ABSTRACT
Infection by the new corona virus strain SARS-CoV-2 and its related syndrome COVID-19 has been associated with more than two million deaths worldwide. Patients of higher age and with preexisting chronic health conditions are at an increased risk of fatal disease outcome. However, detailed information on causes of death and the contribution of pre-existing health conditions to death yet is missing, which can be reliably established by autopsy only. We performed full body autopsies on 26 patients that had died after SARS-CoV-2 infection and COVID-19 at the Charité University Hospital Berlin, Germany, or at associated teaching hospitals. We systematically evaluated causes of death and pre-existing health conditions. Additionally, clinical records and death certificates were evaluated. We report findings on causes of death and comorbidities of 26 decedents that had clinically presented with severe COVID-19. We found that septic shock and multi organ failure was the most common immediate cause of death, often due to suppurative pulmonary infection. Respiratory failure due to diffuse alveolar damage presented as immediate cause of death in fewer cases. Several comorbidities, such as hypertension, ischemic heart disease, and obesity were present in the vast majority of patients. Our findings reveal that causes of death were directly related to COVID-19 in the majority of decedents, while they appear not to be an immediate result of preexisting health conditions and comorbidities. We therefore suggest that the majority of patients had died of COVID-19 with only contributory implications of preexisting health conditions to the mechanism of death.
Subject(s)
COVID-19/mortality , Cause of Death , Hospital Mortality , Adult , Aged , Aged, 80 and over , Autopsy , Berlin/epidemiology , COVID-19/complications , COVID-19/therapy , COVID-19/virology , Comorbidity , Female , Hospitals, Teaching/statistics & numerical data , Humans , Hypertension/epidemiology , Male , Middle Aged , Multiple Organ Failure/mortality , Multiple Organ Failure/virology , Myocardial Ischemia/epidemiology , Obesity/epidemiology , Prospective Studies , SARS-CoV-2/isolation & purification , Shock, Septic/mortality , Shock, Septic/virologySubject(s)
COVID-19/mortality , Influenza Pandemic, 1918-1919/mortality , COVID-19/economics , COVID-19/therapy , Gross Domestic Product , History, 20th Century , Humans , Influenza Pandemic, 1918-1919/economics , Multiple Organ Failure/mortality , Multiple Organ Failure/virology , Pandemics , Pneumonia, Bacterial/etiology , Pneumonia, Bacterial/mortality , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/virologyABSTRACT
BACKGROUND: Critically ill patients with COVID-19 may develop multiple organ dysfunction syndrome, including acute kidney injury (AKI). We report the incidence, risk factors, associations, and outcomes of AKI and renal replacement therapy (RRT) in critically ill COVID-19 patients. METHODS: We performed a retrospective cohort study of adult patients with COVID-19 diagnosis admitted to the intensive care unit (ICU) between March 2020 and May 2020. Multivariable logistic regression analysis was applied to identify risk factors for the development of AKI and use of RRT. The primary outcome was 60-day mortality after ICU admission. RESULTS: 101 (50.2%) patients developed AKI (72% on the first day of invasive mechanical ventilation [IMV]), and thirty-four (17%) required RRT. Risk factors for AKI included higher baseline Cr (OR 2.50 [1.33-4.69], p = 0.005), diuretic use (OR 4.14 [1.27-13.49], p = 0.019), and IMV (OR 7.60 [1.37-42.05], p = 0.020). A higher C-reactive protein level was an additional risk factor for RRT (OR 2.12 [1.16-4.33], p = 0.023). Overall 60-day mortality was 14.4% {23.8% (n = 24) in the AKI group versus 5% (n = 5) in the non-AKI group (HR 2.79 [1.04-7.49], p = 0.040); and 35.3% (n = 12) in the RRT group versus 10.2% (n = 17) in the non-RRT group, respectively (HR 2.21 [1.01-4.85], p = 0.047)}. CONCLUSIONS: AKI was common among critically ill COVID-19 patients and occurred early in association with IMV. One in 6 AKI patients received RRT and 1 in 3 patients treated with RRT died in hospital. These findings provide important prognostic information for clinicians caring for these patients.
Subject(s)
Acute Kidney Injury/epidemiology , COVID-19/complications , Critical Illness/epidemiology , Hospital Mortality , Renal Replacement Therapy , Respiratory Distress Syndrome/etiology , SARS-CoV-2 , Acute Kidney Injury/blood , Acute Kidney Injury/etiology , Acute Kidney Injury/therapy , Aged , Aged, 80 and over , Brazil/epidemiology , C-Reactive Protein/analysis , Comorbidity , Creatinine/blood , Female , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Multiple Organ Failure/etiology , Multiple Organ Failure/mortality , Renal Insufficiency, Chronic/complications , Renal Replacement Therapy/statistics & numerical data , Respiration, Artificial/adverse effects , Respiration, Artificial/statistics & numerical data , Respiratory Distress Syndrome/therapy , Retrospective Studies , Risk Factors , Treatment OutcomeSubject(s)
COVID-19/mortality , Heart Failure/mortality , Multiple Organ Failure/mortality , Respiratory Insufficiency/mortality , Shock, Septic/mortality , Terminal Care/statistics & numerical data , Aged , Aged, 80 and over , Cause of Death , Cohort Studies , Coinfection/epidemiology , Female , Heart Failure/epidemiology , Hospitalization , Humans , Intensive Care Units , Male , Middle Aged , Multiple Organ Failure/epidemiology , Nervous System Diseases/epidemiology , Nervous System Diseases/mortality , Patient Care Planning , Patients' Rooms , Renal Insufficiency/epidemiology , Retrospective Studies , SARS-CoV-2 , Shock, Septic/epidemiology , United States/epidemiology , Withholding Treatment/statistics & numerical dataABSTRACT
BACKGROUND: In December 2019, pneumonia associated with COVID-19 has spread from Wuhan to other areas in China. In the present study, we aimed to further clarify the clinical features and outcomes of acute kidney injury (AKI) in patients infected with COVID-19 in Xiangyang, Hubei, China. METHODS: All confirmed cases of COVID-19 with AKI in Xiangyang Central Hospital from January 22 to May 31, 2020, were included in this retrospective study. Data of epidemiological, clinical, laboratory, radiological tests, treatment, complication, and outcomes were collected and analyzed. Patients were divided into intensive care unit (ICU) group and isolation ward (non-ICU) group. RESULTS: Of the total patients, 33.3% in the non-ICU group and 85.7% in the ICU group had chronic diseases. In addition, 85.7% of patients in the ICU group died. The most common symptoms were fever, cough, and fatigue. The lymphocyte count in the ICU group was significantly reduced compared with the non-ICU group. The chest computed tomography (CT) images appeared showed multiple mottles and ground-glass opacity. Strip shadow could be found in chest CT images of some recovered patients. All patients received antiviral treatment. Most patients in the ICU group were given methylprednisolone, immunoglobulin, antibiotics, and mechanical ventilation and 35.7% of patients in the ICU group received continuous renal replacement therapy. CONCLUSIONS: Elderly with chronic comorbidities were more susceptible to COVID-19, showing a higher mortality rate due to multiple organ damage, and 35.7% of patients with AKI in ICU received renal replacement therapy. Moreover, part of the cured patients might need additional time to recover for poor lung function.
Subject(s)
Acute Kidney Injury/epidemiology , COVID-19/complications , Hospital Mortality , SARS-CoV-2 , Acute Kidney Injury/etiology , Acute Kidney Injury/therapy , Adult , Aged , Antiviral Agents/therapeutic use , COVID-19/blood , COVID-19/diagnostic imaging , COVID-19/therapy , Cardiovascular Agents/therapeutic use , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/epidemiology , China/epidemiology , Chronic Disease/mortality , Comorbidity , Female , Hospitals, Urban/statistics & numerical data , Humans , Immunization, Passive , Intensive Care Units/statistics & numerical data , Lymphocyte Count , Male , Middle Aged , Multiple Organ Failure/etiology , Multiple Organ Failure/mortality , Plasma Exchange/methods , Plasma Exchange/statistics & numerical data , Renal Dialysis/methods , Renal Dialysis/statistics & numerical data , Renal Insufficiency, Chronic/complications , Respiration, Artificial/adverse effects , Respiration, Artificial/statistics & numerical data , Retrospective Studies , Symptom Assessment , Tomography, X-Ray Computed , COVID-19 Drug Treatment , COVID-19 SerotherapyABSTRACT
Recent literature suggests that approximately 5%-18% of patients diagnosed with severe acute respiratory syndrome coronavirus 2 may progress rapidly to a severe form of the illness and subsequent death. We examined the relationship between sociodemographic, clinical, and laboratory findings with mortality among patients. In this study, 112 patients were evaluated from February to May 2020 and 80 patients met the inclusion criteria. Tocilizumab was administered, followed by methylprednisolone to patients with pneumonia severity index score ≤130 and computerized tomography scan changes. Demographic data and clinical outcomes were collected. Laboratory biomarkers were monitored during hospitalization. Statistical analyses were performed with significance p ≤ .05. A total of 80 patients: 45 males (56.25%) and 35 females (43.75%) met the study inclusion criteria. A total of 7 patients (8.75%) were deceased. An increase in mortality outcome was statistically significantly associated with higher average levels of interleukin-6 (IL-6) with p value (.050), and d-dimer with p value (.024). Bivariate logistics regression demonstrated a significant increased odds for mortality for patients with bacterial lung infections (odds ratio [OR]: 10.83; 95% confidence interval [CI]: 2.05-57.40; p = .005) and multiorgan damage (OR: 103.50; 95% CI: 9.92-1079.55; p = .001). Multivariate logistics regression showed a statistically significant association for multiorgan damage (adjusted odds ratio [AOR]: 94.17; 95% CI: 7.39-1200.78; p = .001). We identified three main predictors for high mortality. These include IL-6, d-dimer, and multiorgan damage. The latter was the highest potential risk for in-hospital deaths. This warrants aggressive health measures for early recognition of the problem and initiation of treatment to reverse injuries.
Subject(s)
COVID-19/mortality , Fibrin Fibrinogen Degradation Products/metabolism , Interleukin-6/metabolism , Multiple Organ Failure/mortality , Adult , Aged , Biomarkers/metabolism , Female , Humans , Longitudinal Studies , Male , Middle Aged , Multiple Organ Failure/virology , Prognosis , Risk Factors , TexasABSTRACT
Multiorgan injury has been implicated in patients with coronavirus disease 2019 (COVID-19). We aim to assess the impact of organ injury (OI) on prognosis according to the number of affected organs at admission. This is a retrospective cohort study of patients with confirmed COVID-19 in Wuhan Third Hospital & Tongren Hospital of Wuhan University from February 17 to March 22, 2020. We classified the patients according to the presence and number of damaged organs (heart, liver, and kidney). The percentage of patients with no, one, two, or three organs affected was 59.75%, 30.46%, 8.07%, and 1.72%, respectively. With the increasing number of OI, there is a tendency of gradual increase regarding the white blood cell counts, neutrophil counts, levels of C-reactive protein (CRP), lactate dehydrogenase, D-dimer, and fibrinogen as well as the incidence of most complications. In a Cox regression model, individuals with OI, old age, and an abnormal level of CRP were at a higher risk of death compared with those without. Patients with three organ injuries had the highest mortality rate (57.9%; hazard ratio [HR] with 95% confidence interval [CI] vs. patients without OI: 22.31 [10.42-47.77], those with two [23.6%; HR = 8.68, 95% CI = 4.58-16.48], one [8.6%; HR = 3.1, 95% CI = 1.7-5.7], or no OI [2.6%]; p < .001). The increasing number of OI was associated with a high risk of mortality in COVID-19 infection.
Subject(s)
COVID-19/mortality , Multiple Organ Failure/mortality , Aged , C-Reactive Protein/metabolism , COVID-19/metabolism , COVID-19/virology , Female , Fibrinogen/metabolism , Hospital Mortality , Hospitalization/statistics & numerical data , Humans , Incidence , L-Lactate Dehydrogenase/metabolism , Leukocyte Count/methods , Male , Middle Aged , Multiple Organ Failure/metabolism , Multiple Organ Failure/virology , Prognosis , Retrospective Studies , Risk Factors , SARS-CoV-2/pathogenicityABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19), is associated with high incidence of multiorgan dysfunction and death. Angiotensin-converting enzyme 2 (ACE2), which facilitates SARS-CoV-2 host cell entry, may be impacted by angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), two commonly used antihypertensive classes. In a multicenter, international randomized controlled trial that began enrollment on March 31, 2020, participants are randomized to continuation vs withdrawal of their long-term outpatient ACEI or ARB upon hospitalization with COVID-19. The primary outcome is a hierarchical global rank score incorporating time to death, duration of mechanical ventilation, duration of renal replacement or vasopressor therapy, and multiorgan dysfunction severity. Approval for the study has been obtained from the Institutional Review Board of each participating institution, and all participants will provide informed consent. A data safety monitoring board has been assembled to provide independent oversight of the project.
Subject(s)
Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , COVID-19/complications , Multiple Organ Failure/epidemiology , SARS-CoV-2/drug effects , Adult , Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme Inhibitors/adverse effects , COVID-19/epidemiology , COVID-19/virology , Case-Control Studies , Female , Hospitalization/statistics & numerical data , Humans , Incidence , Male , Multiple Organ Failure/mortality , Prospective Studies , Renal Replacement Therapy/statistics & numerical data , Respiration, Artificial/statistics & numerical data , SARS-CoV-2/genetics , Severity of Illness Index , Vasoconstrictor Agents/therapeutic use , Withholding Treatment/statistics & numerical dataABSTRACT
INTRODUCTION: Globally, the coronavirus disease 2019 (COVID-19) is still spreading rapidly. At present, there are no specifically approved therapeutic agents or vaccines for its treatment. Previous studies have shown that the convalescent plasma therapy (CPT) is effective in patients with COVID-19. However, its efficacy in patients with persistently positive nucleic acid test is unknown. PATIENT CONCERNS: In this report, we present the clinical data of 5 critically ill COVID-19 patients admitted, between January 16 and February 26, 2020, in intensive care unit of Xiaogan Central Hospital. DIAGNOSIS AND INTERVENTIONS: All these patients had a persistently positive nucleic acid test and received CPT. All 5 patients had severe respiratory failure, and thus, required invasive mechanical ventilation. The median time from the onset of symptoms to initiating the CPT was 37 (Interquartile range, 34-44) days. OUTCOMES: Only 2 patients were cured and subsequently discharged, while 3 patients succumbed due to multiple organ failure. CONCLUSION: The time of initiating the CPT may be an important factor affecting its efficacy, and its therapeutic effect in the treatment of COVID-19, in the late stage, is limited.