Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Cell ; 184(15): 4090-4104.e15, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1267621


The oral mucosa remains an understudied barrier tissue. This is a site of rich exposure to antigens and commensals, and a tissue susceptible to one of the most prevalent human inflammatory diseases, periodontitis. To aid in understanding tissue-specific pathophysiology, we compile a single-cell transcriptome atlas of human oral mucosa in healthy individuals and patients with periodontitis. We uncover the complex cellular landscape of oral mucosal tissues and identify epithelial and stromal cell populations with inflammatory signatures that promote antimicrobial defenses and neutrophil recruitment. Our findings link exaggerated stromal cell responsiveness with enhanced neutrophil and leukocyte infiltration in periodontitis. Our work provides a resource characterizing the role of tissue stroma in regulating mucosal tissue homeostasis and disease pathogenesis.

Immunity, Mucosal , Mouth Mucosa/cytology , Mouth Mucosa/immunology , Neutrophils/cytology , Adult , Epithelial Cells/cytology , Gene Expression Regulation , Genetic Predisposition to Disease , Gingiva/pathology , Humans , Inflammation/immunology , Inflammation/pathology , Microbiota , Myeloid Cells/cytology , Periodontitis/genetics , Periodontitis/immunology , Periodontitis/pathology , Single-Cell Analysis , Stromal Cells/cytology , T-Lymphocytes/cytology
Int J Mol Sci ; 21(18)2020 Sep 17.
Article in English | MEDLINE | ID: covidwho-789462


At present, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has quickly become a health emergency because no specifics vaccines or drugs, at this moment, are available. Recent studies have shown that the transplantation of mesenchymal stem cells (MSCs) into Coronavirus Disease 2019 (COVID-19) patients could represent a promising strategy for the development of new therapeutic methods. We speculate and suggest that the secretome of human Oral Tissue Stem Cells (hOTSCs), for their immunomodulatory and anti-inflammatory specific properties, could exert beneficial effects on the COVID-19 patients through an innovative aerosolisation technique. This non-invasive technique can offer multiple advantages in prophylaxis, as well as the prevention and treatment of severe epidemic respiratory syndrome with minimum risk and optimal therapeutic effects. This has the potential to create a novel pathway towards immunomodulatory therapy for the treatment of COVID-19 positive patients.

Coronavirus Infections/drug therapy , Immunologic Factors/therapeutic use , Mesenchymal Stem Cells/metabolism , Mouth Mucosa/cytology , Pneumonia, Viral/drug therapy , Proteome/therapeutic use , COVID-19 , Humans , Immunologic Factors/metabolism , Pandemics , Proteome/metabolism , Secretory Pathway