Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Biomed Res Int ; 2022: 2743046, 2022.
Article in English | MEDLINE | ID: covidwho-1891948

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a novel infectious respiratory disease called COVID-19, which is threatening public health worldwide. SARS-CoV-2 spike proteins connect to the angiotensin converting enzyme 2 (ACE2) receptor through the receptor binding domain and are then activated by the transmembrane protease serine subtype 2 (TMPRSS2). The ACE2 receptor is highly expressed in human nasal epithelial cells. Nasal ciliated cells are primary targets for SARS-CoV-2 replication. However, the effect of SARS-CoV-2 on the upper respiratory tract remains unknown, thus leading to the purpose of our study. We investigate the effects of SARS-CoV-2 on cytokines and mucin expression in human nasal epithelial cells. Methods: We investigated the effects of the SARS-CoV-2 spike protein receptor binding domain (RBD) on cytokines (IL-1ß, IL-6, and IL-8) and MUC5AC/5B expression via real-time PCR, ELISA, periodic acid-Schiff (PAS) staining, and immunofluorescence staining in cultured human nasal epithelial cells. Results: The mRNA expression and protein production of cytokines (IL-1ß, IL-6, and IL-8) and MUC5AC/5B were increased by SARS-CoV-2 spike protein RBD. ACE2 receptor inhibitor suppressed the expression of cytokines (IL-1ß, IL-6, and IL-8) and MUC5AC/5B induced by SARS-CoV-2 spike protein RBD. Conclusions: SARS-CoV-2 induced cytokines (IL-1ß, IL-6, and IL-8) and MUC5AC/5B expression through the ACE 2 receptor in human nasal epithelial cells. Therefore, ACE2 receptor inhibitors can be an effective therapeutic option for SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Cytokines/metabolism , Epithelial Cells/metabolism , Humans , Interleukin-6/metabolism , Interleukin-8/metabolism , Mucin 5AC/genetics , Mucin 5AC/metabolism , Mucin-5B/metabolism , Peptidyl-Dipeptidase A/metabolism , Spike Glycoprotein, Coronavirus
2.
Int J Mol Sci ; 23(7)2022 Mar 31.
Article in English | MEDLINE | ID: covidwho-1785736

ABSTRACT

Lysophosphatidylserine (LysoPS) is an amphipathic lysophospholipid that mediates a broad spectrum of inflammatory responses through a poorly characterized mechanism. Because LysoPS levels can rise in a variety of pathological conditions, we sought to investigate LysoPS's potential role in airway epithelial cells that actively participate in lung homeostasis. Here, we report a previously unappreciated function of LysoPS in production of a mucin component, MUC5AC, in the airway epithelial cells. LysoPS stimulated lung epithelial cells to produce MUC5AC via signaling pathways involving TACE, EGFR, and ERK. Specifically, LysoPS- dependent biphasic activation of ERK resulted in TGF-α secretion and strong EGFR phosphorylation leading to MUC5AC production. Collectively, LysoPS induces the expression of MUC5AC via a feedback loop composed of proligand synthesis and its proteolysis by TACE and following autocrine EGFR activation. To our surprise, we were not able to find a role of GPCRs and TLR2, known LyoPS receptors in LysoPS-induced MUC5AC production in airway epithelial cells, suggesting a potential receptor-independent action of LysoPS during inflammation. This study provides new insight into the potential function and mechanism of LysoPS as an emerging lipid mediator in airway inflammation.


Subject(s)
ErbB Receptors , MAP Kinase Signaling System , Epithelial Cells/metabolism , ErbB Receptors/metabolism , Humans , Inflammation/metabolism , Lysophospholipids/metabolism , Lysophospholipids/pharmacology , Mucin 5AC/metabolism , Respiratory Mucosa/metabolism
3.
Mar Drugs ; 18(12)2020 Dec 14.
Article in English | MEDLINE | ID: covidwho-977761

ABSTRACT

The mucus layer of the nasopharynx and bronchial epithelium has a barrier function against inhaled pathogens such as the coronavirus SARS-CoV-2. We recently found that inorganic polyphosphate (polyP), a physiological, metabolic energy (ATP)-providing polymer released from blood platelets, blocks the binding of the receptor binding domain (RBD) to the cellular ACE2 receptor in vitro. PolyP is a marine natural product and is abundantly present in marine bacteria. Now, we have approached the in vivo situation by studying the effect of polyP on the human alveolar basal epithelial A549 cells in a mucus-like mucin environment. These cells express mucins as well as the ectoenzymes alkaline phosphatase (ALP) and adenylate kinase (ADK), which are involved in the extracellular production of ATP from polyP. Mucin, integrated into a collagen-based hydrogel, stimulated cell growth and attachment. The addition of polyP to the hydrogel significantly increased cell attachment and also the expression of the membrane-tethered mucin MUC1 and the secreted mucin MUC5AC. The increased synthesis of MUC1 was also confirmed by immunostaining. This morphogenetic effect of polyP was associated with a rise in extracellular ATP level. We conclude that the nontoxic and non-immunogenic polymer polyP could possibly also exert a protective effect against SARS-CoV-2-cell attachment; first, by stimulating the innate antiviral response by strengthening the mucin barrier with its antimicrobial proteins, and second, by inhibiting virus attachment to the cells, as deduced from the reduction in the strength of binding between the viral RBD and the cellular ACE2 receptor.


Subject(s)
Aquatic Organisms/metabolism , Biological Products/pharmacology , COVID-19/prevention & control , Polyphosphates/pharmacology , Respiratory Mucosa/drug effects , A549 Cells , Bacteria/metabolism , Biological Products/therapeutic use , COVID-19/virology , Humans , Immunity, Innate/drug effects , Mucin 5AC/metabolism , Mucin-1/metabolism , Polyphosphates/metabolism , Polyphosphates/therapeutic use , Respiratory Mucosa/immunology , Respiratory Mucosa/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Secondary Metabolism , Virus Attachment/drug effects
4.
mBio ; 11(6)2020 11 12.
Article in English | MEDLINE | ID: covidwho-922531

ABSTRACT

Mucus plays a pivotal role in protecting the respiratory tract against microbial infections. It acts as a primary contact site to entrap microbes and facilitates their removal from the respiratory tract via the coordinated beating of motile cilia. The major components of airway mucus are heavily O-glycosylated mucin glycoproteins, divided into gel-forming mucins and transmembrane mucins. The gel-forming mucins MUC5AC and MUC5B are the primary structural components of airway mucus, and they enable efficient clearance of pathogens by mucociliary clearance. MUC5B is constitutively expressed in the healthy airway, whereas MUC5AC is upregulated in response to inflammatory challenge. MUC1, MUC4, and MUC16 are the three major transmembrane mucins of the respiratory tracts which prevent microbial invasion, can act as releasable decoy receptors, and activate intracellular signal transduction pathways. Pathogens have evolved virulence factors such as adhesins that facilitate interaction with specific mucins and mucin glycans, for example, terminal sialic acids. Mucin expression and glycosylation are dependent on the inflammatory state of the respiratory tract and are directly regulated by proinflammatory cytokines and microbial ligands. Gender and age also impact mucin glycosylation and expression through the female sex hormone estradiol and age-related downregulation of mucin production. Here, we discuss what is currently known about the role of respiratory mucins and their glycans during bacterial and viral infections of the airways and their relevance for the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding the impact of microbe-mucin interaction in the respiratory tract could inspire the development of novel therapies to boost mucosal defense and combat respiratory infections.


Subject(s)
Glycoproteins/metabolism , Mucins/metabolism , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Bacterial Infections/metabolism , COVID-19/virology , Glycosylation , Humans , Mucin 5AC/metabolism , Mucin-1/metabolism , Mucin-5B/metabolism , Respiratory Tract Infections/prevention & control , SARS-CoV-2/pathogenicity , Virus Diseases/metabolism
5.
Viruses ; 12(6)2020 06 24.
Article in English | MEDLINE | ID: covidwho-620517

ABSTRACT

The respiratory Influenza A Viruses (IAVs) and emerging zoonotic viruses such as Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) pose a significant threat to human health. To accelerate our understanding of the host-pathogen response to respiratory viruses, the use of more complex in vitro systems such as normal human bronchial epithelial (NHBE) cell culture models has gained prominence as an alternative to animal models. NHBE cells were differentiated under air-liquid interface (ALI) conditions to form an in vitro pseudostratified epithelium. The responses of well-differentiated (wd) NHBE cells were examined following infection with the 2009 pandemic Influenza A/H1N1pdm09 strain or following challenge with the dsRNA mimic, poly(I:C). At 30 h postinfection with H1N1pdm09, the integrity of the airway epithelium was severely impaired and apical junction complex damage was exhibited by the disassembly of zona occludens-1 (ZO-1) from the cell cytoskeleton. wdNHBE cells produced an innate immune response to IAV-infection with increased transcription of pro- and anti-inflammatory cytokines and chemokines and the antiviral viperin but reduced expression of the mucin-encoding MUC5B, which may impair mucociliary clearance. Poly(I:C) produced similar responses to IAV, with the exception of MUC5B expression which was more than 3-fold higher than for control cells. This study demonstrates that wdNHBE cells are an appropriate ex-vivo model system to investigate the pathogenesis of respiratory viruses.


Subject(s)
Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/virology , Respiratory Mucosa/cytology , Respiratory Mucosa/virology , Animals , Bronchi/cytology , Bronchi/virology , Cells, Cultured , Chemokines/metabolism , Cytokines/metabolism , Dogs , Host-Pathogen Interactions , Humans , Immunity, Innate , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/epidemiology , Intercellular Junctions , Madin Darby Canine Kidney Cells , Models, Biological , Mucin 5AC/metabolism , Pandemics , Virus Cultivation
SELECTION OF CITATIONS
SEARCH DETAIL