Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Front Immunol ; 12: 738073, 2021.
Article in English | MEDLINE | ID: covidwho-1497076

ABSTRACT

The mechanisms underlying the immune remodeling and severity response in coronavirus disease 2019 (COVID-19) are yet to be fully elucidated. Our comprehensive integrative analyses of single-cell RNA sequencing (scRNAseq) data from four published studies, in patients with mild/moderate and severe infections, indicate a robust expansion and mobilization of the innate immune response and highlight mechanisms by which low-density neutrophils and megakaryocytes play a crucial role in the cross talk between lymphoid and myeloid lineages. We also document a marked reduction of several lymphoid cell types, particularly natural killer cells, mucosal-associated invariant T (MAIT) cells, and gamma-delta T (γδT) cells, and a robust expansion and extensive heterogeneity within plasmablasts, especially in severe COVID-19 patients. We confirm the changes in cellular abundances for certain immune cell types within a new patient cohort. While the cellular heterogeneity in COVID-19 extends across cells in both lineages, we consistently observe certain subsets respond more potently to interferon type I (IFN-I) and display increased cellular abundances across the spectrum of severity, as compared with healthy subjects. However, we identify these expanded subsets to have a more muted response to IFN-I within severe disease compared to non-severe disease. Our analyses further highlight an increased aggregation potential of the myeloid subsets, particularly monocytes, in COVID-19. Finally, we provide detailed mechanistic insights into the interaction between lymphoid and myeloid lineages, which contributes to the multisystemic phenotype of COVID-19, distinguishing severe from non-severe responses.


Subject(s)
COVID-19/immunology , Killer Cells, Natural/immunology , Mucosal-Associated Invariant T Cells/immunology , Neutrophils/immunology , SARS-CoV-2/physiology , Systemic Inflammatory Response Syndrome/immunology , T-Lymphocytes/immunology , COVID-19/diagnosis , Cell Differentiation , Cell Proliferation , Humans , Immunity, Innate , Interferon Type I/metabolism , Lymphopoiesis , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Sequence Analysis, RNA , Single-Cell Analysis , Systemic Inflammatory Response Syndrome/diagnosis , T-Lymphocytes/metabolism , Thrombopoiesis
2.
PLoS Pathog ; 17(9): e1009804, 2021 09.
Article in English | MEDLINE | ID: covidwho-1416909

ABSTRACT

Prior studies have demonstrated that immunologic dysfunction underpins severe illness in COVID-19 patients, but have lacked an in-depth analysis of the immunologic drivers of death in the most critically ill patients. We performed immunophenotyping of viral antigen-specific and unconventional T cell responses, neutralizing antibodies, and serum proteins in critically ill patients with SARS-CoV-2 infection, using influenza infection, SARS-CoV-2-convalescent health care workers, and healthy adults as controls. We identify mucosal-associated invariant T (MAIT) cell activation as an independent and significant predictor of death in COVID-19 (HR = 5.92, 95% CI = 2.49-14.1). MAIT cell activation correlates with several other mortality-associated immunologic measures including broad activation of CD8+ T cells and non-Vδ2 γδT cells, and elevated levels of cytokines and chemokines, including GM-CSF, CXCL10, CCL2, and IL-6. MAIT cell activation is also a predictor of disease severity in influenza (ECMO/death HR = 4.43, 95% CI = 1.08-18.2). Single-cell RNA-sequencing reveals a shift from focused IFNα-driven signals in COVID-19 ICU patients who survive to broad pro-inflammatory responses in fatal COVID-19 -a feature not observed in severe influenza. We conclude that fatal COVID-19 infection is driven by uncoordinated inflammatory responses that drive a hierarchy of T cell activation, elements of which can serve as prognostic indicators and potential targets for immune intervention.


Subject(s)
COVID-19/immunology , COVID-19/mortality , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , B-Lymphocytes/immunology , Biomarkers/blood , Blood Proteins/metabolism , Cohort Studies , Critical Illness/mortality , Female , Humans , Immunophenotyping , Influenza, Human/immunology , Lectins, C-Type/immunology , Lymphocyte Activation , Male , Middle Aged , Mucosal-Associated Invariant T Cells/immunology , Patient Acuity
3.
J Immunol ; 207(7): 1848-1856, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1377034

ABSTRACT

Immune cell responses are strikingly altered in patients with severe coronavirus disease 2019 (COVID-19), but the immunoregulatory process in these individuals is not fully understood. In this study, 23 patients with mild and 22 patients with severe COVID-19 and 6 asymptomatic carriers of COVID-19 were enrolled, along with 44 healthy controls (HC). Peripheral immune cells in HC and patients with COVID-19 were comprehensively profiled using mass cytometry. We found that in patients with severe COVID-19, the number of HLA-DRlow/- monocytes was significantly increased, but that of mucosal-associated invariant T (MAIT) cells was greatly reduced. MAIT cells were highly activated but functionally impaired in response to Escherichia coli and IL-12/IL-18 stimulation in patients with severe COVID-19, especially those with microbial coinfection. Single-cell transcriptome analysis revealed that IFN-stimulated genes were significantly upregulated in peripheral MAIT cells and monocytes from patients with severe COVID-19. IFN-α pretreatment suppressed MAIT cells' response to E. coli by triggering high levels of IL-10 production by HLA-DRlow/--suppressive monocytes. Blocking IFN-α or IL-10 receptors rescued MAIT cell function in patients with severe COVID-19. Moreover, plasma from patients with severe COVID-19 inhibited HLA-DR expression by monocytes through IL-10. These data indicate a unique pattern of immune dysregulation in severe COVID-19, which is characterized by enrichment of suppressive HLA-DRlow/- monocytes associated with functional impairment of MAIT cells through the IFN/IL-10 pathway.


Subject(s)
COVID-19/immunology , Escherichia coli Infections/immunology , Escherichia coli/physiology , Interleukin-10/metabolism , Monocytes/immunology , Mucosal-Associated Invariant T Cells/immunology , SARS-CoV-2/physiology , Adolescent , Adult , Asymptomatic Diseases , Cells, Cultured , Child , Coinfection , Disease Progression , Female , Humans , Immune Tolerance , Lymphocyte Activation , Male , Middle Aged , Severity of Illness Index , Young Adult
4.
Front Immunol ; 12: 700152, 2021.
Article in English | MEDLINE | ID: covidwho-1359189

ABSTRACT

Background: Mucosal-associated invariant T (MAIT) cells are considered to participate of the host immune response against acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; however, single-cell transcriptomic profiling of MAIT cells in patients with COVID-19 remains unexplored. Methods: We performed single-cell RNA sequencing analyses on peripheral MAIT cells from 13 patients with COVID-19 and 5 healthy donors. The transcriptional profiles of MAIT cells, together with assembled T-cell receptor sequences, were analyzed. Flow cytometry analysis was also performed to investigate the properties of MAIT cells. Results: We identified that differentially expressed genes (DEGs) of MAIT cells were involved in myeloid leukocyte activation and lymphocyte activation in patients with COVID-19. In addition, in MAIT cells from severe cases, more DEGs were enriched in adaptive cellular and humoral immune responses compared with those in moderate cases. Further analysis indicated that the increase of cell cytotoxicity (killing), chemotaxis, and apoptosis levels in MAIT cells were consistent with disease severity and displayed the highest levels in patients with severe disease. Interestingly, flow cytometry analysis showed that the frequencies of pyroptotic MAIT cells, but not the frequencies of apoptotic MAIT cells, were increased significantly in patients with COVID-19, suggesting pyroptosis is one of leading causes of MAIT cell deaths during SARS-CoV-2 infection. Importantly, there were more clonal expansions of MAIT cells in severe cases than in moderate cases. Conclusions: The results of the present study suggest that MAIT cells are likely to be involved in the host immune response against SARS-CoV-2 infection. Simultaneously, the transcriptomic data from MAIT cells provides a deeper understanding of the immune pathogenesis of the disease.


Subject(s)
COVID-19/immunology , Mucosal-Associated Invariant T Cells/immunology , SARS-CoV-2/immunology , Transcriptome/genetics , Base Sequence , COVID-19/pathology , Gene Expression Profiling , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Humans , Lymphocyte Activation/genetics , Pyroptosis/physiology , Sequence Analysis, RNA , Severity of Illness Index , VDJ Exons/genetics
5.
Curr Opin Virol ; 49: 176-182, 2021 08.
Article in English | MEDLINE | ID: covidwho-1275242

ABSTRACT

NK cells and diverse populations of unconventional T cells, such as MAIT cells, γδ T cells, invariant NKT cells, and DNTÉ‘ß cells are important early effector lymphocytes. While some of these cells, such as NK cell and MAIT cells, have well-established roles in antiviral defense, the function of other populations remains more elusive. Here, we summarize and discuss current knowledge on NK cell and unconventional T cell responses to SARS-CoV-2 infection. Also covered is the role of these cells in the pathogenesis of severe COVID-19. Understanding the early, both systemic and local (lung), effector lymphocyte response in this novel disease will likely aid ongoing efforts to combat the pandemic.


Subject(s)
COVID-19/immunology , Killer Cells, Natural/immunology , T-Lymphocytes/immunology , COVID-19/pathology , Cytokines/immunology , Humans , Lung/immunology , Lung/pathology , Mucosal-Associated Invariant T Cells/immunology , Natural Killer T-Cells/immunology , Receptors, Immunologic/immunology , SARS-CoV-2/immunology
6.
Int Immunopharmacol ; 94: 107485, 2021 May.
Article in English | MEDLINE | ID: covidwho-1108361

ABSTRACT

The lungs are directly connected to the external environment, which makes them more vulnerable to infection and injury. They are protected by the respiratory epithelium and immune cells to maintain a dynamic balance. Both innate and adaptive immune cells are involved in the pathogenesis of lung diseases. Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells, which have attracted increasing attention in recent years. Although MAIT cells account for a small part of the total immune cells in the lungs, evidence suggests that these cells are activated by T cell receptors and/or cytokine receptors and mediate immune response. They play an important role in immunosurveillance and immunity against microbial infection, and recent studies have shown that subsets of MAIT cells play a role in promoting pulmonary inflammation. Emerging data indicate that MAIT cells are involved in the immune response against SARS-CoV-2 and possible immunopathogenesis in COVID-19. Here, we introduce MAIT cell biology to clarify their role in the immune response. Then we review MAIT cells in human and murine lung diseases, including asthma, chronic obstructive pulmonary disease, pneumonia, pulmonary tuberculosis and lung cancer, and discuss their possible protective and pathological effects. MAIT cells represent an attractive marker and potential therapeutic target for disease progression, thus providing new strategies for the treatment of lung diseases.


Subject(s)
Lung Diseases/immunology , Mucosal-Associated Invariant T Cells/immunology , SARS-CoV-2 , Animals , Humans
7.
Science ; 371(6528): 521-526, 2021 01 29.
Article in English | MEDLINE | ID: covidwho-1093836

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are innate sensors of viruses and can augment early immune responses and contribute to protection. We hypothesized that MAIT cells may have inherent adjuvant activity in vaccine platforms that use replication-incompetent adenovirus vectors. In mice and humans, ChAdOx1 (chimpanzee adenovirus Ox1) immunization robustly activated MAIT cells. Activation required plasmacytoid dendritic cell (pDC)-derived interferon (IFN)-α and monocyte-derived interleukin-18. IFN-α-induced, monocyte-derived tumor necrosis factor was also identified as a key secondary signal. All three cytokines were required in vitro and in vivo. Activation of MAIT cells positively correlated with vaccine-induced T cell responses in human volunteers and MAIT cell-deficient mice displayed impaired CD8+ T cell responses to multiple vaccine-encoded antigens. Thus, MAIT cells contribute to the immunogenicity of adenovirus vectors, with implications for vaccine design.


Subject(s)
Adenoviridae/immunology , Immunogenicity, Vaccine , Mucosal-Associated Invariant T Cells/immunology , Viral Vaccines/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Genetic Vectors/immunology , Humans , Interferon-alpha/metabolism , Interleukin-18/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha/metabolism
8.
Mol Immunol ; 130: 154-158, 2021 02.
Article in English | MEDLINE | ID: covidwho-1065484

ABSTRACT

Mucosal associated invariant T (MAIT) cells have a recognised innate-like capacity for antibacterial host defence, consequent on the specificity of their T cell receptor (TCR) for small molecule metabolites produced by a range of prokaryotic and fungal species, their effector memory phenotype, and their expression of cytotoxic molecules. However, recent studies have identified at least two other important functions of MAIT cells in antiviral immunity and in tissue homeostasis and repair. Each are related to distinct transcriptional programmes, which are activated differentially according to the specific immune context. Here we discuss these diverse functions, we review the evidence for the newly identified role of MAIT cells in promoting tissue repair, and we discuss emerging data pointing to the future directions of MAIT cell research including roles in cancer, in antiviral immunity and recent studies in the immune response to SARS-CoV-2 infection. Overall these studies have made us aware of the potential for pleiotropic roles of MAIT cells and related cell populations in micee and humans, and have created a simple and attractive new paradigm for regulation in barrier tissues, where antigen and tissue damage are sensed, integrated and interpreted.


Subject(s)
Mucosal-Associated Invariant T Cells/immunology , Animals , Bacterial Infections/immunology , Homeostasis , Humans , Mucosal-Associated Invariant T Cells/cytology , Mucosal-Associated Invariant T Cells/metabolism , Neoplasms/immunology , Receptors, Antigen, T-Cell , Virus Diseases/immunology
9.
Viruses ; 13(2)2021 02 03.
Article in English | MEDLINE | ID: covidwho-1060774

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), comprises mild courses of disease as well as progression to severe disease, characterised by lung and other organ failure. The immune system is considered to play a crucial role for the pathogenesis of COVID-19, although especially the contribution of innate-like T cells remains poorly understood. Here, we analysed the phenotype and function of mucosal-associated invariant T (MAIT) cells, innate-like T cells with potent antimicrobial effector function, in patients with mild and severe COVID-19 by multicolour flow cytometry. Our data indicate that MAIT cells are highly activated in patients with COVID-19, irrespective of the course of disease, and express high levels of proinflammatory cytokines such as IL-17A and TNFα ex vivo. Of note, expression of the activation marker HLA-DR positively correlated with SAPS II score, a measure of disease severity. Upon MAIT cell-specific in vitro stimulation, MAIT cells however failed to upregulate expression of the cytokines IL-17A and TNFα, as well as cytolytic proteins, that is, granzyme B and perforin. Thus, our data point towards an altered cytokine expression profile alongside an impaired antibacterial and antiviral function of MAIT cells in COVID-19 and thereby contribute to the understanding of COVID-19 immunopathogenesis.


Subject(s)
COVID-19/immunology , Lymphocyte Activation , Mucosal-Associated Invariant T Cells/immunology , Adaptive Immunity , COVID-19/physiopathology , Cytokines/metabolism , Female , Granzymes/metabolism , HLA-DR Antigens , Humans , Interleukin-17/metabolism , Killer Cells, Natural/immunology , Male , Mucosal-Associated Invariant T Cells/metabolism , Severity of Illness Index , T-Lymphocyte Subsets/immunology , Tumor Necrosis Factor-alpha/metabolism
10.
Nat Immunol ; 22(3): 322-335, 2021 03.
Article in English | MEDLINE | ID: covidwho-1060966

ABSTRACT

Immune system dysfunction is paramount in coronavirus disease 2019 (COVID-19) severity and fatality rate. Mucosal-associated invariant T (MAIT) cells are innate-like T cells involved in mucosal immunity and protection against viral infections. Here, we studied the immune cell landscape, with emphasis on MAIT cells, in cohorts totaling 208 patients with various stages of disease. MAIT cell frequency is strongly reduced in blood. They display a strong activated and cytotoxic phenotype that is more pronounced in lungs. Blood MAIT cell alterations positively correlate with the activation of other innate cells, proinflammatory cytokines, notably interleukin (IL)-18, and with the severity and mortality of severe acute respiratory syndrome coronavirus 2 infection. We also identified a monocyte/macrophage interferon (IFN)-α-IL-18 cytokine shift and the ability of infected macrophages to induce the cytotoxicity of MAIT cells in an MR1-dependent manner. Together, our results suggest that altered MAIT cell functions due to IFN-α-IL-18 imbalance contribute to disease severity, and their therapeutic manipulation may prevent deleterious inflammation in COVID-19 aggravation.


Subject(s)
COVID-19/immunology , Interferon-alpha/immunology , Interleukin-18/immunology , Macrophages/immunology , Monocytes/immunology , Mucosal-Associated Invariant T Cells/immunology , Adult , Aged , Aged, 80 and over , Animals , Bronchoalveolar Lavage , Case-Control Studies , Chlorocebus aethiops , Cohort Studies , Female , France , Humans , Immunophenotyping , Interleukin-10/immunology , Interleukin-15/immunology , Interleukin-1beta/immunology , Interleukin-6/immunology , Interleukin-8/immunology , Male , Middle Aged , RNA-Seq , SARS-CoV-2 , Severity of Illness Index , Single-Cell Analysis , Vero Cells , Young Adult
11.
Sci Immunol ; 5(51)2020 09 28.
Article in English | MEDLINE | ID: covidwho-808356

ABSTRACT

Severe COVID-19 is characterized by excessive inflammation of the lower airways. The balance of protective versus pathological immune responses in COVID-19 is incompletely understood. Mucosa-associated invariant T (MAIT) cells are antimicrobial T cells that recognize bacterial metabolites, and can also function as innate-like sensors and mediators of antiviral responses. Here, we investigated the MAIT cell compartment in COVID-19 patients with moderate and severe disease, as well as in convalescence. We show profound and preferential decline in MAIT cells in the circulation of patients with active disease paired with strong activation. Furthermore, transcriptomic analyses indicated significant MAIT cell enrichment and pro-inflammatory IL-17A bias in the airways. Unsupervised analysis identified MAIT cell CD69high and CXCR3low immunotypes associated with poor clinical outcome. MAIT cell levels normalized in the convalescent phase, consistent with dynamic recruitment to the tissues and later release back into the circulation when disease is resolved. These findings indicate that MAIT cells are engaged in the immune response against SARS-CoV-2 and suggest their possible involvement in COVID-19 immunopathogenesis.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/pathology , Mucosal-Associated Invariant T Cells/immunology , Pneumonia, Viral/pathology , Adult , Aged , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , COVID-19 , Coronavirus Infections/immunology , Female , Humans , Immunity, Innate/immunology , Inflammation/immunology , Interleukin-17/metabolism , Lectins, C-Type/metabolism , Lymphocyte Activation/immunology , Male , Middle Aged , Pandemics , Pneumonia, Viral/immunology , Receptors, CXCR3/metabolism , SARS-CoV-2 , Young Adult
12.
J Exp Med ; 217(12)2020 12 07.
Article in English | MEDLINE | ID: covidwho-744478

ABSTRACT

COVID-19 includes lung infection ranging from mild pneumonia to life-threatening acute respiratory distress syndrome (ARDS). Dysregulated host immune response in the lung is a key feature in ARDS pathophysiology. However, cellular actors involved in COVID-19-driven ARDS are poorly understood. Here, in blood and airways of severe COVID-19 patients, we serially analyzed unconventional T cells, a heterogeneous class of T lymphocytes (MAIT, γδT, and iNKT cells) with potent antimicrobial and regulatory functions. Circulating unconventional T cells of COVID-19 patients presented with a profound and persistent phenotypic alteration. In the airways, highly activated unconventional T cells were detected, suggesting a potential contribution in the regulation of local inflammation. Finally, expression of the CD69 activation marker on blood iNKT and MAIT cells of COVID-19 patients on admission was predictive of clinical course and disease severity. Thus, COVID-19 patients present with an altered unconventional T cell biology, and further investigations will be required to precisely assess their functions during SARS-CoV-2-driven ARDS.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/immunology , Mucosal-Associated Invariant T Cells/metabolism , Natural Killer T-Cells/metabolism , Phenotype , Pneumonia, Viral/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Respiratory Distress Syndrome/immunology , Aged , Antigens, CD/blood , Antigens, Differentiation, T-Lymphocyte/blood , COVID-19 , Cells, Cultured , Coronavirus Infections/virology , Cytokines/metabolism , Female , Humans , Inflammation/immunology , Inflammation/metabolism , Lectins, C-Type/blood , Male , Middle Aged , Mucosal-Associated Invariant T Cells/immunology , Natural Killer T-Cells/immunology , Pandemics , Pneumonia, Viral/virology , Prognosis , Prospective Studies , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Severity of Illness Index
13.
Crit Rev Immunol ; 40(2): 173-184, 2020.
Article in English | MEDLINE | ID: covidwho-663846

ABSTRACT

Mucosa-associated invariant T cells (MAIT cells) are unconventional, innate-like T lymphocytes with remarkable effector and immunoregulatory functions. They are abundant in the human peripheral blood and also enriched in mucosal layers and in the lungs, SARS-CoV-2's main ports of entry. Once activated, MAIT cells produce inflammatory cytokines and cytolytic effector molecules quickly and copiously. MAIT cells are best known for their antibacterial and antifungal properties. However, they are also activated during viral infections, typically in a cytokine-dependent manner, which may promote antiviral immunity. On the other hand, it is plausible to assume active roles for MAIT cells in infection-provoked cytokine storms and tissue damage. SARS-CoV-2 infection may be asymptomatic, mild, severe, or even fatal, depending on sex, age, the presence of preexisting morbidities, and the individual's immunological competence, or lack thereof, among other factors. Based on the available literature, I propose that MAIT cells regulate the host response to SARS-CoV-2 and constitute attractive targets in the prevention or clinical management of coronavirus disease 19 (COVID-19) and some of its complications. Unlike mainstream T cells, MAIT cells are restricted by a monomorphic antigen-presenting molecule called MHC-related protein 1 (MR1). Therefore, MR1 ligands should modify MAIT cell functions relatively uniformly in genetically diverse subjects and may be tested as immunotherapeutic agents or vaccine adjuvants in future studies.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Histocompatibility Antigens Class I/metabolism , Minor Histocompatibility Antigens/metabolism , Mucosal-Associated Invariant T Cells/immunology , Pneumonia, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 , Coronavirus Infections/pathology , Cytokines/immunology , Humans , Mucosal-Associated Invariant T Cells/metabolism , Pandemics , Pneumonia, Viral/pathology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL