics with a focus on methods favorably used during pre-elimination and elimination phases as well as in endemic regions. Microscopy, rapid diagnostic testing (RDT), loop-mediated isothermal amplification (LAMP), and polymerase chain reaction (PCR) are common methods applied depending on prevailing factors, each with its strengths and limitations. As the drive toward the elimination goal intensifies, the search for ideal, simple, fast, and reliable point-of-care diagnostic tools is needed more than ever before to be used in conjunction with a functional surveillance system supported by the ideal vaccine.


Subject(s)
Malaria, Falciparum , Malaria , Diagnostic Tests, Routine/methods , Goals , Humans , Malaria/diagnosis , Malaria/prevention & control , Malaria, Falciparum/epidemiology , Microscopy/methods , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Polymerase Chain Reaction/methods , Sensitivity and Specificity
2.
Biosensors (Basel) ; 12(11)2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2109935

ABSTRACT

Worldwide infection due to SARS-CoV-2 revealed that short-time and extremely high-sensitivity detection of nucleic acids is a crucial technique for human beings. Polymerase chain reactions have been mainly used for the SARS-CoV-2 detection over the years. However, an advancement in quantification of the detection and shortening runtime is important for present and future use. Here, we report a rapid detection scheme that is a combination of nucleic acid amplification and a highly efficient fluorescence biosensor, that is, a metasurface biosensor composed of a pair of an all-dielectric metasurface and a microfluidic transparent chip. In the present scheme, we show a series of proof-of-concept experimental results that the metasurface biosensors detected amplicons originating from attomolar SARS-CoV-2 nucleic acids and that the amplification was implemented within 1 h. Furthermore, this detection capability substantially satisfies an official requirement of 100 RNA copies/140 µL, which is a criterion for the reliable infection tests.


Subject(s)
Biosensing Techniques , COVID-19 , Nucleic Acids , Humans , SARS-CoV-2 , COVID-19/diagnosis , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods , Molecular Diagnostic Techniques/methods
3.
PLoS One ; 17(11): e0276729, 2022.
Article in English | MEDLINE | ID: covidwho-2109325

ABSTRACT

Combining diagnostic specimens into pools has been considered as a strategy to augment throughput, decrease turnaround time, and leverage resources. This study utilized a multi-parametric approach to assess optimum pool size, impact of automation, and effect of nucleic acid amplification chemistries on the detection of SARS-CoV-2 RNA in pooled samples for surveillance testing on the Hologic Panther Fusion® System. Dorfman pooled testing was conducted with previously tested SARS-CoV-2 nasopharyngeal samples using Hologic's Aptima® and Panther Fusion® SARS-CoV-2 Emergency Use Authorization assays. A manual workflow was used to generate pool sizes of 5:1 (five samples: one positive, four negative) and 10:1. An automated workflow was used to generate pool sizes of 3:1, 4:1, 5:1, 8:1 and 10:1. The impact of pool size, pooling method, and assay chemistry on sensitivity, specificity, and lower limit of detection (LLOD) was evaluated. Both the Hologic Aptima® and Panther Fusion® SARS-CoV-2 assays demonstrated >85% positive percent agreement between neat testing and pool sizes ≤5:1, satisfying FDA recommendation. Discordant results between neat and pooled testing were more frequent for positive samples with CT>35. Fusion® CT (cycle threshold) values for pooled samples increased as expected for pool sizes of 5:1 (CT increase of 1.92-2.41) and 10:1 (CT increase of 3.03-3.29). The Fusion® assay demonstrated lower LLOD than the Aptima® assay for pooled testing (956 vs 1503 cp/mL, pool size of 5:1). Lowering the cut-off threshold of the Aptima® assay from 560 kRLU (manufacturer's setting) to 350 kRLU improved the assay sensitivity to that of the Fusion® assay for pooled testing. Both Hologic's SARS-CoV-2 assays met the FDA recommended guidelines for percent positive agreement (>85%) for pool sizes ≤5:1. Automated pooling increased test throughput and enabled automated sample tracking while requiring less labor. The Fusion® SARS-CoV-2 assay, which demonstrated a lower LLOD, may be more appropriate for surveillance testing.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Automation , Sensitivity and Specificity
4.
Nature ; 611(7936): 570-577, 2022 11.
Article in English | MEDLINE | ID: covidwho-2106425

ABSTRACT

Expanding our global testing capacity is critical to preventing and containing pandemics1-9. Accordingly, accessible and adaptable automated platforms that in decentralized settings perform nucleic acid amplification tests resource-efficiently are required10-14. Pooled testing can be extremely efficient if the pooling strategy is based on local viral prevalence15-20; however, it requires automation, small sample volume handling and feedback not available in current bulky, capital-intensive liquid handling technologies21-29. Here we use a swarm of millimetre-sized magnets as mobile robotic agents ('ferrobots') for precise and robust handling of magnetized sample droplets and high-fidelity delivery of flexible workflows based on nucleic acid amplification tests to overcome these limitations. Within a palm-sized printed circuit board-based programmable platform, we demonstrated the myriad of laboratory-equivalent operations involved in pooled testing. These operations were guided by an introduced square matrix pooled testing algorithm to identify the samples from infected patients, while maximizing the testing efficiency. We applied this automated technology for the loop-mediated isothermal amplification and detection of the SARS-CoV-2 virus in clinical samples, in which the test results completely matched those obtained off-chip. This technology is easily manufacturable and distributable, and its adoption for viral testing could lead to a 10-300-fold reduction in reagent costs (depending on the viral prevalence) and three orders of magnitude reduction in instrumentation cost. Therefore, it is a promising solution to expand our testing capacity for pandemic preparedness and to reimagine the automated clinical laboratory of the future.


Subject(s)
Automation , COVID-19 Testing , Magnets , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Robotics , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19/virology , COVID-19 Testing/methods , Molecular Diagnostic Techniques/economics , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/economics , Nucleic Acid Amplification Techniques/methods , Pandemics/prevention & control , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Algorithms , Automation/economics , Automation/methods , Robotics/methods , Indicators and Reagents/economics
5.
Biotechniques ; 73(5): 247-255, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2098927

ABSTRACT

Loop-mediated isothermal amplification (LAMP) has proven a robust and reliable nucleic acid amplification method that is well suited for simplified and rapid molecular diagnostics. Various approaches have emerged for sequence-specific detection of LAMP products, but with limitations to their widespread utility or applicability for single-nucleotide polymorphism detection and multiplexing. Here we demonstrate the use of simple hybridization probes (as used for qPCR) that enable simple multiplexing and SARS-CoV-2 variant typing in reverse-transcription LAMP. This approach requires no modification to the LAMP primers and is amenable to the detection of single-nucleotide polymorphisms and small sequence changes, which is usually difficult in LAMP. By extending LAMP's ability to be utilized for multitarget and single-base change detection, we hope to increase its potential to enable more and better molecular diagnostic testing.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods , Molecular Diagnostic Techniques/methods , RNA, Viral
6.
Int J Mol Sci ; 23(21)2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2090209

ABSTRACT

Consistently emerging variants and the life-threatening consequences of SARS-CoV-2 have prompted worldwide concern about human health, necessitating rapid and accurate point-of-care diagnostics to limit the spread of COVID-19. Still, However, the availability of such diagnostics for COVID-19 remains a major rate-limiting factor in containing the outbreaks. Apart from the conventional reverse transcription polymerase chain reaction, loop-mediated isothermal amplification-based (LAMP) assays have emerged as rapid and efficient systems to detect COVID-19. The present study aims to develop RT-LAMP-based assay system for detecting multiple targets in N, ORF1ab, E, and S genes of the SARS-CoV-2 genome, where the end-products were quantified using spectrophotometry, paper-based lateral-flow devices, and electrochemical sensors. The spectrophotometric method shows a LOD of 10 agµL-1 for N, ORF1ab, E genes and 100 agµL-1 for S gene in SARS-CoV-2. The developed lateral-flow devices showed an LOD of 10 agµL-1 for all four gene targets in SARS-CoV-2. An electrochemical sensor developed for N-gene showed an LOD and E-strip sensitivity of log 1.79 ± 0.427 pgµL-1 and log 0.067 µA/pg µL-1/mm2, respectively. The developed assay systems were validated with the clinical samples from COVID-19 outbreaks in 2020 and 2021. This multigene target approach can effectively detect emerging COVID-19 variants using combination of various analytical techniques at testing facilities and in point-of-care settings.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods , Molecular Diagnostic Techniques/methods , RNA, Viral/genetics
7.
Trends Biotechnol ; 40(11): 1326-1345, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2061924

ABSTRACT

An ideal molecular diagnostic method should be sensitive, specific, low cost, rapid, portable, and easy to operate. Traditional nucleic acid detection methods based mainly on PCR technology have not only high sensitivity and specificity, but also some limitations, such as the need for expensive equipment and skilled technicians, being both time and labor intensive, and difficult to implement in some regions. However, with the continuous development of CRISPR-Cas technology and its application in molecular diagnosis, new approaches have been used for the construction of molecular diagnostic systems. In this review, we discuss recent advances in CRISPR-based molecular diagnostic technologies and highlight the revolution they bring to the field of molecular diagnostics.


Subject(s)
Gene Editing , Nucleic Acids , CRISPR-Cas Systems , Gene Editing/methods , Molecular Diagnostic Techniques/methods
8.
Microbiol Spectr ; 10(5): e0239822, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2053141

ABSTRACT

At the end of 2019, a new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), caused a pandemic that persists to date and has resulted in more than 6.2 million deaths. In the last couple of years, researchers have made great efforts to develop a diagnostic technique that maintains high levels of sensitivity and specificity, since an accurate and early diagnosis is required to minimize the prevalence of SARS-CoV-2 infection. In this context, CRISPR-Cas systems are proposed as promising tools for development as diagnostic techniques due to their high specificity, highlighting that Cas13 endonuclease discriminates single nucleotide changes and displays collateral activity against single-stranded RNA molecules. With the aim of improving the sensitivity of diagnosis, this technology is usually combined with isothermal preamplification reactions (SHERLOCK, DETECTR). Based on this, we developed a reverse transcription-loop-mediated isothermal amplification (RT-LAMP)-CRISPR-Cas13a method for SARS-CoV-2 virus detection in nasopharyngeal samples without using RNA extraction that exhibits 100% specificity and 83% sensitivity, as well as a positive predictive value (PPV) of 100% and negative predictive values (NPVs) of 100%, 81%, 79.1%, and 66.7% for cycle threshold (CT) values of <20, 20 to 30, >30 and overall, respectively. IMPORTANCE The coronavirus disease 2019 (COVID-19) crisis has driven the development of innovative molecular diagnosis methods, including CRISPR-Cas technology. In this work, we performed a protocol, working with RNA extraction kit-free samples and using RT-LAMP-CRISPR-Cas13a technology; our results place this method at the forefront of rapid and specific diagnostic methods for COVID-19 due to the high specificity (100%), sensitivity (83%), PPVs (100%), and NPVs (81% for high viral loads) obtained with clinical samples.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques/methods , Molecular Diagnostic Techniques/methods , CRISPR-Cas Systems , Technology , Endonucleases , RNA , Nucleotides
9.
PLoS One ; 17(9): e0273912, 2022.
Article in English | MEDLINE | ID: covidwho-2009711

ABSTRACT

PURPOSE: To demonstrate the diagnostic performance of rapid SARS-CoV-2 RT-LAMP assays, comparing the performance of genomic versus sub-genomic sequence target with subsequent application in an asymptomatic screening population. METHODS: RT-LAMP diagnostic specificity (DSe) and sensitivity (DSe) was determined using 114 RT-PCR clinically positive and 88 RT-PCR clinically negative swab samples processed through the diagnostic RT-PCR service within the University Hospitals of Leicester NHS Trust. A swab-based RT-LAMP SARS-CoV-2 screening programme was subsequently made available to all staff and students at the University of Leicester (Autumn 2020), implemented to ISO 15189:2012 standards using NHS IT infrastructure and supported by University Hospital Leicester via confirmatory NHS diagnostic laboratory testing of RT-LAMP 'positive' samples. RESULTS: Validation samples reporting a Ct < 20 were detected at 100% DSe and DSp, reducing to 95% DSe (100% DSp) for all samples reporting a Ct < 30 (both genomic dual sub-genomic assays). Advisory screening identified nine positive cases in 1680 symptom free individuals (equivalent to 540 cases per 100,000) with results reported back to participants and feed into national statistics within 48 hours. CONCLUSION: This work demonstrates the utility of a rapid RT-LAMP assay for collapsing transmission of SARS-CoV-2 in an asymptomatic screening population.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
10.
J Clin Virol ; 156: 105274, 2022 11.
Article in English | MEDLINE | ID: covidwho-2004205

ABSTRACT

BACKGROUND: Acute viral respiratory infections are a major health burden in children worldwide. In recent years, rapid and sensitive multiplex nucleic acid amplification tests (NAATs) have replaced conventional methods for routine virus detection in the clinical laboratory. OBJECTIVE/STUDY DESIGN: We compared BioFire® FilmArray® Respiratory Panel (FilmArray V1.7), Luminex NxTag® Respiratory Pathogen Panel (NxTag RPP) and Applied Biosystems TaqMan Array Card (TAC) for the detection of eight viruses in pediatric respiratory specimens. Results from the three platforms were analyzed with a single-plex real-time RT-PCR (rRT-PCR) assay for each virus. RESULTS: Of the 170/210 single-plex virus-positive samples, FilmArray detected a virus in 166 (97.6%), TAC in 163 (95.8%) and NxTag RPP in 160 (94.1%) samples. The Positive Percent Agreement (PPA) of FilmArray, NxTag RPP and TAC was highest for influenza B (100%, 100% and 95.2% respectively) and lowest for seasonal coronaviruses on both FilmArray (90.2%) and NxTag RPP (81.8%), and for parainfluenza viruses 1- 4 on TAC (84%). The Negative Percent Agreement (NPA) was lowest for rhinovirus/enterovirus (92.9%, 96.7% and 97.3%) on FilmArray, NxTag RPP and TAC respectively. NPA for all three platforms was highest (100%) for both parainfluenza viruses 1- 4 and influenza A and B, and 100% for human metapneumovirus with TAC as well. CONCLUSION: All three multiplex platforms displayed high overall agreement (>90%) and high NPA (>90%), while PPA was pathogen dependent and varied among platforms; high PPA (>90%) was observed for FilmArray for all eight viruses, TAC for six viruses and NxTag RPP for 4 viruses.


Subject(s)
Molecular Diagnostic Techniques , Respiratory Tract Infections , Virus Diseases , Child , Coronavirus , Humans , Influenza, Human , Molecular Diagnostic Techniques/methods , Multiplex Polymerase Chain Reaction/methods , Paramyxoviridae Infections , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , Virus Diseases/diagnosis
11.
Int J Infect Dis ; 123: 1-8, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2000451

ABSTRACT

OBJECTIVES: The performance of a new point-of-care CE-IVD-marked isothermal lab-on-phone COVID-19 assay was assessed in comparison to a gold standard real-time reverse transcriptase-PCR method. METHODS: The study was conducted following a nonprobability sampling of ≥16-year-old volunteers from three different laboratories, using direct mouthwash (N = 24) or nasopharyngeal (N = 191) clinical samples. RESULTS: The assay demonstrated 95.19% sensitivity and 100% specificity for detection of SARS-CoV-2 in direct nasopharyngeal crude samples and 78.95% sensitivity and 100% specificity in direct mouthwash crude samples. It also successfully detected currently predominant SARS-CoV-2 variants of concern (Beta B.1.351, Delta B.1.617.2, and Omicron B.1.1.529) and demonstrated to be inert against potential cross-reactions of other common respiratory pathogens that cause infections that present similar symptoms to COVID-19. CONCLUSION: This lab-on-phone pocket-sized assay relies on an isothermal amplification of SARS-CoV-2's N and E genes, taking just 50 minutes from sample to result, with only 2 minutes of hands-on time. It presents good performance when using direct nasopharyngeal crude samples, enabling a low-cost, real-time, rapid, and accurate identification of SARS-CoV-2 infections at the point of care, which is important for both clinical management and population screening, as a tool to break the chain of transmission of COVID-19 pandemic, especially in low-resources environments.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , COVID-19/diagnosis , COVID-19 Testing , Humans , Laboratories , Molecular Diagnostic Techniques/methods , Mouthwashes , Nucleic Acid Amplification Techniques/methods , Pandemics , RNA, Viral/analysis , RNA, Viral/genetics , RNA-Directed DNA Polymerase/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
12.
BMC Infect Dis ; 22(1): 697, 2022 Aug 18.
Article in English | MEDLINE | ID: covidwho-1993335

ABSTRACT

BACKGROUND: High cost of commercial RNA extraction kits limits the testing efficiency of SARS-CoV-2. Here, we developed a simple nucleic acid extraction method for the detection of SARS-CoV-2 directly from nasopharyngeal swab samples. METHODS: A pH sensitive dye was used as the end point detection method. The obvious colour changes between positive and negative reactions eliminates the need of other equipment. RESULTS: Clinical testing using 260 samples showed 92.7% sensitivity (95% CI 87.3-96.3%) and 93.6% specificity (95% CI 87.3-97.4%) of RT-LAMP. CONCLUSIONS: The simple RNA extraction method minimizes the need for any extensive laboratory set-up. We suggest combining this simple nucleic acid extraction method and RT-LAMP technology as the point-of care diagnostic tool.


Subject(s)
COVID-19 Testing , COVID-19 , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/virology , COVID-19 Testing/methods , Humans , Molecular Diagnostic Techniques/methods , Nasopharynx/virology , Nucleic Acid Amplification Techniques/methods , Point-of-Care Systems , RNA, Viral/analysis , RNA, Viral/genetics , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
13.
Lab Chip ; 22(23): 4511-4520, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-1991688

ABSTRACT

We leverage electroosmotic-flow generation in porous media in combination with a hydrophobic air gap to create a controllable valve capable of operating in either finite dosing or continuous flow mode, enabling the implementation of multi-step assays on paper-based devices. The hydrophobic air gap between two paper pads creates a barrier keeping the valve nominally closed. Electroosmotic actuation, implemented using a pair of electrodes under the upstream pad, generates sufficient pressure to overcome the barrier and connect the two pads. We present a model describing the flow and governing parameters, including the electric potentials required to open and close the valve and the threshold potential for switching between the modes of operation. We construct the air gap using a hierarchical superhydrophobic surface and study the stability of the closed valve under strenuous conditions and find good agreement between our model and experimental results, as well as stable working conditions for practical applications. We present a straightforward design for a compact and automated device based on paper pads placed on top of printed circuit boards (PCB), equipped with heating and actuation electrodes and additional power and logic capabilities. Finally, we demonstrate the use of the device for amplification of SARS-CoV-2 sequences directly from raw saliva samples, using a loop-mediated isothermal amplification (LAMP) protocol requiring sample lysis followed by enzymatic deactivation and delivery to multiple amplification sites. Since PCB costs scale favorably with mass-production, we believe that this approach could lead to a low-cost diagnostic device that offers the sensitivity of amplification methods.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nucleic Acid Amplification Techniques , Molecular Diagnostic Techniques/methods , Electroosmosis
15.
Diagn Microbiol Infect Dis ; 104(2): 115764, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1982919

ABSTRACT

The COVID-19 pandemic highlighted the significance of readily available and easily performed viral testing for surveillance during future infectious pandemics. The objectives of this study were: to assess the performance of the Xpert Xpress Flu and/or RSV test, a multiplex PCR assay for detecting influenza A and B virus and respiratory syncytial virus nucleic acids in respiratory tract specimens, relative to the Quidel Lyra Influenza A+B assay and the Prodesse ProFlu+ assay, and the system's ease of use by minimally trained operators. Overall, the Xpert Xpress Flu/RSV test demonstrated a high positive and negative percent agreement with the comparator assays, and was easy to use and interpret results, based on the operators' feedback. We concluded that the Xpert Xpress Flu/RSV test is sensitive, specific, and easy to use for the diagnosis of influenza and RSV by minimally trained operators and can be a valuable tool in future infectious clusters or pandemics.


Subject(s)
COVID-19 , Influenza A virus , Influenza, Human , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , COVID-19/diagnosis , Humans , Influenza A virus/genetics , Influenza B virus/genetics , Influenza, Human/diagnosis , Molecular Diagnostic Techniques/methods , Nasopharynx , Pandemics , Real-Time Polymerase Chain Reaction/methods , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus, Human/genetics , Sensitivity and Specificity
16.
Biomed Pharmacother ; 153: 113538, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1982627

ABSTRACT

The World Health Organizations declaration of the COVID-19 pandemic was a milestone for the scientific community. The high transmission rate and the huge number of deaths, along with the lack of knowledge about the virus and the evolution of the disease, stimulated a relentless search for diagnostic tests, treatments, and vaccines. The main challenges were the differential diagnosis of COVID-19 and the development of specific, rapid, and sensitive tests that could reach all people. RT-PCR remains the gold standard for diagnosing COVID-19. However, new methods, such as other molecular techniques and immunoassays emerged. Also, the need for accessible tests with quick results boosted the development of point of care tests (POCT) that are fast, and automated, with high precision and accuracy. This assay reduces the dependence on laboratory conditions and mass testing of the population, dispersing the pressure regarding screening and detection. This review summarizes the advances in the diagnostic field since the pandemic started, emphasizing various laboratory techniques for detecting COVID-19. We reviewed the main existing diagnostic methods, as well as POCT under development, starting with RT-PCR detection, but also exploring other nucleic acid techniques, such as digital PCR, loop-mediated isothermal amplification-based assay (RT-LAMP), clustered regularly interspaced short palindromic repeats (CRISPR), and next-generation sequencing (NGS), and immunoassay tests, and nanoparticle-based biosensors, developed as portable instruments for the rapid standard diagnosis of COVID-19.


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques/methods , Humans , Molecular Diagnostic Techniques/methods , Pandemics , Point-of-Care Testing , RNA, Viral , SARS-CoV-2/genetics , Sensitivity and Specificity
17.
Microbiol Spectr ; 10(4): e0063922, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1950013

ABSTRACT

Antigen-based rapid diagnostic tests (Ag-RDTs) have been widely used for the detection of SARS-CoV-2 during the coronavirus disease 2019 (COVID-19) pandemic. In settings of low disease prevalence, such as asymptomatic community testing, national guidelines recommend confirmation of positive Ag-RDT results with a nucleic acid amplification test (NAAT). This often requires patients to be recalled for repeat specimen recollection and subsequent testing in reference laboratories. This project assessed the use of a point-of-care molecular NAAT for SARS-CoV-2 detection (i.e., ID NOW), which was performed on-site at a volunteer-led asymptomatic community testing site on the residual test buffer (RTB) from positive Ag-RDTs. The ID NOW NAAT assay was performed on RTB from two Ag-RDTs: the Abbott Panbio and BTNX Rapid Response assays. Results of ID NOW were compared to real-time RT-PCR at a reference laboratory. Along with investigations into the clinical performance of ID NOW on RTB, analytical specificity was assessed with a panel of various respiratory organisms. Of the Ag-RDTs results evaluated, all 354 Ag-RDTs results characterized as true positives by RT-PCR were accurately identified with ID NOW testing of RTB. No SARS-CoV-2 detections by ID NOW were observed from 10 specimens characterized as false-positive Ag-RDTs, or from contrived specimens with various respiratory organisms. The use of on-site molecular testing on RTB provides a suitable option for rapid confirmatory testing of positive Ag-RDTs, thereby obviating the need for specimen recollection for molecular testing at local reference laboratories. IMPORTANCE During the COVID-19 pandemic, rapid antigen tests have been widely used for the detection of SARS-CoV-2. These simple devices allow rapid test results. However, false-positive results may occur. As such, individuals with positive rapid tests often must return to testing centers to have a second swab collected, which is then transported to a specialized laboratory for confirmation using molecular tests. As an alternative to requiring a repeat visit and a prolonged turn-around time for result confirmation, this project evaluated whether the leftover material from rapid antigen tests could be confirmed directly on a portable point-of-care molecular instrument. Using this approach, molecular confirmation of positive antigen tests could be performed in less than 15 min, and the results were equivalent to laboratory-based confirmation. This procedure eliminates the need for individuals to return to testing centers following a positive rapid antigen test and ensures accurate antigen test results through on-site confirmation.


Subject(s)
COVID-19 , Pandemics , COVID-19/diagnosis , Humans , Molecular Diagnostic Techniques/methods , Point-of-Care Systems , SARS-CoV-2/genetics , Sensitivity and Specificity
18.
J Clin Microbiol ; 60(10): e0244621, 2022 10 19.
Article in English | MEDLINE | ID: covidwho-1949964

ABSTRACT

Nearly 40 years have elapsed since the invention of the PCR, with its extremely sensitive and specific ability to detect nucleic acids via in vitro enzyme-mediated amplification. In turn, more than 2 years have passed since the onset of the coronavirus disease 2019 (COVID-19) pandemic, during which time molecular diagnostics for infectious diseases have assumed a larger global role than ever before. In this context, we review broadly the progression of molecular techniques in clinical microbiology, to their current prominence. Notably, these methods now entail both the detection and quantification of microbial nucleic acids, along with their sequence-based characterization. Overall, we seek to provide a combined perspective on the techniques themselves, as well as how they have come to shape health care at the intersection of technologic innovation, pathophysiologic knowledge, clinical/laboratory logistics, and even financial/regulatory factors.


Subject(s)
COVID-19 , Communicable Diseases , Nucleic Acids , Humans , Pathology, Molecular , COVID-19/diagnosis , Nucleic Acid Amplification Techniques/methods , Communicable Diseases/diagnosis , Molecular Diagnostic Techniques/methods
19.
Arch Microbiol ; 204(8): 502, 2022 Jul 19.
Article in English | MEDLINE | ID: covidwho-1935760

ABSTRACT

Fast and reliable testing for the COVID 19 infection is the need of the hour for the development of effective and reliable tools and assays. However, it is difficult to find the performance relativity among all these tests which are poorly understood. In this study, we aimed to evaluate the two different platforms where we determine the difference of sensitivity and specificity between the fully automated analyzer (Roche Diagnostics Cobas 6800 SARS-CoV-2 test) under FDA Emergency Use Authorization (EUA) and the laboratory designed test (SARS-CoV-2 rRT-PCR) based on the protocol developed by ICMR (Indian Council for Medical Research). The study was conducted for individual samples. We performed our study with two different approaches, first with validation method consisting of 188 samples (2 batches) on cobas 6800 instrument (Roche Molecular Systems, Branchburg, NJ) soon after we received US FDA EUA on 1 June 2021, all these samples were tested earlier with laboratory designed tests on 25th and 26th May 2021. Over all agreement between the two tests is of 88% and the coefficient of agreement between the two testing platform Cohen'sκ coefficient was found to be 0.76 (95% CI, 2.5897-13.4103) suggesting the substantial agreement between the two platforms. However, in some of the cases, both tests have shown a little disagreement. An overall discordance rate between two systems was found 11.1%. The difference may be due to the limit of detection, variation in the sequences of the primer design or may be due to other factors depicting the importance of comparing the two platforms used in the testing for SARS-CoV-2. Second approach includes head to head evaluation which comprises 1631 samples showed overall agreement of 99% and kappa value of 0.98. These results showed that cobas is effective and reliable assay for the detection of SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques/methods , Humans , Molecular Diagnostic Techniques/methods , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
20.
Methods Mol Biol ; 2511: 99-115, 2022.
Article in English | MEDLINE | ID: covidwho-1941370

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is frequently diagnosed through detection of viral RNA using nucleic acid amplification testing (NAAT) assays that are usually used in centralized settings. Following the publication of the SARS-CoV-2 genetic sequence, multiple diagnostic assays were launched in 2020. These assays require evaluation beyond manufacturer self-reported performance to determine whether they are suitable for use, meet country acceptance criteria, and are compatible with existing in-country platforms. In order to meet the demand for testing services, rapid yet robust assay performance evaluations are required. In our setting, these evaluation protocols required the use of residual patient specimens and reference materials, as typical clinical trials are time-consuming and limited by cost and the cyclical nature of SARS-CoV-2 infection. This protocol is designed to assist in the rapid and robust evaluation of nucleic acid-based assays for the detection of SARS-CoV-2 using limited specimens, reference materials, and test kits. While it is specific for RNA-based assays, it can be adapted for fully automated analyses. The preparation and processing of evaluation panels is described, followed by methods for analytical precision analysis and data visualization. Assay robustness and scalability are briefly discussed as these can be critical for implementation. This protocol is designed to be flexible and alternative options are provided throughout the text where possible.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Molecular Diagnostic Techniques/methods , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL