ABSTRACT
Abstract Background In Brazil the factors involved in the risk of death in patients with COVID-19 have not been well established. Objective To analyze whether elevations of high-sensitivity troponin I (hTnI) levels influence the mortality of patients with COVID-19. Methods Clinical and laboratory characteristics of hospitalized patients with COVID-19 were collected upon hospital admission. Univariate and binary logistic regression analyzes were performed to assess the factors that influence mortality. P-value<0.05 was considered significant. Results This study analyzed192 patients who received hospital admission between March 16 and June 2, 2020 and who were discharged or died by July 2, 2020. The mean age was 70±15 years, 80 (41.7%) of whom were women. In comparison to those who were discharged, the 54 (28.1%) who died were older (79±12 vs 66±15years; P=0.004), and with a higher Charlson´s index (5±2 vs 3±2; P=0.027). More patients, aged≥60years (P <0.0001), Charlson´s index>1 (P=0.004), lung injury>50% in chest computed tomography (P=0.011), with previous coronary artery disease (P=0.037), hypertension (P=0.033), stroke (P=0.008), heart failure (P=0.002), lymphocytopenia (P=0.024), high D-dimer (P=0.024), high INR (P=0.003), hTnI (P<0.0001), high creatinine (P<0.0001), invasive mechanical ventilation (P<0.0001), renal replacement therapy (P<0.0001), vasoactive amine (P<0.0001), and transfer to the ICU (P=0.001), died when compared to those who were discharged. In logistic regression analysis, elevated hTnI levels (OR=9.504; 95% CI=1.281-70.528; P=0.028) upon admission, and the need for mechanical ventilation during hospitalization (OR=46.691; 95% CI=2.360-923.706; P=0.012) increased the chance of in-hospital mortality. Conclusion This study suggests that in COVID-19 disease, myocardial injury upon hospital admission is a harbinger of poor prognosis.
Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Young Adult , Troponin I/blood , COVID-19/mortality , Myocarditis/complications , Arrhythmias, Cardiac/complications , Arrhythmias, Cardiac/etiology , Retrospective Studies , Cohort Studies , COVID-19/complicationsABSTRACT
Importance: Cardiac dysfunction and myocarditis have emerged as serious complications of multisystem inflammatory syndrome in children (MIS-C) and vaccines against SARS-CoV-2. Understanding the role of autoantibodies in these conditions is essential for guiding MIS-C management and vaccination strategies in children. Objective: To investigate the presence of anticardiac autoantibodies in MIS-C or COVID-19 vaccine-induced myocarditis. Design, Setting, and Participants: This diagnostic study included children with acute MIS-C or acute vaccine myocarditis, adults with myocarditis or inflammatory cardiomyopathy, healthy children prior to the COVID-19 pandemic, and healthy COVID-19 vaccinated adults. Participants were recruited into research studies in the US, United Kingdom, and Austria starting January 2021. Immunoglobulin G (IgG), IgM, and IgA anticardiac autoantibodies were identified with immunofluorescence staining of left ventricular myocardial tissue from 2 human donors treated with sera from patients and controls. Secondary antibodies were fluorescein isothiocyanate-conjugated antihuman IgG, IgM, and IgA. Images were taken for detection of specific IgG, IgM, and IgA deposits and measurement of fluorescein isothiocyanate fluorescence intensity. Data were analyzed through March 10, 2023. Main Outcomes and Measures: IgG, IgM and IgA antibody binding to cardiac tissue. Results: By cohort, there were a total of 10 children with MIS-C (median [IQR] age, 10 [13-14] years; 6 male), 10 with vaccine myocarditis (median age, 15 [14-16] years; 10 male), 8 adults with myocarditis or inflammatory cardiomyopathy (median age, 55 [46-63] years; 6 male), 10 healthy pediatric controls (median age, 8 [13-14] years; 5 male), and 10 healthy vaccinated adults (all older than 21 years, 5 male). No antibody binding above background was observed in human cardiac tissue treated with sera from pediatric patients with MIS-C or vaccine myocarditis. One of the 8 adult patients with myocarditis or cardiomyopathy had positive IgG staining with raised fluorescence intensity (median [IQR] intensity, 11â¯060 [10â¯223-11â¯858] AU). There were no significant differences in median fluorescence intensity in all other patient cohorts compared with controls for IgG (MIS-C, 6033 [5834-6756] AU; vaccine myocarditis, 6392 [5710-6836] AU; adult myocarditis or inflammatory cardiomyopathy, 5688 [5277-5990] AU; healthy pediatric controls, 6235 [5924-6708] AU; healthy vaccinated adults, 7000 [6423-7739] AU), IgM (MIS-C, 3354 [3110-4043] AU; vaccine myocarditis, 3843 [3288-4748] AU; healthy pediatric controls, 3436 [3313-4237] AU; healthy vaccinated adults, 3543 [2997-4607] AU) and IgA (MIS-C, 3559 [2788-4466] AU; vaccine myocarditis, 4389 [2393-4780] AU; healthy pediatric controls, 3436 [2425-4077] AU; healthy vaccinated adults, 4561 [3164-6309] AU). Conclusions and Relevance: This etiological diagnostic study found no evidence of antibodies from MIS-C and COVID-19 vaccine myocarditis serum binding cardiac tissue, suggesting that the cardiac pathology in both conditions is unlikely to be driven by direct anticardiac antibody-mediated mechanisms.
Subject(s)
COVID-19 , Myocarditis , Adult , Humans , Male , Child , Adolescent , Middle Aged , Myocarditis/etiology , COVID-19 Vaccines/adverse effects , Autoantibodies , COVID-19/prevention & control , Pandemics , SARS-CoV-2 , Vaccination , Immunoglobulin G , Immunoglobulin A , Fluoresceins , Immunoglobulin MABSTRACT
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been the most dangerous threat to public health worldwide for the last few years, which led to the development of the novel mRNA vaccine (BNT162b2). However, BNT162b2 vaccination is known to be associated with myocarditis. Here, as an attempt to determine the pathogenesis of the disease and to develop biomarkers to determine whether subjects likely proceed to myocarditis after vaccination, we conducted a time series analysis of peripheral blood mononuclear cells of a patient with BNT162b2-induced myocarditis. Single-cell RNA sequence analysis identified monocytes as the cell clusters with the most dynamic changes. To identify distinct gene expression signatures, we compared monocytes of BNT162b2-induced myocarditis with monocytes under various conditions, including SARS-CoV-2 infection, BNT162b2 vaccination, and Kawasaki disease, a disease similar to myocarditis. Representative changes in the transcriptomic profile of classical monocytes include the upregulation of genes related to fatty acid metabolism and downregulation of transcription factor AP-1 activity. This study provides, for the first time, the importance of classical monocytes in the pathogenesis of myocarditis following BNT162b2 vaccination and presents the possibility that vaccination affects monocytes, further inducing their differentiation and infiltration into the heart.
Subject(s)
COVID-19 , Myocarditis , BNT162 Vaccine , Fatty Acids , Humans , Leukocytes, Mononuclear , Monocytes , Myocarditis/genetics , SARS-CoV-2 , Transcription Factor AP-1 , Transcriptome , Vaccines, Synthetic , mRNA VaccinesABSTRACT
Abstract Background: The risk of sports-related sudden cardiac arrest after COVID-19 infection can be a serious problem. There is an urgent need for evidence-based criteria to ensure patient safety before resuming exercise. Objective: To estimate the pooled prevalence of acute myocardial injury caused by COVID-19 and to provide an easy-to-use cardiovascular risk assessment toolkit prior to resuming sports activities after COVID-19 infection. Methods: We searched the Medline and Cochrane databases for articles on the prevalence of acute myocardial injury associated with COVID-19 infection. The pooled prevalence of acute myocardial injury was calculated for hospitalized patients treated in different settings (non-intensive care unit [ICU], ICU, overall hospitalization, and non-survivors). Statistical significance was accepted for p values <0.05. We propose a practical flowchart to assess the cardiovascular risk of individuals who recovered from COVID-19 before resuming sports activities. Results: A total of 20 studies (6,573 patients) were included. The overall pooled prevalence of acute myocardial injury in hospitalized patients was 21.7% (95% CI 17.3-26.5%). The non-ICU setting had the lowest prevalence (9.5%, 95% CI 1.5-23.4%), followed by the ICU setting (44.9%, 95% CI 27.7-62.8%), and the cohort of non-survivors (57.7% with 95% CI 38.5-75.7%). We provide an approach to assess cardiovascular risk based on the prevalence of acute myocardial injury in each setting. Conclusions: Acute myocardial injury is frequent and associated with more severe disease and hospital admissions. Cardiac involvement could be a potential trigger for exercise-induced clinical complications after COVID-19 infection. We created a toolkit to assist with clinical decision-making prior to resuming sports activities after COVID-19 infection.
Subject(s)
Sports , Heart Disease Risk Factors , COVID-19/complications , Myocarditis/complications , Death, Sudden, Cardiac , Risk Assessment/methods , Evidence-Based Practice/methods , AthletesABSTRACT
PURPOSE OF REVIEW: The clinical syndrome of coronavirus disease 2019 (COVID-19) has become a global pandemic leading to significant morbidity and mortality. Cardiac dysfunction is commonly seen in these patients, often presenting as clinical heart failure. Accordingly, we aim to provide a comprehensive review on COVID-19 myocarditis and its long-term heart failure sequelae. RECENT FINDINGS: Several suspected cases of COVID-19 myocarditis have been reported. It is often not clear if the acute myocardial dysfunction is caused by myocarditis or secondary to generalized inflammatory state of cytokine release or microvascular thrombotic angiopathy. Ischemia may also need to be ruled out. Regardless, myocardial dysfunction in these patients is associated with poor overall prognosis. Laboratory testing, echocardiography, cardiac magnetic resonance imaging, and even endomyocardial biopsy may be needed for timely diagnosis. Several treatment strategies have been described, including both supportive and targeted therapies. SUMMARY: COVID-19 can cause a spectrum of ventricular dysfunction ranging from mild disease to fulminant myocarditis with hemodynamic instability. Future research is needed to understand the true prevalence of COVID-19 myocarditis, as well as to better define various diagnostic protocols and treatment strategies.
Subject(s)
COVID-19 , Heart Failure , Myocarditis , Heart Failure/diagnosis , Heart Failure/etiology , Humans , Myocarditis/diagnosis , Myocarditis/epidemiology , Pandemics , SARS-CoV-2Subject(s)
Coronavirus Infections , Education, Distance , Education, Medical , Pandemics , Pneumonia, Viral , Videoconferencing , Betacoronavirus , COVID-19 , Heart Failure , Heart Transplantation , Humans , Myocarditis , SARS-CoV-2ABSTRACT
Viral infections are a leading cause of myocarditis and pericarditis worldwide, conditions that frequently coexist. Myocarditis and pericarditis were some of the early comorbidities associated with SARS-CoV-2 infection and COVID-19. Many epidemiologic studies have been conducted since that time concluding that SARS-CoV-2 increased the incidence of myocarditis/pericarditis at least 15× over pre-COVID levels although the condition remains rare. The incidence of myocarditis pre-COVID was reported at 1 to 10 cases/100 000 individuals and with COVID ranging from 150 to 4000 cases/100 000 individuals. Before COVID-19, some vaccines were reported to cause myocarditis and pericarditis in rare cases, but the use of novel mRNA platforms led to a higher number of reported cases than with previous platforms providing new insight into potential pathogenic mechanisms. The incidence of COVID-19 vaccine-associated myocarditis/pericarditis covers a large range depending on the vaccine platform, age, and sex examined. Importantly, the findings highlight that myocarditis occurs predominantly in male patients aged 12 to 40 years regardless of whether the cause was due to a virus-like SARS-CoV-2 or associated with a vaccine-a demographic that has been reported before COVID-19. This review discusses findings from COVID-19 and COVID-19 vaccine-associated myocarditis and pericarditis considering the known symptoms, diagnosis, management, treatment, and pathogenesis of disease that has been gleaned from clinical research and animal models. Sex differences in the immune response to COVID-19 are discussed, and theories for how mRNA vaccines could lead to myocarditis/pericarditis are proposed. Additionally, gaps in our understanding that need further research are raised.
Subject(s)
COVID-19 Vaccines , COVID-19 , Myocarditis , Pericarditis , Female , Humans , Male , COVID-19 Vaccines/adverse effects , Myocarditis/epidemiology , Myocarditis/etiology , Pericarditis/epidemiology , SARS-CoV-2ABSTRACT
Rare immune-mediated cardiac tissue inflammation can occur after vaccination, including after SARS-CoV-2 mRNA vaccines. However, the underlying immune cellular and molecular mechanisms driving this pathology remain poorly understood. Here, we investigated a cohort of patients who developed myocarditis and/or pericarditis with elevated troponin, B-type natriuretic peptide, and C-reactive protein levels as well as cardiac imaging abnormalities shortly after SARS-CoV-2 mRNA vaccination. Contrary to early hypotheses, patients did not demonstrate features of hypersensitivity myocarditis, nor did they have exaggerated SARS-CoV-2-specific or neutralizing antibody responses consistent with a hyperimmune humoral mechanism. We additionally found no evidence of cardiac-targeted autoantibodies. Instead, unbiased systematic immune serum profiling revealed elevations in circulating interleukins (IL-1ß, IL-1RA, and IL-15), chemokines (CCL4, CXCL1, and CXCL10), and matrix metalloproteases (MMP1, MMP8, MMP9, and TIMP1). Subsequent deep immune profiling using single-cell RNA and repertoire sequencing of peripheral blood mononuclear cells during acute disease revealed expansion of activated CXCR3+ cytotoxic T cells and NK cells, both phenotypically resembling cytokine-driven killer cells. In addition, patients displayed signatures of inflammatory and profibrotic CCR2+ CD163+ monocytes, coupled with elevated serum-soluble CD163, that may be linked to the late gadolinium enhancement on cardiac MRI, which can persist for months after vaccination. Together, our results demonstrate up-regulation in inflammatory cytokines and corresponding lymphocytes with tissue-damaging capabilities, suggesting a cytokine-dependent pathology, which may further be accompanied by myeloid cell-associated cardiac fibrosis. These findings likely rule out some previously proposed mechanisms of mRNA vaccine--associated myopericarditis and point to new ones with relevance to vaccine development and clinical care.
Subject(s)
Antineoplastic Agents , COVID-19 , Myocarditis , Humans , Myocarditis/etiology , SARS-CoV-2 , Leukocytes, Mononuclear , COVID-19 Vaccines/adverse effects , Contrast Media , COVID-19/prevention & control , Gadolinium , Killer Cells, Natural , CytokinesABSTRACT
SARS-CoV-2 vaccine-associated myocarditis/myocardial injury should be evaluated in the contexts of COVID-19 infection, other types of viral myocarditis, and other vaccine-associated cardiac disorders. COVID-19 vaccine-associated myocardial injury can be caused by an inflammatory immune cell infiltrate, but other etiologies such as microvascular thrombosis are also possible. The clinical diagnosis is typically based on symptoms and cardiac magnetic resonance imaging. Endomyocardial biopsy is confirmatory for myocarditis, but may not show an inflammatory infiltrate because of rapid resolution or a non-inflammatory etiology. Myocarditis associated with SARS-COVID-19 vaccines occurs primarily with mRNA platform vaccines, which are also the most effective. In persons aged >16 or >12 years the myocarditis estimated crude incidences after the first 2 doses of BNT162b2 and mRNA-1273 are approximately 1.9 and 3.5 per 100 000 individuals, respectively. These rates equate to excess incidences above control populations of approximately 1.2 (BNT162b2) and 1.9 (mRNA-1273) per 100 000 persons, which are lower than the myocarditis rate for smallpox but higher than that for influenza vaccines. In the studies that have included mRNA vaccine and SARS-COVID-19 myocarditis measured by the same methodology, the incidence rate was increased by 3.5-fold over control in COVID-19 compared with 1.5-fold for BNT162b2 and 6.2-fold for mRNA-1273. However, mortality and major morbidity are less and recovery is faster with mRNA vaccine-associated myocarditis compared to COVID-19 infection. The reasons for this include vaccine-associated myocarditis having a higher incidence in young adults and adolescents, typically no involvement of other organs in vaccine-associated myocarditis, and based on comparisons to non-COVID viral myocarditis an inherently more benign clinical course.
Subject(s)
COVID-19 Vaccines , COVID-19 , Heart Injuries , Myocarditis , Adolescent , Humans , Young Adult , 2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Heart Injuries/etiology , Myocarditis/epidemiology , Myocarditis/etiology , SARS-CoV-2 , Vaccination/adverse effectsABSTRACT
OBJECTIVE: COVID-19 infection is a systemic disease with various cardiovascular symptoms and complications. Cardiac MRI with late gadolinium enhancement is the modality of choice for the assessment of myocardial involvement. T1 and T2 mapping can increase diagnostic accuracy and improve further management. Our study aimed to evaluate the different aspects of myocardial damage in cases of COVID-19 infection using cardiac MRI. METHODS: This descriptive retrospective study included 86 cases, with a history of COVID-19 infection confirmed by positive RT-PCR, who met the inclusion criteria. Patients had progressive chest pain or dyspnoea with a suspected underlying cardiac cause, either by an abnormal electrocardiogram or elevated troponin levels. Cardiac MRI was performed with late contrast-enhanced (LGE) imaging, followed by T1 and T2 mapping. RESULTS: Twenty-four patients have elevated hsTnT with a median hsTnT value of 133 ng/L (IQR: 102 to 159 ng/L); normal value < 14 ng/L. Other sixty-two patients showed elevated hsTnI with a median hsTnI value of 1637 ng/L (IQR: 1340 to 2540 ng/L); normal value < 40 ng/L. CMR showed 52 patients with acute myocarditis, 23 with Takotsubo cardiomyopathy, and 11 with myocardial infarction. Invasive coronary angiography was performed only in selected patients. CONCLUSION: Different COVID-19-related cardiac injuries may cause similar clinical symptoms. Cardiac MRI is the modality of choice to differentiate between the different types of myocardial injury such as Takotsubo cardiomyopathy and infection-related cardiomyopathy or even acute coronary syndrome secondary to vasculitis or oxygen-demand mismatch. KEY POINTS: ⢠It is essential to detect early COVID-related cardiac injury using different cardiac biomarkers and cardiac imaging, as it has a significant impact on patient management and outcome. ⢠Cardiac MRI is the modality of choice to differentiate between the different aspects of COVID-related myocardial injury.
Subject(s)
COVID-19 , Myocarditis , Takotsubo Cardiomyopathy , Humans , Retrospective Studies , Contrast Media , COVID-19/complications , Gadolinium , Magnetic Resonance Imaging/methods , Myocarditis/complications , Myocarditis/diagnostic imaging , Predictive Value of Tests , Magnetic Resonance Imaging, Cine/adverse effectsABSTRACT
Dilated cardiomyopathy (DCM) is a cardiac disease marked by the stretching and thinning of the heart muscle and impaired left ventricular contractile function. While most patients do not develop significant cardiac diseases from myocarditis, disparate immune responses can affect pathological outcomes, including DCM progression. These altered immune responses, which may be caused by genetic variance, can prolong cytotoxicity, induce direct cleavage of host protein, or encourage atypical wound healing responses that result in tissue scarring and impaired mechanical and electrical heart function. However, it is unclear which alterations within host immune profiles are crucial to dictating the outcomes of myocarditis. Coxsackievirus B3 (CVB3) is a well-studied virus that has been identified as a causal agent of myocarditis in various models, along with other viruses such as adenovirus, parvovirus B19, and SARS-CoV-2. This paper takes CVB3 as a pathogenic example to review the recent advances in understanding virus-induced immune responses and differential gene expression that regulates iron, lipid, and glucose metabolic remodeling, the severity of cardiac tissue damage, and the development of DCM and heart failure.
Subject(s)
COVID-19 , Cardiomyopathy, Dilated , Heart Failure , Myocarditis , Humans , Myocarditis/pathology , Cardiomyopathy, Dilated/pathology , SARS-CoV-2 , Heart Failure/etiology , Immunity , Enterovirus B, HumanABSTRACT
COVID-19 is an infectious disease caused by SARS-CoV-2 leading to the ongoing global pandemic. Infected patients developed a range of respiratory symptoms, including respiratory failure, as well as other extrapulmonary complications. Multiple comorbidities, including hypertension, diabetes, cardiovascular diseases, and chronic kidney diseases, are associated with the severity and increased mortality of COVID-19. SARS-CoV-2 infection also causes a range of cardiovascular complications, including myocarditis, myocardial injury, heart failure, arrhythmias, acute coronary syndrome, and venous thromboembolism. Although a variety of methods have been developed and many clinical trials have been launched for drug repositioning for COVID-19, treatments that consider cardiovascular manifestations and cardiovascular disease comorbidities specifically are limited. In this review, we summarize recent advances in drug repositioning for COVID-19, including experimental drug repositioning, high-throughput drug screening, omics data-based, and network medicine-based computational drug repositioning, with particular attention on those drug treatments that consider cardiovascular manifestations of COVID-19. We discuss prospective opportunities and potential methods for repurposing drugs to treat cardiovascular complications of COVID-19.
Subject(s)
COVID-19 , Cardiovascular Diseases , Myocarditis , Humans , COVID-19/complications , SARS-CoV-2 , Drug Repositioning , Prospective Studies , Cardiovascular Diseases/therapy , Myocarditis/therapyABSTRACT
BACKGROUND: Myocardial injury in patients with COVID-19 and suspected cardiac involvement is not well understood. OBJECTIVES: The purpose of this study was to characterize myocardial injury in a multicenter cohort of patients with COVID-19 and suspected cardiac involvement referred for cardiac magnetic resonance (CMR). METHODS: This retrospective study consisted of 1,047 patients from 18 international sites with polymerase chain reaction-confirmed COVID-19 infection who underwent CMR. Myocardial injury was characterized as acute myocarditis, nonacute/nonischemic, acute ischemic, and nonacute/ischemic patterns on CMR. RESULTS: In this cohort, 20.9% of patients had nonischemic injury patterns (acute myocarditis: 7.9%; nonacute/nonischemic: 13.0%), and 6.7% of patients had ischemic injury patterns (acute ischemic: 1.9%; nonacute/ischemic: 4.8%). In a univariate analysis, variables associated with acute myocarditis patterns included chest discomfort (OR: 2.00; 95% CI: 1.17-3.40, P = 0.01), abnormal electrocardiogram (ECG) (OR: 1.90; 95% CI: 1.12-3.23; P = 0.02), natriuretic peptide elevation (OR: 2.99; 95% CI: 1.60-5.58; P = 0.0006), and troponin elevation (OR: 4.21; 95% CI: 2.41-7.36; P < 0.0001). Variables associated with acute ischemic patterns included chest discomfort (OR: 3.14; 95% CI: 1.04-9.49; P = 0.04), abnormal ECG (OR: 4.06; 95% CI: 1.10-14.92; P = 0.04), known coronary disease (OR: 33.30; 95% CI: 4.04-274.53; P = 0.001), hospitalization (OR: 4.98; 95% CI: 1.55-16.05; P = 0.007), natriuretic peptide elevation (OR: 4.19; 95% CI: 1.30-13.51; P = 0.02), and troponin elevation (OR: 25.27; 95% CI: 5.55-115.03; P < 0.0001). In a multivariate analysis, troponin elevation was strongly associated with acute myocarditis patterns (OR: 4.98; 95% CI: 1.76-14.05; P = 0.003). CONCLUSIONS: In this multicenter study of patients with COVID-19 with clinical suspicion for cardiac involvement referred for CMR, nonischemic and ischemic patterns were frequent when cardiac symptoms, ECG abnormalities, and cardiac biomarker elevations were present.
Subject(s)
COVID-19 , Coronary Artery Disease , Heart Injuries , Myocarditis , Humans , Myocarditis/pathology , COVID-19/complications , Retrospective Studies , Predictive Value of Tests , Magnetic Resonance Imaging , Troponin , Magnetic Resonance SpectroscopyABSTRACT
From the onset of the pandemic, evidence of cardiac involvement in acute COVID-19 abounded. Cardiac presentations ranged from arrhythmias to ischemia, myopericarditis/myocarditis, ventricular dysfunction to acute heart failure, and even cardiogenic shock. Elevated serum cardiac troponin levels were prevalent among hospitalized patients with COVID-19; the higher the magnitude of troponin elevation, the greater the COVID-19 illness severity and in-hospital death risk. Whether these consequences were due to direct SARS-CoV-2 infection of cardiac cells or secondary to inflammatory responses steered early cardiac autopsy studies. SARS-CoV-2 was reportedly detected in endothelial cells, cardiac myocytes, and within the extracellular space. However, findings were inconsistent and different methodologies had their limitations. Initial autopsy reports suggested that SARS-CoV-2 myocarditis was common, setting off studies to find and phenotype inflammatory infiltrates in the heart. Nonetheless, subsequent studies rarely detected myocarditis. Microthrombi, cardiomyocyte necrosis, and inflammatory infiltrates without cardiomyocyte damage were much more common. In vitro and ex vivo experimental platforms have assessed the cellular tropism of SARS-CoV-2 and elucidated mechanisms of viral entry into and replication within cardiac cells. Data point to pericytes as the primary target of SARS-CoV-2 in the heart. Infection of pericytes can account for the observed pericyte and endothelial cell death, innate immune response, and immunothrombosis commonly observed in COVID-19 hearts. These processes are bidirectional and synergistic, rendering a definitive order of events elusive. Single-cell/nucleus analyses of COVID-19 myocardial tissue and isolated cardiac cells have provided granular data about the cellular composition and cell type-specific transcriptomic signatures of COVID-19 and microthrombi-positive COVID-19 hearts. Still, much remains unknown and more in vivo studies are needed. This review seeks to provide an overview of the current understanding of COVID-19 cardiac pathophysiology. Cell type-specific mechanisms and the studies that provided such insights will be highlighted. Given the unprecedented pace of COVID-19 research, more mechanistic details are sure to emerge since the writing of this review. Importantly, our current knowledge offers significant clues about the cardiac pathophysiology of long COVID-19, the increased postrecovery risk of cardiac events, and thus, the future landscape of cardiovascular disease.
Subject(s)
COVID-19 , Heart Diseases , Myocarditis , Humans , COVID-19/complications , SARS-CoV-2 , Endothelial Cells , Hospital Mortality , Post-Acute COVID-19 Syndrome , Heart , Troponin , Myocytes, CardiacABSTRACT
OBJECTIVE: To analyse the utility of cardiac Troponin-I as a prognostic marker in COVID-19-induced myocardial injury. STUDY DESIGN: A descriptive study. Place and Duration of the Study: COVID Intensive Therapeutic Unit (ITC) and Pathology Department, Combined Military Hospital (CMH), Malir, Karachi, from September 2021 to February 2022. METHODOLOGY: Patients with chest pain, who tested positive for COVID-19 by real-time PCR, were inducted. Blood samples were screened for inflammatory and cardiac biomarkers. The levels of cardiac Troponin I (cTn-I) were categorised as normal (99th percentile = ≤0.01 ng/ml), raised (5 times the 99th percentile = >0.01 ng/ml), and markedly raised (>10 times the 99th percentile = >10 ng/ml) based on serial monitoring over a duration of 6-8 hours. RESULTS: Out of a total of 104 patients, the mean age was 48 ± 15.94 years; 78 (75%) were males and 26 (25%) were females. The mean levels of cardiac Troponin I (cTn-I) were 1.91 ng/ml, C-reactive protein (CRP) was 85 mg/l, Interleukin-6 (IL-6) was 43.3 ng/ml, Procalcitonin (PCT) was 1.40 ng/ml, Creatinine Kinase (CK) was 203 U/l, CK MB was 31 U/l, and Ferritin was 471 ng/ml. Forty-four (42.4%) had normal cTn-I levels, 38 (36.5%) had raised levels, and 22 (21.1%) had markedly raised levels. A persistent rising pattern of cTn-I with a maximum rise up to 30 ng/ml was observed in 16 patients (15.3%) labelled as myocarditis, while only 8 (7.6%) showed a rise-fall pattern. Cardiac Tn-I and CRP were significantly higher in patients with myocarditis (p <0.01). Six out of 104 patients (5.7%) died due to COVID- induced myocardial injury all having raised cTn-I. CONCLUSION: Cardiac Troponin-I is an effective biomarker for measuring myocardial injury in COVID-19 patients and can be an independent predictor to assess for severity of cardiac injury than other inflammatory markers in COVID-19. KEY WORDS: COVID-19, Cardiac Troponin I, Inflammatory markers, Myocardial injury, Prognosis.