Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
6.
J Am Heart Assoc ; 11(18): e026399, 2022 09 20.
Article in English | MEDLINE | ID: covidwho-2029585

ABSTRACT

Background Acute COVID-19-related myocardial, pulmonary, and vascular pathology and how these relate to each other remain unclear. To our knowledge, no studies have used complementary imaging techniques, including molecular imaging, to elucidate this. We used multimodality imaging and biochemical sampling in vivo to identify the pathobiology of acute COVID-19. Specifically, we investigated the presence of myocardial inflammation and its association with coronary artery disease, systemic vasculitis, and pneumonitis. Methods and Results Consecutive patients presenting with acute COVID-19 were prospectively recruited during hospital admission in this cross-sectional study. Imaging involved computed tomography coronary angiography (identified coronary disease), cardiac 2-deoxy-2-[fluorine-18]fluoro-D-glucose positron emission tomography/computed tomography (identified vascular, cardiac, and pulmonary inflammatory cell infiltration), and cardiac magnetic resonance (identified myocardial disease) alongside biomarker sampling. Of 33 patients (median age 51 years, 94% men), 24 (73%) had respiratory symptoms, with the remainder having nonspecific viral symptoms. A total of 9 patients (35%, n=9/25) had cardiac magnetic resonance-defined myocarditis. Of these patients, 53% (n=5/8) had myocardial inflammatory cell infiltration. A total of 2 patients (5%) had elevated troponin levels. Cardiac troponin concentrations were not significantly higher in patients with and without myocarditis (8.4 ng/L [interquartile range, IQR: 4.0-55.3] versus 3.5 ng/L [IQR: 2.5-5.5]; P=0.07) or myocardial cell infiltration (4.4 ng/L [IQR: 3.4-8.3] versus 3.5 ng/L [IQR: 2.8-7.2]; P=0.89). No patients had obstructive coronary artery disease or vasculitis. Pulmonary inflammation and consolidation (percentage of total lung volume) was 17% (IQR: 5%-31%) and 11% (IQR: 7%-18%), respectively. Neither were associated with the presence of myocarditis. Conclusions Myocarditis was present in a third patients with acute COVID-19, and the majority had inflammatory cell infiltration. Pneumonitis was ubiquitous, but this inflammation was not associated with myocarditis. The mechanism of cardiac pathology is nonischemic and not attributable to a vasculitic process. Registration URL: https://www.isrctn.com; Unique identifier: ISRCTN12154994.


Subject(s)
COVID-19 , Coronary Artery Disease , Myocarditis , Biomarkers , COVID-19/complications , Coronary Artery Disease/diagnosis , Cross-Sectional Studies , Female , Glucose , Humans , Male , Middle Aged , Myocarditis/diagnostic imaging , Troponin
7.
J Magn Reson Imaging ; 56(4): 971-982, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2027366

ABSTRACT

Understanding the pattern and severity of myocarditis caused by the coronavirus disease 2019 (COVID-19) vaccine is imperative for improving the care of the patients, and cardiac evaluation by MRI plays a key role in this regard. Our systematic review and meta-analysis aimed to summarize cardiac MRI findings in COVID-19 vaccine-related myocarditis. We performed a comprehensive systematic review of literature in PubMed, Scopus, and Google Scholar databases using key terms covering COVID-19 vaccine, myocarditis, and cardiac MRI. Individual-level patient data (IPD) and aggregated-level data (AD) studies were pooled through a two-stage analysis method. For this purpose, all IPD were first gathered into a single data set and reduced to AD, and then this AD (from IPD studies) was pooled with existing AD (from the AD studies) using fixed/random effect models. I2 was used to assess the degree of heterogeneity, and the prespecified level of statistical significance (P value for heterogeneity) was <0.1. Based on meta-analysis of 102 studies (n = 468 patients), 79% (95% confidence interval [CI]: 54%-97%) of patients fulfilled Lake Louise criteria (LLC) for diagnosis of myocarditis. Cardiac MRI abnormalities included elevated T2 in 72% (95% CI: 50%-90%), myocardial late gadolinium enhancement (LGE) in 93% (95% CI: 83%-99%; nearly all with a subepicardial and/or midwall pattern), impaired left ventricular ejection fraction (LVEF) (<50%) in 4% (95% CI: 1.0%-9.0%). Moreover, elevated T1 and extracellular volume fraction (ECV) (>30), reported only by some IPD studies, were detected in 74.5% (76/102) and 32% (16/50) of patients, respectively. In conclusion, our findings may suggest that over two-thirds of patients with clinically suspected myocarditis following COVID-19 vaccination meet the LLC. COVID-19 vaccine-associated myocarditis may show a similar pattern compared to other acute myocarditis entities. Notably, preserved LVEF is probably a common finding in these patients. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 3.


Subject(s)
COVID-19 Vaccines , COVID-19 , Myocarditis , COVID-19 Vaccines/adverse effects , Contrast Media/adverse effects , Gadolinium/adverse effects , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging, Cine/methods , Myocarditis/diagnostic imaging , Myocarditis/etiology , Stroke Volume , Ventricular Function, Left
12.
Int J Cancer ; 151(11): 1860-1873, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-1976728

ABSTRACT

Immune checkpoint inhibitor (ICI)-induced cardiotoxicity is a rare immune-related adverse event (irAE) characterized by a high mortality rate. From a pathological point of view, this condition can result from a series of causes, including binding of ICIs to target molecules on nonlymphocytic cells, cross-reaction of T lymphocytes against tumor antigens with off-target tissues, generation of autoantibodies and production of proinflammatory cytokines. The diagnosis of ICI-induced cardiotoxicity can be challenging, and cardiac magnetic resonance (CMR) represents the diagnostic tool of choice in clinically stable patients with suspected myocarditis. CMR is gaining a central role in diagnosis and monitoring of cardiovascular damage in cancer patients, and it is entering international cardiology and oncology guidelines. In this narrative review, we summarized the clinical aspects of ICI-associated myocarditis, highlighting its radiological aspects and proposing a novel algorithm for the use of CMR.


Subject(s)
Myocarditis , Antigens, Neoplasm , Autoantibodies , Cardiotoxicity/etiology , Cytokines , Humans , Immune Checkpoint Inhibitors/adverse effects , Magnetic Resonance Imaging , Myocarditis/chemically induced , Myocarditis/diagnostic imaging
14.
Tomography ; 8(4): 1959-1973, 2022 07 30.
Article in English | MEDLINE | ID: covidwho-1969479

ABSTRACT

We reviewed the reported imaging findings of myocarditis in the literature following COVID-19 vaccination on cardiac imaging by a literature search in online databases, including Scopus, Medline (PubMed), Web of Science, Embase (Elsevier), and Google Scholar. In total, 532 cases of myocarditis after COVID-19 vaccination were reported (462, 86.8% men and 70, 13.2% women, age range 12 to 80) with the following distribution: Pfizer-BioNTech: 367 (69%), Moderna: 137 (25.8%), AstraZeneca: 12 (2.3%), Janssen/Johnson & Johnson: 6 (1.1%), COVAXIN: 1 (0.1%), and unknown mRNA vaccine: 9 (1.7%). The distribution of patients receiving vaccine dosage was investigated. On cardiac MR Imaging, late intravenous gadolinium enhancement (LGE) was observed mainly in the epicardial/subepicardial segments (90.8%, 318 of 350 enhancing segments), with the dominance of inferolateral segment and inferior walls. Pericardial effusion was reported in 13.1% of cases. The vast majority of patients (94%, 500 of 532) were discharged from the hospital except for 4 (0.7%) cases. Post-COVID-19 myocarditis was most commonly reported in symptomatic men after the second or third dose, with CMRI findings including LGE in 90.8% of inferior and inferolateral epicardial/subepicardial segments. Most cases were self-limited.


Subject(s)
COVID-19 Vaccines , COVID-19 , Myocarditis , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Child , Contrast Media , Female , Gadolinium , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Myocarditis/diagnostic imaging , Myocarditis/etiology , Vaccination , Vaccines, Synthetic , Young Adult , mRNA Vaccines
15.
Intern Med ; 61(9): 1371-1374, 2022 May 01.
Article in English | MEDLINE | ID: covidwho-1951858

ABSTRACT

We herein report a case of acute myocarditis possibly related to the second dose of an mRNA-coronavirus disease 2019 vaccine in a 45-year-old woman with no remarkable medical history. She had a fever for one week following the second dose of the mRNA-1273 severe acute respiratory syndrome coronavirus 2 vaccine. One week later, she presented with chest pain and electrocardiogram changes. Her serum troponin levels were elevated upon admission. Echocardiography showed segmental wall motion abnormalities of the apex, apical portion of the anterior and inferior walls. The findings of cardiac magnetic resonance imaging were consistent with acute myocarditis.


Subject(s)
COVID-19 , Myocarditis , 2019-nCoV Vaccine mRNA-1273 , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Female , Humans , Middle Aged , Myocarditis/diagnostic imaging , Myocarditis/etiology , SARS-CoV-2 , Vaccination
17.
Contrast Media Mol Imaging ; 2022: 8733632, 2022.
Article in English | MEDLINE | ID: covidwho-1932851

ABSTRACT

Myocarditis is heart muscle inflammation that is becoming more prevalent these days, especially with the prevalence of COVID-19. Noninvasive imaging cardiac magnetic resonance (CMR) can be used to diagnose myocarditis, but the interpretation is time-consuming and requires expert physicians. Computer-aided diagnostic systems can facilitate the automatic screening of CMR images for triage. This paper presents an automatic model for myocarditis classification based on a deep reinforcement learning approach called as reinforcement learning-based myocarditis diagnosis combined with population-based algorithm (RLMD-PA) that we evaluated using the Z-Alizadeh Sani myocarditis dataset of CMR images prospectively acquired at Omid Hospital, Tehran. This model addresses the imbalanced classification problem inherent to the CMR dataset and formulates the classification problem as a sequential decision-making process. The policy of architecture is based on convolutional neural network (CNN). To implement this model, we first apply the artificial bee colony (ABC) algorithm to obtain initial values for RLMD-PA weights. Next, the agent receives a sample at each step and classifies it. For each classification act, the agent gets a reward from the environment in which the reward of the minority class is greater than the reward of the majority class. Eventually, the agent finds an optimal policy under the guidance of a particular reward function and a helpful learning environment. Experimental results based on standard performance metrics show that RLMD-PA has achieved high accuracy for myocarditis classification, indicating that the proposed model is suitable for myocarditis diagnosis.


Subject(s)
COVID-19 , Myocarditis , Algorithms , COVID-19/diagnostic imaging , Humans , Iran , Myocarditis/diagnostic imaging , Myocarditis/pathology , Neural Networks, Computer
19.
Eur Heart J Cardiovasc Imaging ; 23(4): 450-464, 2022 03 22.
Article in English | MEDLINE | ID: covidwho-1886392

ABSTRACT

Inflammatory cardiomyopathy (I-CMP) is defined as myocarditis in association with cardiac dysfunction and/or ventricular remodelling. It is characterized by inflammatory cell infiltration into the myocardium and has heterogeneous infectious and non-infectious aetiologies. A complex interplay of genetic, autoimmune, and environmental factors contributes to the substantial risk of deteriorating cardiac function, acute heart failure, and arrhythmia as well as chronic dilated cardiomyopathy and its sequelae. Multi-parametric cardiovascular magnetic resonance (CMR) imaging is sensitive to many tissue changes that occur during myocardial inflammation, regardless of its aetiology. In this review, we summarize the various aetiologies of I-CMP and illustrate how CMR contributes to non-invasive diagnosis.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Myocarditis , Cardiomyopathies/pathology , Cytidine Monophosphate , Heart , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Myocarditis/diagnostic imaging , Myocardium/pathology
SELECTION OF CITATIONS
SEARCH DETAIL