Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
1.
Int J Cardiovasc Imaging ; 39(4): 821-830, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2301369

ABSTRACT

The coronavirus disease of 2019 (COVID-19)-related myocardial injury is an increasingly recognized complication and cardiac magnetic resonance imaging (MRI) has become the most commonly used non-invasive imaging technique for myocardial involvement. This study aims to assess myocardial structure by T2*-mapping which is a non-invasive gold-standard imaging tool for the assessment of cardiac iron deposition in patients with COVID-19 pneumonia without significant cardiac symptoms. Twenty-five patients with COVID-19 pneumonia and 20 healthy subjects were prospectively enrolled.Cardiac volume and function parameters, myocardial native-T1, and T2*-mapping were measured. The association of serum ferritin level and myocardial mapping was analyzed. There was no difference in terms of cardiac volume and function parameters. The T2*-mapping values were lower in patients with COVID-19 compared to controls (35.37 [IQR 31.67-41.20] ms vs. 43.98 [IQR 41.97-46.88] ms; p < 0.0001), while no significant difference was found in terms of native-T1 mapping value(p = 0.701). There was a positive correlation with T2*mapping and native-T1 mapping values (r = 0.522, p = 0.007) and negative correlation with serum ferritin values (r = - 0.653, p = 0.000), while no correlation between cardiac native-T1 mapping and serum ferritin level. Negative correlation between serum ferritin level and T2*-mapping values in COVID-19 patients may provide a non-contrast-enhanced alternative to assess tissue structural changes in patients with COVID-19. T2*-mapping may provide a non-contrast-enhanced alternative to assess tissue alterations in patients with COVID-19. Adding T2*-mapping cardiac MRI in patients with myocardial pathologies would improve the revealing of underlying mechanisms. Further in vivo and ex vivo animal or human studies designed with larger patient cohorts should be planned.


Subject(s)
COVID-19 , Humans , COVID-19/complications , Predictive Value of Tests , Magnetic Resonance Imaging/methods , Myocardium/pathology , Magnetic Resonance Spectroscopy , Ferritins , Magnetic Resonance Imaging, Cine/methods , Contrast Media
2.
Viruses ; 15(4)2023 04 02.
Article in English | MEDLINE | ID: covidwho-2300727

ABSTRACT

In this review, we investigated whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can directly cause myocarditis with severe myocardial damage induced by viral particles. A review of the major data published from 2020 to 2022 was performed by consulting the major databases alongside first-hand experiences that emerged from the cardiac biopsies and autopsy examinations of patients who died of SARS-CoV-2 infections. From this study, a significantly large amount of data suggests that the Dallas criteria were met in a residual percentage of patients, demonstrating that SARS-CoV-2 myocarditis was a rare clinical and pathological entity that occurred in a small percentage of subjects. All cases described here were highly selected and subjected to autopsies or endomyocardial biopsies (EMBs). The most important discovery, through the detection of the SARS-CoV-2 genome using the polymerase chain reaction, consisted in the presence of the viral genome in the lung tissue of most of the patients who died from COVID-19. However, the discovery of the SARS-CoV-2 viral genome was a rare event in cardiac tissue from autopsy findings of patients who died of myocarditis It is important to emphasize that myocardial inflammation alone, as promoted by macrophages and T cell infiltrations, can be observed in noninfectious deaths and COVID-19 cases, but the extent of each cause is varied, and in neither case have such findings been reported to support clinically relevant myocarditis. Therefore, in the different infected vs. non-infected samples examined, none of our findings provide a definitive histochemical assessment for the diagnosis of myocarditis in the majority of cases evaluated. We report evidence suggesting an extremely low frequency of viral myocarditis that has also been associated with unclear therapeutic implications. These two key factors strongly point towards the use of an endomyocardial biopsy to irrefutably reach a diagnosis of viral myocarditis in the context of COVID-19.


Subject(s)
COVID-19 , Myocarditis , Humans , SARS-CoV-2 , Myocarditis/pathology , COVID-19/pathology , Myocardium/pathology , Lung/pathology
3.
Swiss Med Wkly ; 150: w20417, 2020 12 14.
Article in English | MEDLINE | ID: covidwho-2267622

ABSTRACT

Coronavirus disease 2019 (COVID-19) is primarily a pulmonary disease, but also affects the cardiovascular system in multiple ways. In this review, we will summarise and put into perspective findings and debates relating to the diverse aspects of cardiovascular involvement of COVID-19. We will review evidence for the role of the renin-angiotensin-aldosterone system (RAAS), the risk of pre-existing cardiovascular disease in COVID-19 susceptibility and course, and the mechanism of acute and long-term myocardial injury. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) uses membrane-bound angiotensin converting-enzyme-2 (ACE2) as a receptor for cell entry. ACE2 is part of an important counter-regulatory circuit antagonising the harmful effects of angiotensin II on lung and heart. Modulation of ACE2 may therefore affect disease susceptibility and disease course. However, observational clinical studies and one randomised trial have so far not yielded evidence for harmful or beneficial effects of blockers of the RAAS during COVID-19. Age, gender, and multi-morbidity all increase susceptibility to SARS-CoV-2. In contrast, pre-existing cardiovascular diseases do so only minimally, but they may aggravate the disease course. Direct SARS-CoV-2 infection of the heart tissue and myocytes is rare. Nevertheless, COVID-19 may lead to myocarditis-like acute cardiac injury, characterised by myocardial oedema, but lacking extensive myocyte loss and lymphocytic infiltration. Independent of this, increases in cardiac biomarkers (troponin, N-terminal pro-brain natriuretic peptide, D-dimer) are frequent, especially in the phase of severe systemic inflammation and acute respiratory distress syndrome, and quantitatively associated with poor outcome. The pulmonary infection may result initially in right ventricular dysfunction, but in cases with severe systemic infection hypoxia, hyperinflammation and cytokine storm heart failure may eventually ensue. Unlike other infections and inflammatory states, COVID-19 does not appear to trigger acute coronary syndromes. In children, even mild COVID-19 can induce a multisystem inflammatory syndrome with Kawasaki-like symptoms frequently accompanied by cardiogenic shock.


Subject(s)
COVID-19/epidemiology , COVID-19/physiopathology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/physiopathology , Age Factors , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme Inhibitors , Biomarkers , Comorbidity , Humans , Inflammation/physiopathology , Inflammation Mediators/metabolism , Myocardial Infarction/physiopathology , Myocardium/pathology , Renin-Angiotensin System/physiology , Sex Factors , Systemic Inflammatory Response Syndrome/physiopathology , COVID-19 Drug Treatment
4.
Pediatr Cardiol ; 44(5): 1108-1117, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2285032

ABSTRACT

There have been reports of myocarditis following vaccination against COVID-19. We sought to describe cardiac magnetic resonance (CMR) findings among pediatric patients. Retrospective review at a large academic center of patients clinically diagnosed with post-vaccine myocarditis (PVM) undergoing CMR. Data collected included parametric mapping, ventricular function, and degree of late gadolinium enhancement (LGE). Post-processing strain analysis was performed using feature tracking. Strain values, T1/T2 values, and ventricular function were compared to age- and gender-matched controls with viral myocarditis using a Wilcoxon Signed Rank test. Among 12 patients with presumed PVM, 11 were male and 11 presented after the second vaccination dose, typically within 4 days. All presented with chest pain and elevated troponin. 10 met MRI criteria for acute myocarditis. All had LGE typically seen in the lateral and inferior walls; only five had prolonged T1 values. 10 met criteria for edema based on skeletal muscle to myocardium signal intensity ratio and only 5 had prolonged T2 mapping values. Patients with PVM had greater short-axis global circumferential and radial strain, right ventricle function, and cardiac output when compared to those with viral myocarditis. Patients with PVM have greater short-axis global circumferential and radial strains compared to those with viral myocarditis. LGE was universal in our cohort. Signal intensity ratios between skeletal muscle and myocardium may be more sensitive in identifying edema than T2 mapping. Overall, the impact on myocardial strain by CMR is less significant in PVM compared to more classic viral myocarditis.


Subject(s)
COVID-19 , Myocarditis , Humans , Male , Child , Female , Myocarditis/diagnostic imaging , Myocarditis/etiology , COVID-19 Vaccines/adverse effects , Contrast Media , Predictive Value of Tests , Gadolinium , Magnetic Resonance Imaging , Myocardium/pathology , Magnetic Resonance Spectroscopy , Retrospective Studies , Vaccination , Magnetic Resonance Imaging, Cine , Ventricular Function, Left
5.
J Am Heart Assoc ; 12(6): e027801, 2023 03 21.
Article in English | MEDLINE | ID: covidwho-2264637

ABSTRACT

Background Meta-analysis can identify biological factors that moderate cardiac magnetic resonance myocardial tissue markers such as native T1 (longitudinal magnetization relaxation time constant) and T2 (transverse magnetization relaxation time constant) in cohorts recovering from COVID-19 infection. Methods and Results Cardiac magnetic resonance studies of patients with COVID-19 using myocardial T1, T2 mapping, extracellular volume, and late gadolinium enhancement were identified by database searches. Pooled effect sizes and interstudy heterogeneity (I2) were estimated with random effects models. Moderators of interstudy heterogeneity were analyzed by meta-regression of the percent difference of native T1 and T2 between COVID-19 and control groups (%ΔT1 [percent difference of the study-level means of myocardial T1 in patients with COVID-19 and controls] and %ΔT2 [percent difference of the study-level means of myocardial T2 in patients with COVID-19 and controls]), extracellular volume, and the proportion of late gadolinium enhancement. Interstudy heterogeneities of %ΔT1 (I2=76%) and %ΔT2 (I2=88%) were significantly lower than for native T1 and T2, respectively, independent of field strength, with pooled effect sizes of %ΔT1=1.24% (95% CI, 0.54%-1.9%) and %ΔT2=3.77% (95% CI, 1.79%-5.79%). %ΔT1 was lower for studies in children (median age: 12.7 years) and athletes (median age: 21 years), compared with older adults (median age: 48 years). Duration of recovery from COVID-19, cardiac troponins, C-reactive protein, and age were significant moderators for %ΔT1 and/or %ΔT2. Extracellular volume, adjusted by age, was moderated by recovery duration. Age, diabetes, and hypertension were significant moderators of the proportion of late gadolinium enhancement in adults. Conclusions T1 and T2 are dynamic markers of cardiac involvement in COVID-19 that reflect the regression of cardiomyocyte injury and myocardial inflammation during recovery. Late gadolinium enhancement and to a lesser extent extracellular volume, are more static biomarkers moderated by preexisting risk factors linked to adverse myocardial tissue remodeling.


Subject(s)
COVID-19 , Contrast Media , Child , Humans , Aged , Young Adult , Adult , Middle Aged , Gadolinium , Magnetic Resonance Imaging, Cine/methods , Myocardium/pathology , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Predictive Value of Tests
6.
Kardiol Pol ; 81(5): 463-471, 2023.
Article in English | MEDLINE | ID: covidwho-2261775

ABSTRACT

BACKGROUND: COVID-19 is a great medical challenge as it provokes acute respiratory distress and has pulmonary manifestations and cardiovascular (CV) consequences. AIMS: This study compared cardiac injury in COVID-19 myocarditis patients with non-COVID-19 myocarditis patients. METHODS: Patients who recovered from COVID-19 were scheduled for cardiovascular magnetic resonance (CMR) owing to clinical myocarditis suspicion. The retrospective non-COVID-19 myocarditis (2018-2019) group was enrolled (n = 221 patients). All patients underwent contrast-enhanced CMR, the conventional myocarditis protocol, and late gadolinium enhancement (LGE). The COVID study group included 552 patients at a mean (standard deviation [SD]) age of 45.9 (12.6) years. RESULTS: CMR assessment confirmed myocarditis-like LGE in 46% of the cases (68.5% of the segments with LGE <25% transmural extent), left ventricular (LV) dilatation in 10%, and systolic dysfunction in 16% of cases. The COVID-19 myocarditis group showed a smaller median (interquartile range [IQR]) LV LGE (4.4% [2.9%-8.1%] vs. 5.9% [4.4%-11.8%]; P <0.001), lower LV end-diastolic volume (144.6 [125.5-178] ml vs. 162.8 [136.6-194] ml; P <0.001), limited functional consequence (left ventricular ejection fraction, 59% [54.1%-65%] vs. 58% [52%-63%]; P = 0.01), and a higher rate of pericarditis (13.6% vs. 6%; P = 0.03) compared to non-COVID-19 myocarditis. The COVID-19-induced injury was more frequent in septal segments (2, 3, 14), and non-COVID-19 myocarditis showed higher affinity to lateral wall segments (P <0.01). Neither obesity nor age was associated with LV injury or remodeling in subjects with COVID-19 myocarditis. CONCLUSIONS: COVID-19-induced myocarditis is associated with minor LV injury with a significantly more frequent septal pattern and a higher pericarditis rate than non-COVID-19 myocarditis.


Subject(s)
COVID-19 , Myocarditis , Pericarditis , Humans , Middle Aged , Myocarditis/etiology , Myocarditis/complications , Contrast Media , Stroke Volume , Gadolinium , Ventricular Function, Left , Retrospective Studies , Magnetic Resonance Imaging, Cine/methods , COVID-19/complications , Myocardium/pathology , Magnetic Resonance Spectroscopy , Predictive Value of Tests
7.
JAMA ; 329(13): 1098-1113, 2023 04 04.
Article in English | MEDLINE | ID: covidwho-2249466

ABSTRACT

Importance: Acute myocarditis, defined as a sudden inflammatory injury to the myocardium, affects approximately 4 to 14 people per 100 000 each year globally and is associated with a mortality rate of approximately 1% to 7%. Observations: The most common causes of myocarditis are viruses, such as influenza and coronavirus; systemic autoimmune disorders, such as systemic lupus erythematosus; drugs, such as immune checkpoint inhibitors; and vaccines, including smallpox and mRNA COVID-19 vaccines. Approximately 82% to 95% of adult patients with acute myocarditis present with chest pain, while 19% to 49% present with dyspnea, and 5% to 7% with syncope. The diagnosis of myocarditis can be suggested by presenting symptoms, elevated biomarkers such as troponins, electrocardiographic changes of ST segments, and echocardiographic wall motion abnormalities or wall thickening. Cardiac magnetic resonance imaging or endomyocardial biopsy are required for definitive diagnosis. Treatment depends on acuity, severity, clinical presentation, and etiology. Approximately 75% of patients admitted with myocarditis have an uncomplicated course, with a mortality rate of approximately 0%. In contrast, acute myocarditis that is complicated by acute heart failure or ventricular arrhythmias is associated with a 12% rate of either in-hospital mortality or need for heart transplant. Approximately 2% to 9% of patients have hemodynamic instability, characterized by inability to maintain adequate end-organ perfusion, and require inotropic agents, or mechanical circulatory devices, such as extracorporeal life support, to facilitate functional recovery. These patients have an approximately 28% rate of mortality or heart transplant at 60 days. Immunosuppression (eg, corticosteroids) is appropriate for patients who have myocarditis characterized by eosinophilic or giant cell myocardial infiltrations or due to systemic autoimmune disorders. However, the specific immune cells that should be targeted to improve outcomes in patients with myocarditis remain unclear. Conclusions and Relevance: Acute myocarditis affects approximately 4 to 14 per 100 000 people per year. First-line therapy depends on acuity, severity, clinical presentation, and etiology and includes supportive care. While corticosteroids are often used for specific forms of myocarditis (eg, eosinophilic or giant cell infiltrations), this practice is based on anecdotal evidence, and randomized clinical trials of optimal therapeutic interventions for acute myocarditis are needed.


Subject(s)
Myocarditis , Adult , Humans , Autoimmune Diseases/complications , COVID-19/complications , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/therapeutic use , Myocarditis/diagnosis , Myocarditis/epidemiology , Myocarditis/etiology , Myocarditis/therapy , Myocardium/pathology , Acute Disease
9.
Int Heart J ; 64(1): 85-89, 2023 Mar 31.
Article in English | MEDLINE | ID: covidwho-2214879

ABSTRACT

Coronavirus disease 2019 (COVID-19) associated myocardial injury was caused by various mechanisms. We herein describe 2 cases presenting different types of myocardial injury due to Omicron variant. In both patients, diffuse reduced left ventricular (LV) wall motion in transthoracic echocardiography, electrocardiographic abnormality, and elevated myocardial enzymes were demonstrated. In addition, cardiovascular magnetic resonance (CMR) findings fulfilled the 2018 Lake Louise Criteria (LLC) for myocarditis. However, histological findings in 1 patient showed inflammatory cell infiltration with myocyte degeneration, while those in the other showed interstitial edema without inflammatory cell infiltration. Histological findings were crucial for a differential diagnosis of myocardial injury due to Omicron variant.


Subject(s)
COVID-19 , Heart Injuries , Myocarditis , Humans , SARS-CoV-2 , COVID-19/complications , Myocarditis/diagnosis , Myocarditis/etiology , Myocardium/pathology
10.
Echocardiography ; 39(11): 1401-1411, 2022 11.
Article in English | MEDLINE | ID: covidwho-2078440

ABSTRACT

OBJECTIVE: Cardiac involvement in recovered COVID-19 patients assessed by cardiac magnetic resonance imaging (MRI). METHODS: Subjects recently recovered from COVID-19 and with an abnormal left ventricular global longitudinal strain were enrolled. Cardiac MRI in all the enrolled subjects was done at baseline (within 30-90 days following recovery from COVID-19) with a follow-up scan at 6 months in individuals with an abnormal baseline scan. Additionally, 20 age-and sex-matched individuals were enrolled as healthy controls (HCs). RESULTS: All the 30 enrolled subjects were symptomatic during active COVID-19 disease and were categorized as mild: 11 (36.7%), moderate: 6 (20%), and severe: 13 (43.3%). Of the 30 patients, 16 (53.3%) had abnormal CMR findings. Myocardial edema was reported in 12 (40%) patients while 10 (33.3%) had late gadolinium enhancement (LGE). No difference was observed in terms of conventional left ventricular (LV) parameters; however, COVID-19-recovered patients had significantly lower right ventricular (RV) ejection fraction, RV stroke volume, and RV cardiac index compared to HCs. Follow-up scan was abnormal in 4/16 (25%) with LGE persisting in three patients (who had severe COVID-19 [3/4;75%]). Subjects with severe COVID-19 had a greater frequency of LGE (53.8%) and myocardial edema (61.5%) as compared to mild and moderate cases. Myocardial T1 (1284 ± 43.8 ms vs. 1147.6 ± 68.4 ms; p < .0001) and T2 values (50.8 ± 16.7 ms vs. 42.6 ± 3.6 ms; p = .04) were significantly higher in post COVID-19 subjects compared to HCs. Similarly, T1 and T2 values of severe COVID-19 patients were significantly higher compared to mild and moderate cases. CONCLUSIONS: An abnormal CMR was seen in half of the recovered patients with persistent abnormality in one-fourth at 6 months. Our study suggests a need for closer follow-up among recovered subjects in order to evaluate for long-term cardiovascular sequelae. COVID-19 causes structural changes in the myocardium in a small segment of patients with partial spontaneous resolution.


Subject(s)
COVID-19 , Magnetic Resonance Imaging, Cine , Humans , Follow-Up Studies , Magnetic Resonance Imaging, Cine/methods , COVID-19/complications , Contrast Media , Gadolinium , Stroke Volume , Myocardium/pathology , Magnetic Resonance Imaging , Ventricular Function, Left , Predictive Value of Tests
11.
Can J Cardiol ; 38(11): 1676-1683, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2035864

ABSTRACT

BACKGROUND: Acute myocarditis is a rare complication of mRNA-based COVID-19 vaccination. Little is known about the natural history of this complication. METHODS: Baseline and convalescent (≥ 90 days) cardiac magnetic resonance (CMR) imaging assessments were performed in 20 consecutive patients meeting Updated Lake Louise Criteria for acute myocarditis within 10 days of mRNA-based vaccination. CMR-based changes in left ventricular volumes, mass, ejection fraction (LVEF), markers of tissue inflammation (native T1 and T2 mapping), and fibrosis (late gadolinium enhancement [LGE] and extracellular volume [ECV]) were assessed between baseline and convalescence. Cardiac symptoms and clinical outcomes were captured. RESULTS: Median age was 23.1 years (range 18-39 years), and 17 (85%) were male. Convalescent evaluations were performed at a median (IQR) 3.7 (3.3-6.2) months. The LVEF showed a mean 3% absolute improvement, accompanied by a 7% reduction in LV end-diastolic volume and 5% reduction in LV mass (all P < 0.015). Global LGE burden was reduced by 66% (P < 0.001). Absolute reductions in global T2, native T1, and ECV of 2.1 ms, 58 ms, and 2.9%, repectively, were documented (all P ≤ 0.001). Of 5 patients demonstrating LVEF ≤ 50% at baseline, all recovered to above this threshold in convalescence. A total of 18 (90%) patients showed persistence of abnormal LGE although mean fibrosis burden was < 5% of LV mass in 85% of cases. No patient experienced major clinical outcomes. CONCLUSIONS: COVID-19 mRNA vaccine-associated myocarditis showed rapid improvements in CMR-based markers of edema, contractile function, and global LGE burden beyond 3 months of recovery in this young patient cohort. However, regional fibrosis following edema resolution was commonly observed, justifying need for ongoing surveillance.


Subject(s)
COVID-19 , Heart Injuries , Myocarditis , Humans , Male , Adolescent , Young Adult , Adult , Female , Myocarditis/diagnosis , Myocarditis/etiology , Myocarditis/pathology , COVID-19 Vaccines/adverse effects , Contrast Media , Gadolinium , COVID-19/epidemiology , COVID-19/prevention & control , Convalescence , Ventricular Function, Left , Stroke Volume , Predictive Value of Tests , Fibrosis , RNA, Messenger , Magnetic Resonance Imaging, Cine , Myocardium/pathology
12.
Nat Med ; 28(10): 2117-2123, 2022 10.
Article in English | MEDLINE | ID: covidwho-2016773

ABSTRACT

Cardiac symptoms are increasingly recognized as late complications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in previously well individuals with mild initial illness, but the underlying pathophysiology leading to long-term cardiac symptoms remains unclear. In this study, we conducted serial cardiac assessments in a selected population of individuals with Coronavirus Disease 2019 (COVID-19) with no previous cardiac disease or notable comorbidities by measuring blood biomarkers of heart injury or dysfunction and by performing magnetic resonance imaging. Baseline measurements from 346 individuals with COVID-19 (52% females) were obtained at a median of 109 days (interquartile range (IQR), 77-177 days) after infection, when 73% of participants reported cardiac symptoms, such as exertional dyspnea (62%), palpitations (28%), atypical chest pain (27%) and syncope (3%). Symptomatic individuals had higher heart rates and higher imaging values or contrast agent accumulation, denoting inflammatory cardiac involvement, compared to asymptomatic individuals. Structural heart disease or high levels of biomarkers of cardiac injury or dysfunction were rare in symptomatic individuals. At follow-up (329 days (IQR, 274-383 days) after infection), 57% of participants had persistent cardiac symptoms. Diffuse myocardial edema was more pronounced in participants who remained symptomatic at follow-up as compared to those who improved. Female gender and diffuse myocardial involvement on baseline imaging independently predicted the presence of cardiac symptoms at follow-up. Ongoing inflammatory cardiac involvement may, at least in part, explain the lingering cardiac symptoms in previously well individuals with mild initial COVID-19 illness.


Subject(s)
COVID-19 , Heart Diseases , COVID-19/complications , Contrast Media , Female , Heart/diagnostic imaging , Heart Diseases/diagnostic imaging , Humans , Male , Myocardium/pathology , SARS-CoV-2
13.
Dokl Biol Sci ; 505(1): 95-99, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2008770

ABSTRACT

The article focuses on the pathogenetic mechanisms of posttraumatic stress disorder (PTSD), which is associated with psychological stress because of the coronavirus pandemic. The molecular mechanisms responsible for disease susceptibility in some individuals and stress resistance in others are amongst crucial research interests of experimental and clinical medicine. Priority data were obtained to indicate that distortions of synthesis and metabolism and, most significantly, a switch between two energy transport forms, glucose and lipids, underlie myocardial dysfunction in young and old stress-sensitive Wistar rats in a PTSD model. Histochemistry and polarization microscopy showed energy deficit in cardiomyocytes and signs of ischemic and hypoxic areas emerging in the myocardium as a result of an accumulation of NADH and NADPH, which initiate excessive production of reactive oxygen species.


Subject(s)
Cardiovascular Diseases , Stress Disorders, Post-Traumatic , Animals , Cardiovascular Diseases/complications , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Myocardium/pathology , Rats , Rats, Wistar , Risk Factors
14.
Arch Pathol Lab Med ; 146(8): 925-929, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1975265

ABSTRACT

CONTEXT.­: Myocarditis in adolescents has been diagnosed clinically following the administration of the second dose of an mRNA vaccine for coronavirus disease 2019 (COVID-19). OBJECTIVE.­: To examine the autopsy microscopic cardiac findings in adolescent deaths that occurred shortly following administration of the second Pfizer-BioNTech COVID-19 dose to determine if the myocarditis described in these instances has the typical histopathology of myocarditis. DESIGN.­: Clinical and autopsy investigation of 2 teenage boys who died shortly following administration of the second Pfizer-BioNTech COVID-19 dose. RESULTS.­: The microscopic examination revealed features resembling a catecholamine-induced injury, not typical myocarditis pathology. CONCLUSIONS.­: The myocardial injury seen in these postvaccine hearts is different from typical myocarditis and has an appearance most closely resembling a catecholamine-mediated stress (toxic) cardiomyopathy. Understanding that these instances are different from typical myocarditis and that cytokine storm has a known feedback loop with catecholamines may help guide screening and therapy.


Subject(s)
COVID-19 Vaccines , COVID-19 , Myocarditis , Myocardium , Adolescent , Autopsy , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Catecholamines/adverse effects , Humans , Male , Myocarditis/chemically induced , Myocardium/pathology , Vaccination/adverse effects , mRNA Vaccines
16.
Clin Cardiol ; 45(9): 952-959, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1935672

ABSTRACT

PURPOSE: To study the clinical signs and mechanisms (viral and autoimmune) of myoendocarditis in the long-term period after COronaVIrus Disease 2019 (COVID-19). METHODS: Fourteen patients (nine male, 50.1 ± 10.2 y.o.) with biopsy proven post-COVID myocarditis were observed. The diagnosis of COVID-19 was confirmed by IgG seroconversion. The average time of admission after COVID-19 was 5.5 [2; 10] months. An endomyocardial biopsy (EMB) of the right ventricle was obtained. The biopsy analysis included polymerase chain reaction diagnosis of viral infection, morphological, immunohistochemical (IHC) examination with antibodies to CD3, CD45, CD68, CD20, SARS-Cov-2 spike, and nucleocapsid antigens. Coronary atherosclerosis was ruled out in all patients over 40 years. RESULTS: The new cardiac symptoms (congestive heart failure 3-4 New York Heart Association class with severe right ventricular involvement, various rhythm, and conduction disturbances) appeared 1-5 months following COVID-19. Magnetic resonance imaging showed disseminated or focal subepicardial and intramyocardial late gadolinium enhancement, hyperemia, edema, and increased myocardial native T1 relaxation time. Antiheart antibodies levels were increased 3-4 times in 92.9% of patients. The mean left ventricular (LV) ejection fraction (EF) was 28% (24.5; 37.8). Active lymphocytic myocarditis was diagnosed in 12 patients, eosinophilic myocarditis in two patients. SARS-Cov-2 RNA was detected in 12 cases (85.7%), in association with parvovirus B19 DNA-in one. Three patients had also endocarditis (infective and nonbacterial, with parietal thrombosis). As a result of steroid and chronic heart failure therapy, the EF increased to 47% (37.5; 52.5). CONCLUSIONS: COVID-19 can lead to long-term severe post-COVID myoendocarditis, that is characterized by prolonged persistence of coronavirus in cardiomyocytes, endothelium, and macrophages (up to 18 months) in combination with high immune activity. Corticosteroids and anticoagulants should be considered as a treatment option of post-COVID myoendocarditis.


Subject(s)
COVID-19 , Heart Failure , Myocarditis , Biopsy/methods , COVID-19/complications , Contrast Media , Gadolinium , Humans , Male , Myocarditis/diagnosis , Myocarditis/etiology , Myocardium/pathology , RNA, Viral , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
17.
Am J Case Rep ; 23: e935974, 2022 Jul 08.
Article in English | MEDLINE | ID: covidwho-1924685

ABSTRACT

BACKGROUND Myocarditis is an inflammatory process that can present as acute or chronic with either focal or diffuse involvement of the myocardium. Its incidence is approximately 1.5 million cases per year worldwide. In the United States, viral infection is the most common cause of myocarditis. Most of the reported cases are singular and self-limiting in nature. We present the case of severe recurrent myocarditis in a young adult who was transferred to the Intensive Care Unit. CASE REPORT An 18-year-old man presented with chest pressure and troponin I 33 ng/mL. He had presented to another hospital with similar symptoms 3 months prior and was diagnosed with myocarditis that had resolved with colchicine. As part of his workup during this admission, coronary angiogram was normal and biopsy obtained without evidence of an inflammatory process; however, cardiac magnetic resonance imaging (MRI) was consistent with myocarditis and Coxsackie B titers indicated prior infection, leading to a diagnosis of clinically suspected recurrent viral myocarditis. He was treated with intravenous immunoglobulin (IV Ig) and a steroid taper, with rapid improvement in symptoms over the ensuing weeks without evidence of further recurrence or sequelae. CONCLUSIONS We present a case of recurrent Coxsackie B myocarditis based on presentation and imaging. Myocarditis is an important diagnosis to consider when a young, healthy individual presents with chest pain mimicking acute coronary syndrome, especially during the COVID pandemic. If there is evidence of myocarditis on MRI or endomyocardial biopsy, immunosuppressive therapy should be considered in patients with recurrent and severe presentations.


Subject(s)
COVID-19 , Coxsackievirus Infections , Myocarditis , Adolescent , Coxsackievirus Infections/complications , Humans , Immunoglobulins, Intravenous/therapeutic use , Male , Myocarditis/diagnosis , Myocarditis/drug therapy , Myocarditis/etiology , Myocardium/pathology , Steroids
18.
J Cardiovasc Magn Reson ; 24(1): 33, 2022 06 06.
Article in English | MEDLINE | ID: covidwho-1881271

ABSTRACT

Cardiovascular magnetic resonance (CMR) is considered the gold standard imaging modality for myocardial tissue characterization. Elevated transverse relaxation time (T2) is specific for increased myocardial water content, increased free water, and is used as an index of myocardial edema. The strengths of quantitative T2 mapping lie in the accurate characterization of myocardial edema, and the early detection of reversible myocardial disease without the use of contrast agents or ionizing radiation. Quantitative T2 mapping overcomes the limitations of T2-weighted imaging for reliable assessment of diffuse myocardial edema and can be used to diagnose, stage, and monitor myocardial injury. Strong evidence supports the clinical use of T2 mapping in acute myocardial infarction, myocarditis, heart transplant rejection, and dilated cardiomyopathy. Accumulating data support the utility of T2 mapping for the assessment of other cardiomyopathies, rheumatologic conditions with cardiac involvement, and monitoring for cancer therapy-related cardiac injury. Importantly, elevated T2 relaxation time may be the first sign of myocardial injury in many diseases and oftentimes precedes symptoms, changes in ejection fraction, and irreversible myocardial remodeling. This comprehensive review discusses the technical considerations and clinical roles of myocardial T2 mapping with an emphasis on expanding the impact of this unique, noninvasive tissue parameter.


Subject(s)
Cardiomyopathies , Myocarditis , Cardiomyopathies/pathology , Contrast Media , Edema , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging, Cine/methods , Myocarditis/pathology , Myocardium/pathology , Predictive Value of Tests , Water
19.
Cardiovasc Pathol ; 60: 107447, 2022.
Article in English | MEDLINE | ID: covidwho-1894842

ABSTRACT

SARS-Cov-2 infection is not limited to the respiratory tract and can involve other organs including the heart, blood vessels, kidneys, liver, gastrointestinal tract, placenta, and skin. Covid-19 patients with cardiac involvement usually have higher morbidity and mortality compared to those without cardiac involvement. The frequency and the specificity of the myocardial pathological changes in patients who die after documented infection with SARS-Cov-2 is uncertain. Macrophages can be found in the normal heart (interstitium, around the endothelial cells and in the epicardial adipose tissue), and they are considered part of the major immune cell population in the heart. In this case-control autopsy study, we compare the gross and microscopic cardiac findings, and the available clinical characteristics between a group of 10 Covid-19 decedents and a control group of 20 patients who died with non-SARS-Cov-2 severe bronchopneumonia and/or diffuse alveolar damage. The objectives of this semi-quantitative study are to study single myocyte necrosis and its relation to the strain on the heart caused by lung injury as a causative mechanism, and to study the density of myocardial and epicardial macrophages in Covid-19 hearts in comparison to the control group, and in Covid-19 hearts with single myocyte necrosis in comparison to Covid-19 hearts without single myocyte necrosis. Lymphocytic myocarditis was not identified in any of the hearts from the Covid-19 or the control group. Single myocyte necrosis is more frequent in the Covid-19 group compared to the control group, suggesting that it is unrelated to the strain on the heart caused by underlying lung injury. The density of the macrophages in the epicardium and myocardium in the hearts of the Covid-19 group is higher compared to those in the control group. The density of epicardial macrophages is higher in the Covid-19 hearts with single myocyte necrosis than in those without. These observations contribute to our increasing appreciation of the role of macrophages in the pathophysiologic response to infection by SARS-CoV-2.


Subject(s)
Acute Lung Injury , COVID-19 , Acute Lung Injury/pathology , COVID-19/complications , Endothelial Cells , Humans , Macrophages , Muscle Cells , Myocardium/pathology , Necrosis/pathology , SARS-CoV-2
20.
Eur Heart J Cardiovasc Imaging ; 23(4): 450-464, 2022 03 22.
Article in English | MEDLINE | ID: covidwho-1886392

ABSTRACT

Inflammatory cardiomyopathy (I-CMP) is defined as myocarditis in association with cardiac dysfunction and/or ventricular remodelling. It is characterized by inflammatory cell infiltration into the myocardium and has heterogeneous infectious and non-infectious aetiologies. A complex interplay of genetic, autoimmune, and environmental factors contributes to the substantial risk of deteriorating cardiac function, acute heart failure, and arrhythmia as well as chronic dilated cardiomyopathy and its sequelae. Multi-parametric cardiovascular magnetic resonance (CMR) imaging is sensitive to many tissue changes that occur during myocardial inflammation, regardless of its aetiology. In this review, we summarize the various aetiologies of I-CMP and illustrate how CMR contributes to non-invasive diagnosis.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Myocarditis , Cardiomyopathies/pathology , Cytidine Monophosphate , Heart , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Myocarditis/diagnostic imaging , Myocardium/pathology
SELECTION OF CITATIONS
SEARCH DETAIL