Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Mycopathologia ; 187(4): 397-404, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1877914

ABSTRACT

Opportunistic infections are serious complications in critically ill COVID-19 patients, especially co-infections with bacterial and fungal agents. Here we report a rare case of bloodstream co-infection by Trichosporon asahii, an emerging yeast, and Acinetobacterbaumannii, an opportunistic nosocomial pathogen, both multidrug resistant, in a tertiary hospital from southern Brazil. A review of the literature regarding similar cases is also included. Treatment with multiple antimicrobials failed, and the patient progressed to death four days after the diagnosis of bacteremia and fungemia.


Subject(s)
COVID-19 , Coinfection , Mycoses , Sepsis , Trichosporon , Antifungal Agents/therapeutic use , Basidiomycota , COVID-19/complications , Coinfection/diagnosis , Coinfection/drug therapy , Humans , Mycoses/diagnosis , Sepsis/microbiology
2.
Curr Opin Pulm Med ; 28(3): 218-224, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1684892

ABSTRACT

PURPOSE OF REVIEW: We aim to examine the most recent findings in the area of invasive pulmonary fungal infections to determine the appropriate/and or lack of prevention measures and treatment of upper fungal respiratory tract infections in the critically ill. RECENT FINDINGS: This will be addressed by focusing on the pathogens and prognosis over different bedridden periods in ICU patients, the occurrence of invasive fungal respiratory superinfections in patients with severe coronavirus disease 2019 which has been recently noted following the SARS-CoV-2 pandemic. Relevant reports referenced within include randomized controlled trials, meta-analyses, observational studies, systematic reviews, and international guidelines, where applicable. Of note, it is clear there is a significant gap in our knowledge regarding whether bacterial and fungal infections in coronavirus disease 2019 are directly attributable to SARS-CoV-2 or a consequence of factors such as managing high numbers of critically unwell patients, and the prolonged duration of mechanical ventilation/ICU admission duration of stay. SUMMARY: An optimal diagnostic algorithm incorporating fungal biomarkers and molecular tools for early and accurate diagnosis of Pneumocystis pneumonia, invasive aspergillosis, candidemia, and endemic mycoses continues to be limited clinically. There is a lack of standardized molecular approach to identify fungal pathogens directly in formalin-fixed paraffin-embedded tissues and suboptimal diagnostic approaches for mould blood cultures, tissue culture processing for Mucorales, and fungal respiratory cultures (i.e., the routine use of bronchoscopic examination in ICU patients with influenza-associated pulmonary aspergillosis) for fungal point-of-care testing to detect and identify new, emerging or underrecognized, rare, or uncommon fungal pathogens.


Subject(s)
COVID-19 , Mycoses , Respiratory Tract Infections , Critical Illness , Humans , Mycoses/diagnosis , Mycoses/drug therapy , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/therapy , SARS-CoV-2
3.
Diagn Cytopathol ; 50(3): 93-98, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1589136

ABSTRACT

BACKGROUND: COVID 19 has been rapidly spreading across the globe. As a result of alteration of the immune milieu by COVID 19 and its treatment, there has been a rise in opportunistic fungal infections particularly Mucormycosis in these patients. Delay in diagnosis of these fungal infections can be fatal. The usual diagnostic modalities used to detect Mucor include potassium hydroxide (KOH) mount, fungal culture, and histopathology. Since histopathology and fungal culture have a long turnaround time we are dependent on KOH mount for rapid results. Here we investigate the role of stained cytology smears in the rapid diagnosis of Mucormycosis. METHODS: A prospective observational study was conducted in a tertiary health care hospital on samples of patients clinically suspected to have Mucormycosis. We performed May Grunwald Giemsa (MGG) and Papanicolaou (PAP) stains on the remnant samples of nasal swabs/scrapings/biopsies after KOH test and fungal culture. We took 16 KOH positive and 16 KOH negative samples. We also examined 16 fresh samples from patients whose earlier samples were reported to be negative on KOH test. RESULTS: The 6/16 KOH positive samples were found to be positive on stained cytology smears and 2 were mixed infections wherein both Mucor and Aspergillus were seen. The 4/16 KOH negative samples were positive for Mucor with one sample having both Mucor and Aspergillus. The 3/16 repeat samples which were earlier negative on KOH test were positive for Mucor. CONCLUSION: Stained cytology smears if used in conjunction with KOH test can increase the overall sensitivity of detection of Mucormycosis and mixed infections.


Subject(s)
COVID-19/pathology , COVID-19/virology , Mucormycosis/pathology , Mucormycosis/virology , SARS-CoV-2/pathogenicity , Biopsy/methods , COVID-19/diagnosis , Female , Humans , Mucormycosis/diagnosis , Mycoses/diagnosis , Mycoses/pathology , Prospective Studies , Specimen Handling/methods , Vaginal Smears/methods
4.
Res Microbiol ; 173(3): 103915, 2022.
Article in English | MEDLINE | ID: covidwho-1540936

ABSTRACT

Despite the scientific advances observed in the recent decades and the emergence of new methodologies, the diagnosis of systemic fungal infections persists as a problematic issue. Fungal cultivation, the standard method that allows a proven diagnosis, has numerous disadvantages, as low sensitivity (only 50% of the patients present positive fungal cultures), and long growth time. These are factors that delay the patient's treatment and, consequently, lead to higher hospital costs. To improve the accuracy and quickness of fungal infections diagnosis, several new methodologies attempt to be implemented in clinical microbiology laboratories. Most of these innovative methods are independent of pathogen isolation, which means that the diagnosis goes from being considered proven to probable. In spite of the advantage of being culture-independent, the majority of the methods lack standardization. PCR-based methods are becoming more and more commonly used, which has earned them an important place in hospital laboratories. This can be perceived now, as PCR-based methodologies have proved to be an essential tool fighting against the COVID-19 pandemic. This review aims to go through the main steps of the diagnosis for systemic fungal infection, from diagnostic classifications, through methodologies considered as "gold standard", to the molecular methods currently used, and finally mentioning some of the more futuristic approaches.


Subject(s)
COVID-19 , Mycoses , COVID-19/diagnosis , Humans , Mycoses/diagnosis , Pandemics , Polymerase Chain Reaction/methods
5.
Clin Infect Dis ; 73(7): e1634-e1644, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1493766

ABSTRACT

BACKGROUND: Fungal coinfection is a recognized complication of respiratory virus infections, increasing morbidity and mortality, but can be readily treated if diagnosed early. An increasing number of small studies describing aspergillosis in coronavirus disease 2019 (COVID-19) patients with severe respiratory distress are being reported, but comprehensive data are lacking. The aim of this study was to determine the incidence, risk factors, and impact of invasive fungal disease in adult COVID-19 patients with severe respiratory distress. METHODS: An evaluation of a national, multicenter, prospective cohort evaluation of an enhanced testing strategy to diagnose invasive fungal disease in COVID-19 intensive care patients. Results were used to generate a mechanism to define aspergillosis in future COVID-19 patients. RESULTS: One-hundred and thirty-five adults (median age: 57, M/F: 2.2/1) were screened. The incidence was 26.7% (14.1% aspergillosis, 12.6% yeast infections). The overall mortality rate was 38%; 53% and 31% in patients with and without fungal disease, respectively (P = .0387). The mortality rate was reduced by the use of antifungal therapy (mortality: 38.5% in patients receiving therapy vs 90% in patients not receiving therapy (P = .008). The use of corticosteroids (P = .007) and history of chronic respiratory disease (P = .05) increased the likelihood of aspergillosis. CONCLUSIONS: Fungal disease occurs frequently in critically ill, mechanically ventilated COVID-19 patients. The survival benefit observed in patients receiving antifungal therapy implies that the proposed diagnostic and defining criteria are appropriate. Screening using a strategic diagnostic approach and antifungal prophylaxis of patients with risk factors will likely enhance the management of COVID-19 patients.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Mycoses , Adult , Humans , Intensive Care Units , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/drug therapy , Invasive Pulmonary Aspergillosis/epidemiology , Middle Aged , Mycoses/diagnosis , Mycoses/epidemiology , Prospective Studies , SARS-CoV-2
6.
Small Methods ; 5(11): e2100713, 2021 11.
Article in English | MEDLINE | ID: covidwho-1437086

ABSTRACT

The past year has established the link between the COVID-19 pandemic and the global spread of severe fungal infections; thus, underscoring the critical need for rapid and realizable fungal disease diagnostics. While in recent years, health authorities, such as the Centers for Disease Control and Prevention, have reported the alarming emergence and spread of drug-resistant pathogenic fungi and warned against the devastating consequences, progress in the diagnosis and treatment of fungal infections is limited. Early diagnosis and patient-tailored therapy are established to be key in reducing morbidity and mortality associated with fungal (and cofungal) infections. As such, antifungal susceptibility testing (AFST) is crucial in revealing susceptibility or resistance of these pathogens and initiating correct antifungal therapy. Today, gold standard AFST methods require several days for completion, and thus this much delayed time for answer limits their clinical application. This review focuses on the advancements made in developing novel AFST techniques and discusses their implications in the context of the practiced clinical workflow. The aim of this work is to highlight the advantages and drawbacks of currently available methods and identify the main gaps hindering their progress toward clinical application.


Subject(s)
Antifungal Agents/therapeutic use , COVID-19/epidemiology , Mycoses/diagnosis , Mycoses/drug therapy , COVID-19/virology , Diagnostic Tests, Routine , Drug Resistance, Fungal , Humans , Microbial Sensitivity Tests , Mycoses/epidemiology , Mycoses/microbiology , Pandemics , SARS-CoV-2/isolation & purification
7.
J Breath Res ; 15(4)2021 09 13.
Article in English | MEDLINE | ID: covidwho-1379422

ABSTRACT

The evidence that severe coronavirus disease 2019 (COVID-19) is a risk factor for development of mycotic respiratory infection with an increased mortality is rising. Immunosuppressed are among the most susceptible patients andAspergillusspecies is the most feared superinfection. In this study we evaluated mycotic isolation prevalence on bronchoalveolar lavage (BAL) of patients who underwent bronchoscopy in search of severe acute respiratory coronavirus 2 (SARS-CoV-2) RNA. Moreover, we described the clinical characteristics and main outcomes of these patients. We included 118 patients, 35.9% of them were immunosuppressed for different reasons: in 23.7% we isolated SARS-CoV-2 RNA, in 33.1% we identified at least one mycotic agent and both in 15.4%. On BAL we observed in three casesAspergillusspp, in six casesPneumocystisand in 32Candidaspp. The prevalence of significant mold infection was 29.3% and 70.7% of cases were false positive or clinically irrelevant infections. In-hospital mortality of patients with fungal infection was 15.3%. The most frequent computed tomography (CT) pattern, evaluated with the Radiological Society of North America consensus statement, among patients with a mycotic pulmonary infection was the atypical one (p< 0.0001). Mycotic isolation on BAL may be interpreted as an innocent bystander, but its identification could influence the prognosis of patients, especially in those who need invasive investigations during the COVID-19 pandemic; BAL plays a fundamental role in resolving clinical complex cases, especially in immunosuppressed patients independently from radiological features, without limiting its role in ruling out SARS-CoV-2 infection.


Subject(s)
Bronchoalveolar Lavage , COVID-19/diagnosis , COVID-19/epidemiology , Mycoses/diagnosis , Mycoses/epidemiology , Nasopharynx/microbiology , SARS-CoV-2 , Aged , Aged, 80 and over , COVID-19/virology , Female , Humans , Immunocompromised Host , Male , Middle Aged , Mycoses/microbiology , Nasopharynx/virology , Pandemics , Prevalence , Prognosis , RNA, Viral/analysis , RNA, Viral/genetics , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
8.
Pediatr Ann ; 50(7): e297-e303, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1311399

ABSTRACT

Allergic fungal sinusitis (AFS) is the most common type of fungal sinus infection. AFS is a robust allergic reaction to inhaled soil fungi that causes sinus inflammation, and the fungal debris then accumulates in the sinus cavities. This accumulation can cause nasal polyps, facial pain and pressure, bone remodeling of the face, and even bone erosion, which can cause damage to the eyes and brain. AFS can also cause thick, sticky nasal mucus and postnasal drip, and it can affect the sense of smell. Most patients with AFS are adolescents who also have chronic symptoms of allergic rhinitis and asthma. Endoscopic sinus surgery to remove the disease and open the sinus cavities is the main treatment approach. Adjuvant immunotherapy is helpful in reducing the inflammatory response and preventing future recurrence of this allergy-mediated condition. [Pediatr Ann. 2021;50(7):e297-e303.].


Subject(s)
Hypersensitivity , Mycoses , Nasal Polyps , Sinusitis , Adolescent , Child , Endoscopy , Humans , Mycoses/diagnosis , Mycoses/therapy , Sinusitis/diagnosis , Sinusitis/microbiology , Sinusitis/therapy
9.
Infect Dis Clin North Am ; 35(2): 261-277, 2021 06.
Article in English | MEDLINE | ID: covidwho-1232974

ABSTRACT

Various uncommon fungal pathogens have been increasingly identified as causes of disseminated and invasive fungal disease (IFD) worldwide. Growing recognition and clinical knowledge of these emerging fungal pathogens has occurred through improved molecular diagnostics, nucleic sequence databases, and taxonomic reclassification of medically significant fungi. However, emerging fungal diseases carry significant morbidity and mortality and, due to a paucity of published literature, the collective clinical experience with these fungi is often limited. In this review, we focus on unusual emerging fungal pathogens not extensively covered elsewhere in this issue of Infectious Diseases Clinics of North America.


Subject(s)
Communicable Diseases, Emerging , Invasive Fungal Infections , Mycoses , Opportunistic Infections , Communicable Diseases, Emerging/diagnosis , Communicable Diseases, Emerging/drug therapy , Communicable Diseases, Emerging/epidemiology , Fungi , Humans , Invasive Fungal Infections/diagnosis , Invasive Fungal Infections/drug therapy , Invasive Fungal Infections/epidemiology , Mycoses/diagnosis , Mycoses/epidemiology , North America , Opportunistic Infections/diagnosis , Opportunistic Infections/drug therapy , Opportunistic Infections/epidemiology
10.
Arch Pathol Lab Med ; 145(2): 145-167, 2021 02 01.
Article in English | MEDLINE | ID: covidwho-1207907

ABSTRACT

CONTEXT.­: Point-of-care testing (POCT) is inherently spatial, that is, performed where needed, and intrinsically temporal, because it accelerates decision-making. POCT efficiency and effectiveness have the potential to facilitate antimicrobial resistance (AMR) detection, decrease risks of coinfections for critically ill patients with coronavirus infectious disease 2019 (COVID-19), and improve the cost-effectiveness of health care. OBJECTIVES.­: To assess AMR identification by using POCT, describe the United States AMR Diagnostic Challenge, and improve global standards of care for infectious diseases. DATA SOURCES.­: PubMed, World Wide Web, and other sources were searched for papers focusing on AMR and POCT. EndNote X9.1 (Clarivate Analytics) consolidated abstracts, URLs, and PDFs representing approximately 500 articles were assessed for relevance. Panelist insights at Tri•Con 2020 in San Francisco and finalist POC technologies competing for a US $20,000,000 AMR prize are summarized. CONCLUSIONS.­: Coinfections represent high risks for COVID-19 patients. POCT potentially will help target specific pathogens, refine choices for antimicrobial drugs, and prevent excess morbidity and mortality. POC assays that identify patterns of pathogen resistance can help tell us how infected individuals spread AMR, where geospatial hotspots are located, when delays cause death, and how to deploy preventative resources. Shared AMR data "clouds" could help reduce critical care burden during pandemics and optimize therapeutic options, similar to use of antibiograms in individual hospitals. Multidisciplinary health care personnel should learn the principles and practice of POCT, so they can meet needs with rapid diagnostic testing. The stakes are high. Antimicrobial resistance is projected to cause millions of deaths annually and cumulative financial loses in the trillions by 2050.


Subject(s)
COVID-19/microbiology , Coinfection/microbiology , Drug Resistance, Bacterial , Drug Resistance, Fungal , Microbial Sensitivity Tests/methods , Point-of-Care Systems , Awards and Prizes , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , COVID-19/diagnosis , COVID-19/mortality , Coinfection/diagnosis , Humans , Microbial Sensitivity Tests/standards , Mycoses/diagnosis , Mycoses/microbiology , Point-of-Care Systems/standards , Spatial Analysis , United States/epidemiology
11.
Infect Control Hosp Epidemiol ; 42(1): 84-88, 2021 01.
Article in English | MEDLINE | ID: covidwho-1003194

ABSTRACT

We observed bacterial or fungal coinfections in COVID-19 patients admitted between March 1 and April 18, 2020 (152 of 4,267, 3.6%). Among these patients, mortality was 57%; 74% were intubated; 51% with bacteremia had central venous catheters. Time to culture positivity was 6-7 days, and 79% had received prior antibiotics. Metallo-ß-lactamase-producing E. cloacae coinfections occurred in 5 patients.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacteremia , COVID-19 , Coinfection , Mycoses , SARS-CoV-2/isolation & purification , Bacteremia/diagnosis , Bacteremia/epidemiology , Bacteremia/therapy , COVID-19/epidemiology , COVID-19/microbiology , COVID-19/therapy , Central Venous Catheters/microbiology , Central Venous Catheters/statistics & numerical data , Coinfection/epidemiology , Coinfection/microbiology , Coinfection/virology , Drug Resistance, Bacterial , Female , Humans , Male , Microbiological Techniques/methods , Microbiological Techniques/statistics & numerical data , Middle Aged , Mycoses/diagnosis , Mycoses/epidemiology , Mycoses/therapy , New York/epidemiology , Outcome and Process Assessment, Health Care , Respiration, Artificial/statistics & numerical data , Severity of Illness Index
13.
Ophthalmic Plast Reconstr Surg ; 37(2): e40-e80, 2021.
Article in English | MEDLINE | ID: covidwho-940832

ABSTRACT

Acute invasive fungal rhinosinusitis is a rare, although highly morbid, infection primarily affecting immunosuppressed individuals. The same population is at particularly high risk of complications and mortality in the setting of SARS-CoV-2 infection and coronavirus disease 2019 (COVID-19)-related acute respiratory distress syndrome. The authors present a case of acute invasive fungal rhino-orbital mucormycosis in a patient with COVID-19 and discuss the prevalence, diagnosis, and treatment of fungal coinfections in COVID-19. Prompt recognition, initiation of therapy, and consideration of the challenges of rapidly evolving COVID-19 therapy guidelines are important for improving patient survival.


Subject(s)
COVID-19/complications , Mucormycosis/complications , Mycoses/diagnosis , Respiratory Distress Syndrome/diagnosis , SARS-CoV-2/isolation & purification , Sinusitis , Humans , Mucormycosis/diagnosis , Nose Diseases/microbiology , Orbital Diseases/microbiology , Respiratory Distress Syndrome/etiology
14.
Future Microbiol ; 15: 1405-1413, 2020 09.
Article in English | MEDLINE | ID: covidwho-883809

ABSTRACT

As the global COVID-19 pandemic spreads worldwide, new challenges arise in the clinical landscape. The need for reliable diagnostic methods, treatments and vaccines for COVID-19 is the major worldwide urgency. While these goals are especially important, the growing risk of co-infections is a major threat not only to the health systems but also to patients' lives. Although there is still not enough published statistical data, co-infections in COVID-19 patients found that a significant number of patients hospitalized with COVID-19 developed secondary systemic mycoses that led to serious complications and even death. This review will discuss some of these important findings with the major aim to warn the population about the high risk of concomitant systemic mycoses in individuals weakened by COVID-19.


Subject(s)
Coronavirus Infections/complications , Mycoses/complications , Opportunistic Infections/complications , Pneumonia, Viral/complications , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/pathology , Glucocorticoids/adverse effects , Humans , Invasive Fungal Infections/complications , Invasive Fungal Infections/diagnosis , Invasive Fungal Infections/epidemiology , Invasive Fungal Infections/microbiology , Lung Diseases, Fungal/complications , Lung Diseases, Fungal/diagnosis , Lung Diseases, Fungal/epidemiology , Lung Diseases, Fungal/microbiology , Mycoses/diagnosis , Mycoses/epidemiology , Mycoses/microbiology , Opportunistic Infections/diagnosis , Opportunistic Infections/epidemiology , Opportunistic Infections/microbiology , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/pathology , Risk , SARS-CoV-2
15.
Eye Contact Lens ; 46(6): e66-e68, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-846242

ABSTRACT

We report a rare case of dematiaceous fungus colonization in the therapeutic bandage contact lens (BCL), in an eye with peripheral ulcerative keratitis. Bandage contact lens removal and appropriate treatment resulted in improvement of the visual acuity and prevented the spread of fungus to the underlying ocular structures. Microbiological evaluation of the BCL showed dematiaceous fungal filaments, and the fungus was identified as Bipolaris species. In patients with pigmented plaque-like lesions, with BCL in situ, dematiaceous fungus on the undersurface of the BCL should be kept in mind. Patient education regarding the importance of frequent BCL replacement, proper ocular hygiene, and timely follow-up should be emphasized.


Subject(s)
Ascomycota/isolation & purification , Betacoronavirus , Contact Lenses/microbiology , Corneal Ulcer/microbiology , Coronavirus Infections/epidemiology , Eye Infections, Fungal/microbiology , Mycoses/microbiology , Pneumonia, Viral/epidemiology , Aged , Antifungal Agents/therapeutic use , Bandages , COVID-19 , Carboxymethylcellulose Sodium/therapeutic use , Corneal Ulcer/diagnosis , Corneal Ulcer/drug therapy , Eye Infections, Fungal/diagnosis , Eye Infections, Fungal/drug therapy , Humans , Lost to Follow-Up , Male , Mycoses/diagnosis , Mycoses/drug therapy , Natamycin/therapeutic use , Pandemics , SARS-CoV-2 , Tomography, Optical Coherence , Visual Acuity
17.
Clin Microbiol Infect ; 26(10): 1395-1399, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-702950

ABSTRACT

OBJECTIVES: To investigate the incidence of bacterial and fungal coinfection of hospitalized patients with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in this retrospective observational study across two London hospitals during the first UK wave of coronavirus disease 2019 (COVID-19). METHODS: A retrospective case series of hospitalized patients with confirmed SARS-CoV-2 by PCR was analysed across two acute NHS hospitals (20 February-20 April 2020; each isolate reviewed independently in parallel). This was contrasted to a control group of influenza-positive patients admitted during the 2019-2020 flu season. Patient demographics, microbiology and clinical outcomes were analysed. RESULTS: A total of 836 patients with confirmed SARS-CoV-2 were included; 27 (3.2%) of 836 had early confirmed bacterial isolates identified (0-5 days after admission), rising to 51 (6.1%) of 836 throughout admission. Blood cultures, respiratory samples, pneumococcal or Legionella urinary antigens and respiratory viral PCR panels were obtained from 643 (77%), 110 (13%), 249 (30%), 246 (29%) and 250 (30%) COVID-19 patients, respectively. A positive blood culture was identified in 60 patients (7.1%), of which 39 were classified as contaminants. Bacteraemia resulting from respiratory infection was confirmed in two cases (one each community-acquired Klebsiella pneumoniae and ventilator-associated Enterobacter cloacae). Line-related bacteraemia was identified in six patients (three Candida, two Enterococcus spp. and one Pseudomonas aeruginosa). All other community-acquired bacteraemias (n = 16) were attributed to nonrespiratory infection. Zero concomitant pneumococcal, Legionella or influenza infection was detected. A low yield of positive respiratory cultures was identified; Staphylococcus aureus was the most common respiratory pathogen isolated in community-acquired coinfection (4/24; 16.7%), with pseudomonas and yeast identified in late-onset infection. Invasive fungal infections (n = 3) were attributed to line-related infections. Comparable rates of positive coinfection were identified in the control group of confirmed influenza infection; clinically relevant bacteraemias (2/141; 1.4%), respiratory cultures (10/38; 26.3%) and pneumococcal-positive antigens (1/19; 5.3%) were low. CONCLUSIONS: We found a low frequency of bacterial coinfection in early COVID-19 hospital presentation, and no evidence of concomitant fungal infection, at least in the early phase of COVID-19.


Subject(s)
Bacterial Infections/epidemiology , Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , Influenza, Human/epidemiology , Mycoses/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Respiratory Tract Infections/epidemiology , Age Factors , Aged , Aged, 80 and over , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Bacterial Infections/virology , COVID-19 , Coinfection , Community-Acquired Infections , Coronavirus Infections/diagnosis , Coronavirus Infections/microbiology , Coronavirus Infections/virology , Female , Hospitalization , Humans , Influenza, Human/diagnosis , Influenza, Human/microbiology , Influenza, Human/virology , Male , Middle Aged , Mycoses/diagnosis , Mycoses/microbiology , Mycoses/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/microbiology , Pneumonia, Viral/virology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , United Kingdom/epidemiology
18.
Mycopathologia ; 185(4): 599-606, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-691142

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been sweeping across the globe. Based on a retrospective analysis of SARS and influenza data from China and worldwide, we surmise that the fungal co-infections associated with global COVID-19 might be missed or misdiagnosed. Although there are few publications, COVID-19 patients, especially severely ill or immunocompromised, have a higher probability of suffering from invasive mycoses. Aspergillus and Candida infections in COVID-19 patients will require early detection by a comprehensive diagnostic intervention (histopathology, direct microscopic examination, culture, (1,3)-ß-D-glucan, galactomannan, and PCR-based assays) to ensure effective treatments. We suggest it is prudent to assess the risk factors, the types of invasive mycosis, the strengths and limitations of diagnostic methods, clinical settings, and the need for standard or individualized treatment in COVID-19 patients. We provide a clinical flow diagram to assist the clinicians and laboratory experts in the management of aspergillosis, candidiasis, mucormycosis, or cryptococcosis as co-morbidities in COVID-19 patients.


Subject(s)
Coronavirus Infections/complications , Mycoses/complications , Pneumonia, Viral/complications , COVID-19 , Candidiasis, Invasive/complications , Candidiasis, Invasive/diagnosis , Candidiasis, Invasive/therapy , China , Coronavirus Infections/diagnosis , Cryptococcosis/complications , Cryptococcosis/diagnosis , Cryptococcosis/therapy , Humans , Invasive Pulmonary Aspergillosis/complications , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/therapy , Mucormycosis/complications , Mucormycosis/diagnosis , Mucormycosis/therapy , Mycoses/diagnosis , Mycoses/therapy , Pandemics , Pneumonia, Viral/diagnosis
19.
Mycopathologia ; 185(4): 607-611, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-691056

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic emerged in Wuhan, China, in late 2109, and has rapidly spread around the world. Until May 25, 2020, there were 133,521 confirmed COVID-19 cases and 7359 deaths in Iran. The role of opportunistic fungal infections in the morbidity and mortality of COVID-19 patients remains less defined. Based on our multicenter experiences, we categorized the risks of opportunistic fungal infections in COVID-19 patients in Iran. The COVID-19 patients at high risk included those with acute respiratory distress syndrome, in intensive care units, receiving broad-spectrum antibiotics, immunosuppressants or corticosteroid, and supported by invasive or noninvasive ventilation. The patients were most likely to develop pulmonary aspergillosis, oral candidiasis, or pneumocystis pneumonia. Most diagnoses were probable as the accurate diagnosis of opportunistic fungal infections remains challenging in resource-poor settings. We summarize the clinical signs and laboratory tests needed to confirm candidiasis, aspergillosis, or pneumocystosis in our COVID-19 patients.


Subject(s)
Coronavirus Infections/complications , Mycoses/complications , Opportunistic Infections/complications , Pneumonia, Viral/complications , COVID-19 , Candidiasis, Oral/complications , Candidiasis, Oral/diagnosis , Candidiasis, Oral/epidemiology , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Humans , Iran/epidemiology , Mycoses/diagnosis , Mycoses/epidemiology , Opportunistic Infections/diagnosis , Opportunistic Infections/epidemiology , Pandemics , Pharyngeal Diseases/complications , Pharyngeal Diseases/diagnosis , Pharyngeal Diseases/epidemiology , Pharyngeal Diseases/microbiology , Pneumocystis carinii , Pneumonia, Pneumocystis/complications , Pneumonia, Pneumocystis/diagnosis , Pneumonia, Pneumocystis/epidemiology , Pneumonia, Pneumocystis/microbiology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pulmonary Aspergillosis/complications , Pulmonary Aspergillosis/diagnosis , Pulmonary Aspergillosis/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL