Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
1.
PLoS One ; 17(1): e0262258, 2022.
Article in English | MEDLINE | ID: covidwho-1841144

ABSTRACT

Although patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A, influenza B and respiratory syncytial virus (RSV) show comparable or very similar manifestations, the therapeutic approaches of these respiratory viral infections are different, which requires an accurate diagnosis. Recently, the novel multiplex real-time reverse transcription-polymerase chain reaction assay AMPLIQUICK® Respiratory Triplex (BioSynex SA, Illkirch-Graffenstaden, France) allows simultaneous detection and differentiation of SARS-CoV-2, influenza A, influenza B, and RSV in respiratory tract samples. We herein evaluated the performance of the AMPLIQUICK® Respiratory Triplex for the detection of the four viruses in respiratory specimens, using Allplex™ Respiratory Panel 1 and 2019-nCoV assays (Seegene, Seoul, Korea) as reference comparator assays. A total of 359 archived predetermined respiratory samples, including 83, 145, 19 and 95 positive specimens for SARS-CoV-2, influenza A, influenza B and RSV respectively, were included. The AMPLIQUICK® Respiratory Triplex showed high concordance with the reference assays, with an overall agreement for SARS-CoV-2, influenza A, influenza B, and RSV at 97.6%, 98.8%, 98.3% and 100.0%, respectively, and high κ values ranging from 0.93 to 1.00, indicating an almost perfect agreement between assays. Furthermore, high correlations of cycle threshold (Ct) values were observed for positive samples of the four viruses between the AMPLIQUICK® Respiratory Triplex and comparator assays, with an overall high agreement between Ct values assessed by Bland-Altman analyses. In conclusion, these observations demonstrate that the multiplex AMPLIQUICK® Respiratory Triplex is a reliable assay for the qualitative detection and differentiation of SARS-CoV-2, influenza A, influenza B, and RSV in respiratory specimens, which may prove useful for streamlining diagnostics during the winter influenza-seasons.


Subject(s)
COVID-19/diagnosis , Influenza, Human/diagnosis , Multiplex Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/methods , Respiratory Syncytial Virus Infections/diagnosis , COVID-19/virology , Humans , Influenza, Human/virology , Molecular Diagnostic Techniques , Nasopharynx/virology , Respiratory Syncytial Virus Infections/virology , Retrospective Studies , Sensitivity and Specificity
2.
Crit Care ; 26(1): 130, 2022 05 09.
Article in English | MEDLINE | ID: covidwho-1833333

ABSTRACT

BACKGROUND: The detection of coinfections is important to initiate appropriate antimicrobial therapy. Molecular diagnostic testing identifies pathogens at a greater rate than conventional microbiology. We assessed both bacterial coinfections identified via culture or the BioFire® FilmArray® Pneumonia Panel (FA-PNEU) in patients infected with SARS-CoV-2 in the ICU and the concordance between these techniques. METHODS: This was a prospective study of patients with SARS-CoV-2 who were hospitalized for no more than 48 h and on mechanical ventilation for no longer than 24 h in 8 ICUs in Medellín, Colombia. We studied mini-bronchoalveolar lavage or endotracheal aspirate samples processed via conventional culture and the FA-PNEU. Coinfection was defined as the identification of a respiratory pathogen using the FA-PNEU or cultures. Serum samples of leukocytes, C-reactive protein, and procalcitonin were taken on the first day of intubation. We analyzed the empirical antibiotics and the changes in antibiotic management according to the results of the FA-PNEUM and cultures. RESULTS: Of 110 patients whose samples underwent both methods, FA-PNEU- and culture-positive samples comprised 24.54% versus 17.27%, respectively. Eighteen samples were positive in both techniques, 82 were negative, 1 was culture-positive with a negative FA-PNEU result, and 9 were FA-PNEU-positive with negative culture. The two bacteria most frequently detected by the FA-PNEU were Staphylococcus aureus (37.5%) and Streptococcus agalactiae (20%), and those detected by culture were Staphylococcus aureus (34.78%) and Klebsiella pneumoniae (26.08%). The overall concordance was 90.1%, and when stratified by microorganism, it was between 92.7 and 100%. The positive predictive value (PPV) was between 50 and 100% and were lower for Enterobacter cloacae and Staphylococcus aureus. The negative predictive value (NPV) was high (between 99.1 and 100%); MecA/C/MREJ had a specificity of 94.55% and an NPV of 100%. The inflammatory response tests showed no significant differences between patients whose samples were positive and negative for both techniques. Sixty-one patients (55.45%) received at least one dose of empirical antibiotics. CONCLUSIONS: The overall concordance was 90.1%, and it was between 92.7% and 100% when stratified by microorganisms. The positive predictive value was between 50 and 100%, with a very high NPV.


Subject(s)
COVID-19 , Coinfection , Pneumonia , Anti-Bacterial Agents/therapeutic use , Bacteria , COVID-19/diagnosis , Colombia , Hospitals , Humans , Intensive Care Units , Multiplex Polymerase Chain Reaction/methods , Pneumonia/drug therapy , Prospective Studies , SARS-CoV-2
3.
BMC Infect Dis ; 22(1): 411, 2022 Apr 28.
Article in English | MEDLINE | ID: covidwho-1813294

ABSTRACT

BACKGROUND: The prevalence of virus positivity in the upper respiratory tract of asymptomatic community-dwelling older people remains elusive. Our objective was to investigate the prevalence of respiratory virus PCR positivity in asymptomatic community-dwelling older people using saliva samples and nasopharyngeal and oropharyngeal swabs. METHODS: We analyzed 504 community-dwelling adults aged ≥ 65 years who were ambulatory and enrolled in a cross-sectional study conducted from February to December 2018 in Nagasaki city, Japan. Fourteen respiratory viruses were identified in saliva, nasopharyngeal and oropharyngeal samples using multiplex PCR assays. RESULTS: The prevalences of PCR positivity for rhinovirus, influenza A, enterovirus and any respiratory virus were 12.9% (95% CI: 10.1-16.1%), 7.1% (95% CI: 5.1-9.8%), 6.9% (95% CI: 4.9-9.5%) and 25.2% (95% CI: 21.5-29.2%), respectively. Rhinovirus was detected in 21.5% of subjects, influenza A in 38.9% of subjects, enterovirus in 51.4% of subjects and any virus in 32.3% of subjects using only saliva sampling. CONCLUSIONS: The prevalences of several respiratory viruses were higher than the percentages reported previously in pharyngeal samples from younger adults. Saliva sampling is a potentially useful method for respiratory virus detection in asymptomatic populations.


Subject(s)
Enterovirus Infections , Influenza, Human , Respiratory Tract Infections , Viruses , Adult , Aged , Cross-Sectional Studies , Humans , Independent Living , Influenza, Human/epidemiology , Multiplex Polymerase Chain Reaction/methods , Nasopharynx , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Rhinovirus , Viruses/genetics
4.
J Clin Microbiol ; 60(5): e0017822, 2022 May 18.
Article in English | MEDLINE | ID: covidwho-1807314

ABSTRACT

The ability to distinguish between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) is of ongoing interest due to differences in transmissibility, responses to vaccination, clinical prognosis, and therapy. Although detailed genetic characterization requires whole-genome sequencing (WGS), targeted nucleic acid amplification tests can serve a complementary role in clinical settings, as they are more rapid and accessible than sequencing in most laboratories. We designed and analytically validated a two-reaction multiplex reverse transcription-quantitative PCR (RT-qPCR) assay targeting spike protein mutations L452R, E484K, and N501Y in reaction 1 and del69-70, K417N, and T478K in reaction 2. This assay had 95 to 100% agreement with WGS for 502 upper respiratory tract swab samples collected between 26 April 2021 and 1 August 2021, consisting of 43 Alpha, 2 Beta, 20 Gamma, 378 Delta, and 59 non-VOC infections. Validation in a separate group of 230 WGS-confirmed Omicron variant samples collected in December 2021 and January 2022 demonstrated 100% agreement. This RT-qPCR-based approach can be implemented in clinical laboratories already performing SARS-CoV-2 nucleic acid amplification tests to assist in local epidemiological surveillance and clinical decision-making.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Multiplex Polymerase Chain Reaction , Mutation , Real-Time Polymerase Chain Reaction , Reverse Transcription , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
5.
BMC Infect Dis ; 22(1): 330, 2022 Apr 04.
Article in English | MEDLINE | ID: covidwho-1775313

ABSTRACT

BACKGROUND: Respiratory infections among children, particularly community-acquired pneumonia (CAP), is a major disease with a high frequency among outpatient and inpatient visits. The causes of CAP vary depending on individual susceptibility, the epidemiological characteristics of the community, and the season. We performed this study to establish a nationwide surveillance network system and identify the causative agents for CAP and antibiotic resistance in Korean children with CAP. METHODS: The monitoring network was composed of 28 secondary and tertiary medical institutions. Upper and lower respiratory samples were assayed using a culture or polymerase chain reaction (PCR) from August 2018 to May 2020. RESULTS: A total of 1023 cases were registered in patients with CAP, and PCR of atypical pneumonia pathogens revealed 422 cases of M. pneumoniae (41.3%). Respiratory viruses showed a positivity rate of 65.7% by multiplex PCR test, and human rhinovirus was the most common virus, with 312 cases (30.5%). Two hundred sixty four cases (25.8%) were isolated by culture, including 131 cases of S. aureus (12.8%), 92 cases of S. pneumoniae (9%), and 20 cases of H. influenzae (2%). The cultured, isolated bacteria may be colonized pathogen. The proportion of co-detection was 49.2%. The rate of antibiotic resistance showed similar results as previous reports. CONCLUSIONS: This study will identify the pathogens that cause respiratory infections and analyze the current status of antibiotic resistance to provide scientific evidence for management policies of domestic respiratory infections. Additionally, in preparation for new epidemics, including COVID-19, monitoring respiratory infections in children and adolescents has become more important, and research on this topic should be continuously conducted in the future.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia, Mycoplasma , Adolescent , Child , Community-Acquired Infections/microbiology , Humans , Multiplex Polymerase Chain Reaction/methods , Staphylococcus aureus
6.
Viruses ; 14(3)2022 03 15.
Article in English | MEDLINE | ID: covidwho-1742731

ABSTRACT

Since the beginning of the COVID-19 pandemic, the wastewater-based epidemiology (WBE) of SARS-CoV-2 has been used as a complementary indicator to follow up on the trends in the COVID-19 spread in Belgium and in many other countries. To further develop the use of WBE, a multiplex digital polymerase chain reaction (dPCR) assay was optimized, validated and applied for the measurement of emerging SARS-CoV-2 variants of concern (VOC) in influent wastewater (IWW) samples. Key mutations were targeted in the different VOC strains, including SΔ69/70 deletion, N501Y, SΔ241 and SΔ157. The presented bioanalytical method was able to distinguish between SARS-CoV-2 RNA originating from the wild-type and B.1.1.7, B.1.351 and B.1.617.2 variants. The dPCR assay proved to be sensitive enough to detect low concentrations of SARS-CoV-2 RNA in IWW since the limit of detection of the different targets ranged between 0.3 and 2.9 copies/µL. This developed WBE approach was applied to IWW samples originating from different Belgian locations and was able to monitor spatio-temporal changes in the presence of targeted VOC strains in the investigated communities. The present dPCR assay developments were realized to bring added-value to the current national WBE of COVID-19 by also having the spatio-temporal proportions of the VoC in presence in the wastewaters.


Subject(s)
COVID-19 , SARS-CoV-2 , Belgium/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Multiplex Polymerase Chain Reaction , Pandemics , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Waste Water
7.
PLoS One ; 17(3): e0264855, 2022.
Article in English | MEDLINE | ID: covidwho-1736511

ABSTRACT

Since December 2019 the world has been facing the outbreak of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Identification of infected patients and discrimination from other respiratory infections have so far been accomplished by using highly specific real-time PCRs. Here we present a rapid multiplex approach (RespiCoV), combining highly multiplexed PCRs and MinION sequencing suitable for the simultaneous screening for 41 viral and five bacterial agents related to respiratory tract infections, including the human coronaviruses NL63, HKU1, OC43, 229E, Middle East respiratory syndrome coronavirus, SARS-CoV, and SARS-CoV-2. RespiCoV was applied to 150 patient samples with suspected SARS-CoV-2 infection and compared with specific real-time PCR. Additionally, several respiratory tract pathogens were identified in samples tested positive or negative for SARS-CoV-2. Finally, RespiCoV was experimentally compared to the commercial RespiFinder 2SMART multiplex screening assay (PathoFinder, The Netherlands).


Subject(s)
Bacteria/genetics , COVID-19/diagnosis , High-Throughput Nucleotide Sequencing/methods , RNA Viruses/genetics , Respiratory Tract Infections/diagnosis , SARS-CoV-2/genetics , Bacteria/isolation & purification , COVID-19/virology , Coronavirus/genetics , Coronavirus/isolation & purification , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/isolation & purification , Humans , Multiplex Polymerase Chain Reaction , Nanopores , Orthomyxoviridae/genetics , Orthomyxoviridae/isolation & purification , RNA Viruses/isolation & purification , RNA, Viral/chemistry , RNA, Viral/metabolism , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , SARS-CoV-2/isolation & purification
8.
Sci Rep ; 12(1): 3480, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1730307

ABSTRACT

The COVID-19 pandemic has resulted in significant diversion of human and material resources to COVID-19 diagnostics, to the extent that influenza viruses and co-infection in COVID-19 patients remains undocumented and pose serious public-health consequences. We optimized and validated a highly sensitive RT-PCR based multiplex-assay for the detection of SARS-CoV-2, influenza A and B viruses in a single-test. This study evaluated clinical specimens (n = 1411), 1019 saliva and 392 nasopharyngeal swab (NPS), tested using two-assays: FDA-EUA approved SARS-CoV-2 assay that targets N and ORF1ab gene, and the PKamp-RT-PCR based assay that targets SARS-CoV-2, influenza viruses A and B. Of the 1019 saliva samples, 17.0% (174/1019) tested positive for SARS-CoV-2 using either assay. The detection rate for SARS-CoV-2 was higher with the multiplex assay compared to SARS-specific assay [91.9% (160/174) vs. 87.9% (153/174)], respectively. Of the 392 NPS samples, 10.4% (41/392) tested positive for SARS-CoV-2 using either assay. The detection rate for SARS-CoV-2 was higher with the multiplex assay compared to SARS-specific assay [97.5% (40/41) vs. 92.1% (39/41)], respectively. This study presents clinical validation of a multiplex-PCR assay for testing SARS-CoV-2, influenza A and B viruses, using NPS and saliva samples, and demonstrates the feasibility of implementing the assay without disrupting the existing laboratory workflow.


Subject(s)
Influenza A virus/isolation & purification , Influenza B virus/isolation & purification , Multiplex Polymerase Chain Reaction/methods , Nasopharynx/virology , SARS-CoV-2/isolation & purification , Saliva/virology , Humans , Limit of Detection , Reproducibility of Results
9.
Biosens Bioelectron ; 203: 114032, 2022 May 01.
Article in English | MEDLINE | ID: covidwho-1729564

ABSTRACT

SARS-CoV-2 variants of concern (VOCs) contain several single-nucleotide variants (SNVs) at key sites in the receptor-binding region (RBD) that enhance infectivity and transmission, as well as cause immune escape, resulting in an aggravation of the coronavirus disease 2019 (COVID-19) pandemic. Emerging VOCs have sparked the need for a diagnostic method capable of simultaneously monitoring these SNVs. To date, no highly sensitive, efficient clinical tool exists to monitor SNVs simultaneously. Here, an encodable multiplex microsphere-phase amplification (MMPA) sensing platform that combines primer-coded microsphere technology with dual fluorescence decoding strategy to detect SARS-CoV-2 RNA and simultaneously identify 10 key SNVs in the RBD. MMPA limits the amplification refractory mutation system PCR (ARMS-PCR) reaction for specific target sequence to the surface of a microsphere with specific fluorescence coding. This effectively solves the problem of non-specific amplification among primers and probes in multiplex PCR. For signal detection, specific fluorescence codes inside microspheres are used to determine the corresponding relationship between the microspheres and the SNV sites, while the report probes hybridized with PCR products are used to detect the microsphere amplification intensity. The MMPA platform offers a lower SARS-CoV-2 RNA detection limit of 28 copies/reaction, the ability to detect a respiratory pathogen panel without cross-reactivity, and a SNV analysis accuracy level comparable to that of sequencing. Moreover, this super-multiple parallel SNVs detection method enables a timely updating of the panel of detected SNVs that accompanies changing VOCs, and presents a clinical availability that traditional sequencing methods do not.


Subject(s)
Biosensing Techniques , COVID-19 , COVID-19/diagnosis , Humans , Microspheres , Multiplex Polymerase Chain Reaction , Mutation , RNA, Viral/genetics , SARS-CoV-2/genetics
10.
Arch Virol ; 167(4): 1141-1144, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1709461

ABSTRACT

Detection of mutations by multiplex real-time RT-PCR is a widely used method for the screening of SARS-CoV-2 variants, but this method has several limitations. We describe three cases in which a Mu strain containing the mutation K417N was initially misclassified as the Beta variant. We recommend the detection of P681H to distinguish between these two variants. Our experience highlights the importance of keeping track of new variants and mutations in order to adapt the current workflows.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Multiplex Polymerase Chain Reaction , Mutation , SARS-CoV-2/genetics
11.
J Infect Chemother ; 28(6): 729-734, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1705478

ABSTRACT

INTRODUCTION: Rapid, simple, and accurate methods are required to diagnose coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study aimed to evaluate the performance of the QIAstat-Dx Respiratory SARS-CoV-2 Panel (QIAstat-SARS-CoV-2), a rapid multiplex PCR assay for SARS-CoV-2 detection. METHODS: Nasopharyngeal swabs (NPS) that were obtained from patients with COVID-19 who were diagnosed at the National Center for Global Health and Medicine were used in this study. When the NPS samples were found to be negative for SARS-CoV-2 after treatment, they were used as negative samples. We evaluated the performance of the QIAstat-SARS-CoV-2 comparing SARS-CoV-2 detection with the National Institute of Infectious Diseases in Japan-recommended real-time polymerase chain reaction (RT-PCR) method (NIID-RT-PCR). RESULTS: In total, 45 NPS samples were analyzed. The proportion of overall agreement between QIAstat-SARS-CoV-2 and NIID-RT-PCR on 45 samples was 91.0% with a sensitivity of 84.0% (21/25), specificity at 100% (20/20), negative predictive value at 83.3% (20/24), and positive predictive value at 100% (21/21). There were no patients with co-infections with pathogens other than SARS-CoV-2. CONCLUSIONS: QIAstat-SARS-CoV-2 showed a high agreement in comparison with the NIID-RT-PCR for the detection of SARS-CoV-2. The QIAstat-SARS-CoV-2 also provided a rapid and accurate diagnosis for COVID-19, even when the concurrent detection of other respiratory pathogens was desired, and therefore, has the potential to direct appropriate therapy and infection control precautions.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Multiplex Polymerase Chain Reaction/methods , Respiratory System , SARS-CoV-2/genetics , Sensitivity and Specificity
12.
J Virol Methods ; 301: 114462, 2022 03.
Article in English | MEDLINE | ID: covidwho-1693167

ABSTRACT

Emerging SARS-CoV-2 variants of concern (VOC) have been associated with enhanced transmissibility and immune escape. Next-generation sequencing (NGS) of the whole genome is the gold standard for variant identification for surveillance but is time-consuming and costly. Rapid and cost-effective assays that detect SARS-CoV-2 variants are needed. We evaluated Allplex SARS-CoV-2 Master Assay and Variants I Assay to detect HV69/70 deletion, Y144 deletion, E484K, N501Y, and P681H spike mutations in 248 positive samples collected in Kuala Lumpur, Malaysia, between January and May 2021. Spike variants were detected in 78/248 (31.5 %), comprising 60 VOC B.1.351 (beta) and 18 B.1.1.7 (alpha). With NGS as reference for 115 samples, the sensitivity for detecting the spike mutations was 98.7 % with the Master Assay and 100 % with the Variants I Assay. The emergence of beta variants correlated with increasing COVID-19 infections in Malaysia. The prevalence of alpha VOC and lineage B.1.466.2 was low. These assays detect mutations present in alpha, beta and gamma VOCs. Of the VOCs which have subsequently emerged, the assays should detect omicron (B.1.1.529) but not B.1.617.2 (delta). In conclusion, spike variant PCR assays can be used to rapidly monitor selected SARS-CoV-2 VOCs in resource-limited settings, but require updates as new variants emerge.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Malaysia , Multiplex Polymerase Chain Reaction , Mutation , Reverse Transcriptase Polymerase Chain Reaction
13.
PLoS One ; 17(2): e0263341, 2022.
Article in English | MEDLINE | ID: covidwho-1690730

ABSTRACT

Rapid and accurate detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for the successful control of the current global COVID-19 pandemic. The real-time reverse transcription polymerase chain reaction (Real-time RT-PCR) is the most widely used detection technique. This research describes the development of two novel multiplex real-time RT-PCR kits, AccuPower® COVID-19 Multiplex Real-Time RT-PCR Kit (NCVM) specifically designed for use with the ExiStation™48 system (comprised of ExiPrep™48 Dx and Exicycler™96 by BIONEER, Korea) for sample RNA extraction and PCR detection, and AccuPower® SARS-CoV-2 Multiplex Real-Time RT-PCR Kit (SCVM) designed to be compatible with manufacturers' on-market PCR instruments. The limit of detection (LoD) of NCVM was 120 copies/mL and the LoD of the SCVM was 2 copies/µL for both the Pan-sarbecovirus gene and the SARS-CoV-2 gene. The AccuPower® kits demonstrated high precision with no cross reactivity to other respiratory-related microorganisms. The clinical performance of AccuPower® kits was evaluated using the following clinical samples: sputum and nasopharyngeal/oropharyngeal swab (NPS/OPS) samples. Overall agreement of the AccuPower® kits with a Food and Drug Administration (FDA) approved emergency use authorized commercial kit (STANDARD™ M nCoV Real-Time Detection kit, SD BIOSENSOR, Korea) was above 95% (Cohen's kappa coefficient ≥ 0.95), with a sensitivity of over 95%. The NPS/OPS specimen pooling experiment was conducted to verify the usability of AccuPower® kits on pooled samples and the results showed greater than 90% agreement with individual NPS/OPS samples. The clinical performance of AccuPower® kits with saliva samples was also compared with NPS/OPS samples and demonstrated over 95% agreement (Cohen's kappa coefficient > 0.95). This study shows the BIONEER NCVM and SCVM assays are comparable with the current standard confirmation assay and are suitable for effective clinical management and control of SARS-CoV-2.


Subject(s)
COVID-19/virology , Multiplex Polymerase Chain Reaction , Nasopharynx/virology , Oropharynx/virology , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Saliva/virology , Sputum/virology , Cross Reactions , Humans , Limit of Detection , Sensitivity and Specificity
14.
J Mol Diagn ; 24(4): 309-319, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1665205

ABSTRACT

Variants of concern (VOC) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including alpha, beta, gamma, delta, and omicron, threaten to prolong the pandemic, leading to more global morbidity and mortality. Genome sequencing is the mainstay of tracking the evolution of the virus, but is costly, slow, and not easily accessible. Multiplex quantitative RT-PCR assays for SARS-CoV-2 have been developed that identify all VOCs as well as other mutations of interest in the viral genome, nine mutations in total, using single-nucleotide discriminating molecular beacons. The presented variant molecular beacon assays showed a limit of detection of 50 copies of viral RNA, with 100% specificity. Twenty-six SARS-CoV-2-positive patient samples were blinded and tested using a two-tube assay. When testing patient samples, the assay was in full agreement with results from deep sequencing with a sensitivity and specificity of 100% (26 of 26). We have used our design methodology to rapidly design an assay that detects the new omicron variant. This omicron assay was used to accurately identify this variant in 17 of 33 additional patient samples. These quantitative RT-PCR assays identify all currently circulating VOCs of SARS-CoV-2, as well as other important mutations in the spike protein coding sequence. These assays can be easily implemented on broadly available five-color thermal cyclers and will help track the spread of these variants.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Multiplex Polymerase Chain Reaction , Mutation , SARS-CoV-2/genetics
15.
Int J Infect Dis ; 112: 52-54, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1654529

ABSTRACT

Complementing whole genome sequencing strategies with high-throughput multiplex RT-qPCR genotyping allows for more comprehensive and real-time tracking of SARS-CoV-2 variants of concern. During the second and third waves of COVID-19 in Qatar, PCR genotyping, combined with Sanger sequencing of un-typeable samples, was employed to describe the epidemiology of the Alpha, Beta and Delta variants. A total of 9792 nasopharyngeal PCR-positive samples collected between April-June 2021 were successfully genotyped, revealing the importation and transmission dynamics of these three variants in Qatar.


Subject(s)
COVID-19 , SARS-CoV-2 , Genotype , Humans , Multiplex Polymerase Chain Reaction , Qatar/epidemiology
16.
PLoS One ; 17(1): e0262874, 2022.
Article in English | MEDLINE | ID: covidwho-1643288

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has circulated worldwide and causes coronavirus disease 2019 (COVID-19). At the onset of the COVID-19 pandemic, infection control measures were taken, such as hand washing, mask wearing, and behavioral restrictions. However, it is not fully clear how the effects of these non-pharmaceutical interventions changed the prevalence of other pathogens associated with respiratory infections. In this study, we collected 3,508 nasopharyngeal swab samples from 3,249 patients who visited the Yamanashi Central Hospital in Japan from March 1, 2020 to February 28, 2021. We performed multiplex polymerase chain reaction (PCR) using the FilmArray Respiratory Panel and singleplex quantitative reverse transcription PCR targeting SARS-CoV-2 to detect respiratory disease-associated pathogens. At least one pathogen was detected in 246 (7.0%) of the 3,508 samples. Eleven types of pathogens were detected in the samples collected from March-May 2020, during which non-pharmaceutical interventions were not well implemented. In contrast, after non-pharmaceutical interventions were thoroughly implemented, only five types of pathogens were detected, and the majority were SARS-CoV-2, adenoviruses, or human rhinoviruses / enteroviruses. The 0-9 year age group had a higher prevalence of infection with adenoviruses and human rhinoviruses / enteroviruses compared with those 10 years and older, while those 10 years and older had a higher prevalence of infection with SARS-CoV-2 and other pathogens. These results indicated that non-pharmaceutical interventions likely reduced the diversity of circulating pathogens. Moreover, differences in the prevalence of pathogens were observed among the different age groups.


Subject(s)
Adenoviruses, Human/genetics , COVID-19/epidemiology , Enterovirus/genetics , Respiratory Tract Infections/epidemiology , Rhinovirus/genetics , SARS-CoV-2/genetics , Adenoviruses, Human/classification , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19/virology , Child , Child, Preschool , Enterovirus/classification , Female , Hand Disinfection/methods , Humans , Infant , Infant, Newborn , Japan/epidemiology , Male , Masks/supply & distribution , Middle Aged , Multiplex Polymerase Chain Reaction , Nasopharynx/virology , Prevalence , Quarantine/organization & administration , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/virology , Rhinovirus/classification , SARS-CoV-2/pathogenicity
17.
J Infect Dis ; 225(2): 199-207, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1634219

ABSTRACT

BACKGROUND: Circulation of seasonal non-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) respiratory viruses with syndromic overlap during the coronavirus disease 2019 (COVID-19) pandemic may alter the quality of COVID-19 surveillance, with possible consequences for real-time analysis and delay in implementation of control measures. METHODS: Using a multipathogen susceptible-exposed-infectious-recovered (SEIR) transmission model formalizing cocirculation of SARS-CoV-2 and another respiratory virus, we assessed how an outbreak of secondary virus may affect 2 COVID-19 surveillance indicators: testing demand and positivity. Using simulation, we assessed to what extent the use of multiplex polymerase chain reaction tests on a subsample of symptomatic individuals can help correct the observed SARS-CoV-2 percentage positivity and improve surveillance quality. RESULTS: We find that a non-SARS-CoV-2 epidemic strongly increases SARS-CoV-2 daily testing demand and artificially reduces the observed SARS-CoV-2 percentage positivity for the duration of the outbreak. We estimate that performing 1 multiplex test for every 1000 COVID-19 tests on symptomatic individuals could be sufficient to maintain surveillance of other respiratory viruses in the population and correct the observed SARS-CoV-2 percentage positivity. CONCLUSIONS: This study showed that cocirculating respiratory viruses can distort SARS-CoV-2 surveillance. Correction of the positivity rate can be achieved by using multiplex polymerase chain reaction tests, and a low number of samples is sufficient to avoid bias in SARS-CoV-2 surveillance.


Subject(s)
COVID-19 , Coinfection , Respiratory System/virology , Respiratory Tract Infections/virology , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/virology , Disease Outbreaks , Humans , Models, Theoretical , Multiplex Polymerase Chain Reaction , Pandemics , Polymerase Chain Reaction , Sentinel Surveillance
18.
Int J Infect Dis ; 116: 226-229, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1620727

ABSTRACT

OBJECTIVE: This study aimed to describe the distribution of respiratory pathogens and the occurrence of co-pathogens during the first year of the COVID-19 pandemic. METHODS: We used a multiplex polymerase chain reaction (PCR) panel targeting 23 microorganisms to analyze the oro-pharyngeal samples of patients admitted to our hospital with acute respiratory infection (ARI) between March 1, 2020, and February 28, 2021. We matched 40 to 50 patients who were SARS-CoV-2 positive and SARS-CoV-2 negative per month for age and sex. RESULTS: A total of 939 patients with multiplex PCR test results were included in the study. Respiratory pathogens where detected in only 8/476 (1.6%) patients with COVID-19 versus 87/463 (18.7%) patients with non-COVID-19 ARI patients. Diversity and rates of pathogens vastly differed from previous years but showed seasonal variance. CONCLUSION: Patients with SARS-CoV-2 infection presenting with ARI during the first year of the COVID-19 pandemic demonstrated paucity of respiratory co-pathogens.


Subject(s)
COVID-19 , Respiratory Tract Infections , COVID-19/epidemiology , Humans , Multiplex Polymerase Chain Reaction , Pandemics , Respiratory Tract Infections/epidemiology , SARS-CoV-2
19.
Microbiol Spectr ; 9(3): e0069521, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1597074

ABSTRACT

Bacterial pneumonia is a challenging coronavirus disease 2019 (COVID-19) complication for intensive care unit (ICU) clinicians. Upon its implementation, the FilmArray pneumonia plus (FA-PP) panel's practicability for both the diagnosis and antimicrobial therapy management of bacterial pneumonia was assessed in ICU patients with COVID-19. Respiratory samples were collected from patients who were mechanically ventilated at the time bacterial etiology and antimicrobial resistance were determined using both standard-of-care (culture and antimicrobial susceptibility testing [AST]) and FA-PP panel testing methods. Changes to targeted and/or appropriate antimicrobial therapy were reviewed. We tested 212 samples from 150 patients suspected of bacterial pneumonia. Etiologically, 120 samples were positive by both methods, two samples were culture positive but FA-PP negative (i.e., negative for on-panel organisms), and 90 were negative by both methods. FA-PP detected no culture-growing organisms (mostly Staphylococcus aureus or Pseudomonas aeruginosa) in 19 of 120 samples or antimicrobial resistance genes in two culture-negative samples for S. aureus organisms. Fifty-nine (27.8%) of 212 samples were from empirically treated patients. Antibiotics were discontinued in 5 (33.3%) of 15 patients with FA-PP-negative samples and were escalated/deescalated in 39 (88.6%) of 44 patients with FA-PP-positive samples. Overall, antibiotics were initiated in 87 (72.5%) of 120 pneumonia episodes and were not administered in 80 (87.0%) of 92 nonpneumonia episodes. Antimicrobial-resistant organisms caused 78 (60.0%) of 120 episodes. Excluding 19 colistin-resistant Acinetobacter baumannii episodes, AST confirmed appropriate antibiotic receipt in 101 (84.2%) of 120 episodes for one or more FA-PP-detected organisms. Compared to standard-of-care testing, the FA-PP panel may be of great value in the management of COVID-19 patients at risk of developing bacterial pneumonia in the ICU. IMPORTANCE Since bacterial pneumonia is relatively frequent, suspicion of it in COVID-19 patients may prompt ICU clinicians to overuse (broad-spectrum) antibiotics, particularly when empirical antibiotics do not cover the suspected pathogen. We showed that a PCR-based, culture-independent laboratory assay allows not only accurate diagnosis but also streamlining of antimicrobial therapy for bacterial pneumonia episodes. We report on the actual implementation of rapid diagnostics and its real-life impact on patient treatment, which is a gain over previously published studies on the topic. A better understanding of the role of that or similar PCR assays in routine ICU practice may lead us to appreciate the effectiveness of their implementation during the COVID-19 pandemic.


Subject(s)
COVID-19/complications , Hospitals , Multiplex Polymerase Chain Reaction/methods , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/drug therapy , Aged , Anti-Bacterial Agents/therapeutic use , Bacteria/genetics , COVID-19/diagnosis , COVID-19 Testing/methods , Critical Illness , Female , Humans , Intensive Care Units , Male , Middle Aged , Pandemics , Patient Acuity , Pneumonia, Bacterial/microbiology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
20.
Intern Med ; 60(21): 3497-3501, 2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1572223

ABSTRACT

A 40-year-old woman developed a fever, sore throat, and cough. Coronavirus disease 2019 (COVID-19) was suspected; chest CT showed pan-lobular ground-glass opacity in the bilateral lower lobes suggesting viral pneumonia. Although a reverse transcription loop-mediated isothermal amplification (RT-LAMP) test for COVID-19 using a nasopharyngeal swab was negative, she was hospitalized and isolated because COVID-19 could not be ruled out. After admission, multiplex polymerase chain reaction (PCR) with the FilmArray Respiratory Panel 2.1 from a nasopharyngeal swab was positive for human coronavirus (HCoV) OC43. Therefore, the diagnosis was pneumonia due to HCoV-OC43. Multiplex PCR is useful for differentiating pneumonia due to COVID-19 from that due to other viral pneumonias.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus OC43, Human , Pneumonia, Viral/diagnosis , Adult , COVID-19 , Coronavirus OC43, Human/genetics , Diagnosis, Differential , Female , Humans , Molecular Diagnostic Techniques , Multiplex Polymerase Chain Reaction , Nucleic Acid Amplification Techniques , Pneumonia, Viral/virology
SELECTION OF CITATIONS
SEARCH DETAIL