Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
J Virol ; 95(24): e0136821, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1691427

ABSTRACT

Severe cardiovascular complications can occur in coronavirus disease of 2019 (COVID-19) patients. Cardiac damage is attributed mostly to the aberrant host response to acute respiratory infection. However, direct infection of cardiac tissue by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also occurs. We examined here the cardiac tropism of SARS-CoV-2 in spontaneously beating human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). These cardiomyocytes express the angiotensin-converting enzyme 2 (ACE2) receptor but not the transmembrane protease serine 2 (TMPRSS2) that mediates spike protein cleavage in the lungs. Nevertheless, SARS-CoV-2 infection of hiPSC-CMs was prolific; viral transcripts accounted for about 88% of total mRNA. In the cytoplasm of infected hiPSC-CMs, smooth-walled exocytic vesicles contained numerous 65- to 90-nm particles with canonical ribonucleocapsid structures, and virus-like particles with knob-like spikes covered the cell surface. To better understand how SARS-CoV-2 spreads in hiPSC-CMs, we engineered an expression vector coding for the spike protein with a monomeric emerald-green fluorescent protein fused to its cytoplasmic tail (S-mEm). Proteolytic processing of S-mEm and the parental spike were equivalent. Live cell imaging tracked spread of S-mEm cell-to-cell and documented formation of syncytia. A cell-permeable, peptide-based molecule that blocks the catalytic site of furin and furin-like proteases abolished cell fusion. A spike mutant with the single amino acid change R682S that disrupts the multibasic furin cleavage motif was fusion inactive. Thus, SARS-CoV-2 replicates efficiently in hiPSC-CMs and furin, and/or furin-like-protease activation of its spike protein is required for fusion-based cytopathology. This hiPSC-CM platform enables target-based drug discovery in cardiac COVID-19. IMPORTANCE Cardiac complications frequently observed in COVID-19 patients are tentatively attributed to systemic inflammation and thrombosis, but viral replication has occasionally been confirmed in cardiac tissue autopsy materials. We developed an in vitro model of SARS-CoV-2 spread in myocardium using induced pluripotent stem cell-derived cardiomyocytes. In these highly differentiated cells, viral transcription levels exceeded those previously documented in permissive transformed cell lines. To better understand the mechanisms of SARS-CoV-2 spread, we expressed a fluorescent version of its spike protein that allowed us to characterize a fusion-based cytopathic effect. A mutant of the spike protein with a single amino acid mutation in the furin/furin-like protease cleavage site lost cytopathic function. Of note, the fusion activities of the spike protein of other coronaviruses correlated with the level of cardiovascular complications observed in infections with the respective viruses. These data indicate that SARS-CoV-2 may cause cardiac damage by fusing cardiomyocytes.


Subject(s)
COVID-19/virology , Myocytes, Cardiac/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Animals , Cathepsin B/metabolism , Cell Fusion , Chlorocebus aethiops , Embryonic Stem Cells/metabolism , Exocytosis , Humans , Induced Pluripotent Stem Cells/metabolism , Microscopy, Confocal , Serine Endopeptidases/metabolism , Vero Cells , Viral Proteins/metabolism , Virus Internalization , Virus Replication
2.
Viruses ; 14(2)2022 01 28.
Article in English | MEDLINE | ID: covidwho-1667343

ABSTRACT

Cardiomyocyte injury and troponin T elevation has been reported within COVID-19 patients and are associated with a worse prognosis. Limited data report this association among COVID-19 pregnant patients. OBJECTIVE: We aimed to analyze the association between troponin T levels in severe COVID-19 pregnant women and risk of viral sepsis, intensive care unit (ICU) admission, or maternal death. METHODS: We performed a prospective cohort of all obstetrics emergency admissions from a Mexican National Institute. All pregnant women diagnosed by reverse transcription-polymerase chain reaction (RT-qPCR) for SARS-CoV-2 infection between October 2020 and May 2021 were included. Clinical data were collected, and routine blood samples were obtained at hospital admission. Seric troponin T was measured at admission. RESULTS: From 87 included patients, 31 (35.63%) had severe COVID-19 pneumonia, and 6 (6.89%) maternal deaths. ROC showed a significant relationship between troponin T and maternal death (AUC 0.979, CI 0.500-1.000). At a cutoff point of 7 ng/mL the detection rate for severe pneumonia was 83.3% (95%CI: 0.500-0.100) at 10% false-positive rate. CONCLUSION: COVID-19 pregnant women with elevated levels of troponin T present a higher risk of death and severe pneumonia.


Subject(s)
COVID-19/complications , COVID-19/mortality , Maternal Mortality , Pneumonia/mortality , Pregnancy Complications, Infectious/mortality , Pregnancy Complications, Infectious/virology , Troponin T/blood , Adult , COVID-19/epidemiology , Female , Hospitalization , Humans , Mexico/epidemiology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/virology , Pneumonia/epidemiology , Pneumonia/virology , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Prospective Studies , Risk Factors , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Severity of Illness Index
3.
J Virol ; 96(2): e0106321, 2022 01 26.
Article in English | MEDLINE | ID: covidwho-1476388

ABSTRACT

COVID-19 affects multiple organs. Clinical data from the Mount Sinai Health System show that substantial numbers of COVID-19 patients without prior heart disease develop cardiac dysfunction. How COVID-19 patients develop cardiac disease is not known. We integrated cell biological and physiological analyses of human cardiomyocytes differentiated from human induced pluripotent stem cells (hiPSCs) infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the presence of interleukins (ILs) with clinical findings related to laboratory values in COVID-19 patients to identify plausible mechanisms of cardiac disease in COVID-19 patients. We infected hiPSC-derived cardiomyocytes from healthy human subjects with SARS-CoV-2 in the absence and presence of IL-6 and IL-1ß. Infection resulted in increased numbers of multinucleated cells. Interleukin treatment and infection resulted in disorganization of myofibrils, extracellular release of troponin I, and reduced and erratic beating. Infection resulted in decreased expression of mRNA encoding key proteins of the cardiomyocyte contractile apparatus. Although interleukins did not increase the extent of infection, they increased the contractile dysfunction associated with viral infection of cardiomyocytes, resulting in cessation of beating. Clinical data from hospitalized patients from the Mount Sinai Health System show that a significant portion of COVID-19 patients without history of heart disease have elevated troponin and interleukin levels. A substantial subset of these patients showed reduced left ventricular function by echocardiography. Our laboratory observations, combined with the clinical data, indicate that direct effects on cardiomyocytes by interleukins and SARS-CoV-2 infection might underlie heart disease in COVID-19 patients. IMPORTANCE SARS-CoV-2 infects multiple organs, including the heart. Analyses of hospitalized patients show that a substantial number without prior indication of heart disease or comorbidities show significant injury to heart tissue, assessed by increased levels of troponin in blood. We studied the cell biological and physiological effects of virus infection of healthy human iPSC-derived cardiomyocytes in culture. Virus infection with interleukins disorganizes myofibrils, increases cell size and the numbers of multinucleated cells, and suppresses the expression of proteins of the contractile apparatus. Viral infection of cardiomyocytes in culture triggers release of troponin similar to elevation in levels of COVID-19 patients with heart disease. Viral infection in the presence of interleukins slows down and desynchronizes the beating of cardiomyocytes in culture. The cell-level physiological changes are similar to decreases in left ventricular ejection seen in imaging of patients' hearts. These observations suggest that direct injury to heart tissue by virus can be one underlying cause of heart disease in COVID-19.


Subject(s)
COVID-19/immunology , Induced Pluripotent Stem Cells , Interleukin-10/immunology , Interleukin-1beta/immunology , Interleukin-6/immunology , Myocytes, Cardiac , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/immunology , Induced Pluripotent Stem Cells/pathology , Induced Pluripotent Stem Cells/virology , Myocytes, Cardiac/immunology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/virology
4.
J Virol ; 95(24): e0136821, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1455676

ABSTRACT

Severe cardiovascular complications can occur in coronavirus disease of 2019 (COVID-19) patients. Cardiac damage is attributed mostly to the aberrant host response to acute respiratory infection. However, direct infection of cardiac tissue by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also occurs. We examined here the cardiac tropism of SARS-CoV-2 in spontaneously beating human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). These cardiomyocytes express the angiotensin-converting enzyme 2 (ACE2) receptor but not the transmembrane protease serine 2 (TMPRSS2) that mediates spike protein cleavage in the lungs. Nevertheless, SARS-CoV-2 infection of hiPSC-CMs was prolific; viral transcripts accounted for about 88% of total mRNA. In the cytoplasm of infected hiPSC-CMs, smooth-walled exocytic vesicles contained numerous 65- to 90-nm particles with canonical ribonucleocapsid structures, and virus-like particles with knob-like spikes covered the cell surface. To better understand how SARS-CoV-2 spreads in hiPSC-CMs, we engineered an expression vector coding for the spike protein with a monomeric emerald-green fluorescent protein fused to its cytoplasmic tail (S-mEm). Proteolytic processing of S-mEm and the parental spike were equivalent. Live cell imaging tracked spread of S-mEm cell-to-cell and documented formation of syncytia. A cell-permeable, peptide-based molecule that blocks the catalytic site of furin and furin-like proteases abolished cell fusion. A spike mutant with the single amino acid change R682S that disrupts the multibasic furin cleavage motif was fusion inactive. Thus, SARS-CoV-2 replicates efficiently in hiPSC-CMs and furin, and/or furin-like-protease activation of its spike protein is required for fusion-based cytopathology. This hiPSC-CM platform enables target-based drug discovery in cardiac COVID-19. IMPORTANCE Cardiac complications frequently observed in COVID-19 patients are tentatively attributed to systemic inflammation and thrombosis, but viral replication has occasionally been confirmed in cardiac tissue autopsy materials. We developed an in vitro model of SARS-CoV-2 spread in myocardium using induced pluripotent stem cell-derived cardiomyocytes. In these highly differentiated cells, viral transcription levels exceeded those previously documented in permissive transformed cell lines. To better understand the mechanisms of SARS-CoV-2 spread, we expressed a fluorescent version of its spike protein that allowed us to characterize a fusion-based cytopathic effect. A mutant of the spike protein with a single amino acid mutation in the furin/furin-like protease cleavage site lost cytopathic function. Of note, the fusion activities of the spike protein of other coronaviruses correlated with the level of cardiovascular complications observed in infections with the respective viruses. These data indicate that SARS-CoV-2 may cause cardiac damage by fusing cardiomyocytes.


Subject(s)
COVID-19/virology , Myocytes, Cardiac/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Animals , Cathepsin B/metabolism , Cell Fusion , Chlorocebus aethiops , Embryonic Stem Cells/metabolism , Exocytosis , Humans , Induced Pluripotent Stem Cells/metabolism , Microscopy, Confocal , Serine Endopeptidases/metabolism , Vero Cells , Viral Proteins/metabolism , Virus Internalization , Virus Replication
5.
Int J Mol Sci ; 22(18)2021 Sep 13.
Article in English | MEDLINE | ID: covidwho-1409702

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic with high infectivity and mortality has caused severe social and economic impacts worldwide. Growing reports of COVID-19 patients with multi-organ damage indicated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) may also disturb the cardiovascular system. Herein, we used human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) as the in vitro platform to examine the consequence of SARS-CoV2 infection on iCMs. Differentiated iCMs expressed the primary SARS-CoV2 receptor angiotensin-converting enzyme-II (ACE2) and the transmembrane protease serine type 2 (TMPRSS2) receptor suggesting the susceptibility of iCMs to SARS-CoV2. Following the infection of iCMs with SARS-CoV2, the viral nucleocapsid (N) protein was detected in the host cells, demonstrating the successful infection. Bioinformatics analysis revealed that the SARS-CoV2 infection upregulates several inflammation-related genes, including the proinflammatory cytokine tumor necrosis factor-α (TNF-α). The pretreatment of iCMs with TNF-α for 24 h, significantly increased the expression of ACE2 and TMPRSS2, SASR-CoV2 entry receptors. The TNF-α pretreatment enhanced the entry of GFP-expressing SARS-CoV2 pseudovirus into iCMs, and the neutralization of TNF-α ameliorated the TNF-α-enhanced viral entry. Collectively, SARS-CoV2 elevated TNF-α expression, which in turn enhanced the SARS-CoV2 viral entry. Our findings suggest that, TNF-α may participate in the cytokine storm and aggravate the myocardial damage in COVID-19 patients.


Subject(s)
COVID-19/complications , Cardiovascular Diseases/immunology , Cytokine Release Syndrome/immunology , SARS-CoV-2/immunology , Tumor Necrosis Factor-alpha/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cardiovascular Diseases/virology , Cell Differentiation , Cell Line , Computational Biology , Coronavirus Nucleocapsid Proteins/metabolism , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Humans , Induced Pluripotent Stem Cells , Myocardium/cytology , Myocardium/immunology , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/virology , Phosphoproteins/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Up-Regulation/immunology , Virus Internalization/drug effects
6.
Commun Biol ; 4(1): 926, 2021 07 29.
Article in English | MEDLINE | ID: covidwho-1387497

ABSTRACT

Patients with cardiovascular comorbidities are more susceptible to severe infection with SARS-CoV-2, known to directly cause pathological damage to cardiovascular tissue. We outline a screening platform using human embryonic stem cell-derived cardiomyocytes, confirmed to express the protein machinery critical for SARS-CoV-2 infection, and a SARS-CoV-2 spike-pseudotyped virus system. The method has allowed us to identify benztropine and DX600 as novel inhibitors of SARS-CoV-2 infection in a clinically relevant stem cell-derived cardiomyocyte line. Discovery of new medicines will be critical for protecting the heart in patients with SARS-CoV-2, and for individuals where vaccination is contraindicated.


Subject(s)
Antiviral Agents/pharmacology , Drug Evaluation, Preclinical/methods , Human Embryonic Stem Cells/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/virology , SARS-CoV-2/physiology , Benztropine/pharmacology , Humans , Myocytes, Cardiac/cytology , Peptides/pharmacology
7.
Stem Cell Reports ; 16(9): 2274-2288, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1360129

ABSTRACT

Heart injury has been reported in up to 20% of COVID-19 patients, yet the cause of myocardial histopathology remains unknown. Here, using an established in vivo hamster model, we demonstrate that SARS-CoV-2 can be detected in cardiomyocytes of infected animals. Furthermore, we found damaged cardiomyocytes in hamsters and COVID-19 autopsy samples. To explore the mechanism, we show that both human pluripotent stem cell-derived cardiomyocytes (hPSC-derived CMs) and adult cardiomyocytes (CMs) can be productively infected by SARS-CoV-2, leading to secretion of the monocyte chemoattractant cytokine CCL2 and subsequent monocyte recruitment. Increased CCL2 expression and monocyte infiltration was also observed in the hearts of infected hamsters. Although infected CMs suffer damage, we find that the presence of macrophages significantly reduces SARS-CoV-2-infected CMs. Overall, our study provides direct evidence that SARS-CoV-2 infects CMs in vivo and suggests a mechanism of immune cell infiltration and histopathology in heart tissues of COVID-19 patients.


Subject(s)
COVID-19/pathology , Chemokine CCL2/metabolism , Heart Injuries/virology , Monocytes/immunology , Myocytes, Cardiac/metabolism , Animals , Cell Communication/physiology , Cell Line , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Humans , Macrophages/immunology , Male , Myocytes, Cardiac/virology , Pluripotent Stem Cells/cytology , Vero Cells
8.
Clin Res Cardiol ; 110(11): 1822-1831, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1317539

ABSTRACT

OBJECTIVE: Despite growing evidence about myocardial injury in hospitalized COronaVIrus Disease 2019 (COVID-19) patients, the mechanism behind this injury is only poorly understood and little is known about its association with SARS-CoV-2-mediated myocarditis. Furthermore, definite evidence of the presence and role of SARS-CoV-2 in cardiomyocytes in the clinical scenario is still lacking. METHODS: We histologically characterized myocardial tissue of 40 patients deceased with severe SARS-CoV-2 infection during the first wave of the pandemic. Clinical data were also recorded and analyzed. In case of findings supportive of myocardial inflammation, histological analysis was complemented by RT-PCR and immunohistochemistry for SARS-CoV-2 viral antigens and in situ RNA hybridization for the detection of viral genomes. RESULTS: Both chronic and acute myocardial damage was invariably present, correlating with the age and comorbidities of our population. Myocarditis of overt entity was found in one case (2.5%). SARS-CoV-2 genome was not found in the cardiomyocytes of the patient with myocarditis, while it was focally and negligibly present in cardiomyocytes of patients with known viral persistence in the lungs and no signs of myocardial inflammation. The presence of myocardial injury was not associated with myocardial inflammatory infiltrates. CONCLUSIONS: In this autopsy cohort of COVID-19 patients, myocarditis is rarely found and not associated with SARS-CoV-2 presence in cardiomyocytes. Chronic and acute forms of myocardial damage are constantly found and correlate with the severity of COVID-19 disease and pre-existing comorbidities.


Subject(s)
COVID-19/complications , Inflammation/virology , Myocarditis/virology , Myocardium/pathology , Aged , Aged, 80 and over , Autopsy , Cohort Studies , Female , Humans , Inflammation/epidemiology , Male , Myocarditis/epidemiology , Myocytes, Cardiac/virology , SARS-CoV-2/isolation & purification , Severity of Illness Index
9.
Cardiovasc Res ; 117(10): 2148-2160, 2021 08 29.
Article in English | MEDLINE | ID: covidwho-1266112

ABSTRACT

The pandemic of coronavirus disease (COVID)-19 is a global threat, causing high mortality, especially in the elderly. The main symptoms and the primary cause of death are related to interstitial pneumonia. Viral entry also into myocardial cells mainly via the angiotensin converting enzyme type 2 (ACE2) receptor and excessive production of pro-inflammatory cytokines, however, also make the heart susceptible to injury. In addition to the immediate damage caused by the acute inflammatory response, the heart may also suffer from long-term consequences of COVID-19, potentially causing a post-pandemic increase in cardiac complications. Although the main cause of cardiac damage in COVID-19 remains coagulopathy with micro- (and to a lesser extent macro-) vascular occlusion, open questions remain about other possible modalities of cardiac dysfunction, such as direct infection of myocardial cells, effects of cytokines storm, and mechanisms related to enhanced coagulopathy. In this opinion paper, we focus on these lesser appreciated possibilities and propose experimental approaches that could provide a more comprehensive understanding of the cellular and molecular bases of cardiac injury in COVID-19 patients. We first discuss approaches to characterize cardiac damage caused by possible direct viral infection of cardiac cells, followed by formulating hypotheses on how to reproduce and investigate the hyperinflammatory and pro-thrombotic conditions observed in the heart of COVID-19 patients using experimental in vitro systems. Finally, we elaborate on strategies to discover novel pathology biomarkers using omics platforms.


Subject(s)
COVID-19/virology , Heart Diseases/virology , Heart/virology , Myocytes, Cardiac/virology , SARS-CoV-2/pathogenicity , Animals , Biomarkers/metabolism , Blood Coagulation , COVID-19/complications , Fibrosis , Heart/physiopathology , Heart Diseases/metabolism , Heart Diseases/pathology , Heart Diseases/physiopathology , Host-Pathogen Interactions , Humans , Inflammation Mediators/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Ventricular Remodeling
10.
Cardiovasc Res ; 117(10): 2161-2174, 2021 08 29.
Article in English | MEDLINE | ID: covidwho-1266111

ABSTRACT

We review some of the important discoveries and advances made in basic and translational cardiac research in 2020. For example, in the field of myocardial infarction (MI), new aspects of autophagy and the importance of eosinophils were described. Novel approaches, such as a glycocalyx mimetic, were used to improve cardiac recovery following MI. The strategy of 3D bio-printing was shown to allow the fabrication of a chambered cardiac organoid. The benefit of combining tissue engineering with paracrine therapy to heal injured myocardium is discussed. We highlight the importance of cell-to-cell communication, in particular, the relevance of extracellular vesicles, such as exosomes, which transport proteins, lipids, non-coding RNAs, and mRNAs and actively contribute to angiogenesis and myocardial regeneration. In this rapidly growing field, new strategies were developed to stimulate the release of reparative exosomes in ischaemic myocardium. Single-cell sequencing technology is causing a revolution in the study of transcriptional expression at cellular resolution, revealing unanticipated heterogeneity within cardiomyocytes, pericytes and fibroblasts, and revealing a unique subpopulation of cardiac fibroblasts. Several studies demonstrated that exosome- and non-coding RNA-mediated approaches can enhance human induced pluripotent stem cell (iPSC) viability and differentiation into mature cardiomyocytes. Important details of the mitochondrial Ca2+ uniporter and its relevance were elucidated. Novel aspects of cancer therapeutic-induced cardiotoxicity were described, such as the novel circular RNA circITCH, which may lead to novel treatments. Finally, we provide some insights into the effects of SARS-CoV-2 on the heart.


Subject(s)
Biomedical Research , Cardiology , Cell Proliferation , Heart Failure/pathology , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/pathology , Regeneration , Animals , COVID-19/pathology , COVID-19/virology , Cell Communication , Cellular Microenvironment , Exosomes/metabolism , Exosomes/pathology , Heart Failure/metabolism , Heart Failure/physiopathology , Humans , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/virology , Phenotype , RNA, Untranslated/metabolism , SARS-CoV-2/pathogenicity
11.
Circ Res ; 128(8): 1214-1236, 2021 04 16.
Article in English | MEDLINE | ID: covidwho-1186415

ABSTRACT

A pandemic of historic impact, coronavirus disease 2019 (COVID-19) has potential consequences on the cardiovascular health of millions of people who survive infection worldwide. Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), the etiologic agent of COVID-19, can infect the heart, vascular tissues, and circulating cells through ACE2 (angiotensin-converting enzyme 2), the host cell receptor for the viral spike protein. Acute cardiac injury is a common extrapulmonary manifestation of COVID-19 with potential chronic consequences. This update provides a review of the clinical manifestations of cardiovascular involvement, potential direct SARS-CoV-2 and indirect immune response mechanisms impacting the cardiovascular system, and implications for the management of patients after recovery from acute COVID-19 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Cardiovascular Diseases/virology , Myocytes, Cardiac/virology , SARS-CoV-2/physiology , Virus Internalization , Biomarkers/metabolism , COVID-19/complications , COVID-19/epidemiology , COVID-19/therapy , Cardiomyopathies/virology , Gene Expression , Humans , Immune System/physiology , Myocardium/enzymology , Myocytes, Cardiac/enzymology , Neuropilin-1/metabolism , Platelet Activation , RNA, Messenger/metabolism , Renin-Angiotensin System/physiology , Return to Sport , Risk Factors , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/metabolism , Troponin/metabolism , Ventricular Remodeling , Virus Attachment , Virus Internalization/drug effects
12.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Article in English | MEDLINE | ID: covidwho-1165017

ABSTRACT

Coronaviruses are adept at evading host antiviral pathways induced by viral double-stranded RNA, including interferon (IFN) signaling, oligoadenylate synthetase-ribonuclease L (OAS-RNase L), and protein kinase R (PKR). While dysregulated or inadequate IFN responses have been associated with severe coronavirus infection, the extent to which the recently emerged SARS-CoV-2 activates or antagonizes these pathways is relatively unknown. We found that SARS-CoV-2 infects patient-derived nasal epithelial cells, present at the initial site of infection; induced pluripotent stem cell-derived alveolar type 2 cells (iAT2), the major cell type infected in the lung; and cardiomyocytes (iCM), consistent with cardiovascular consequences of COVID-19 disease. Robust activation of IFN or OAS-RNase L is not observed in these cell types, whereas PKR activation is evident in iAT2 and iCM. In SARS-CoV-2-infected Calu-3 and A549ACE2 lung-derived cell lines, IFN induction remains relatively weak; however, activation of OAS-RNase L and PKR is observed. This is in contrast to Middle East respiratory syndrome (MERS)-CoV, which effectively inhibits IFN signaling and OAS-RNase L and PKR pathways, but is similar to mutant MERS-CoV lacking innate immune antagonists. Remarkably, OAS-RNase L and PKR are activated in MAVS knockout A549ACE2 cells, demonstrating that SARS-CoV-2 can induce these host antiviral pathways despite minimal IFN production. Moreover, increased replication and cytopathic effect in RNASEL knockout A549ACE2 cells implicates OAS-RNase L in restricting SARS-CoV-2. Finally, while SARS-CoV-2 fails to antagonize these host defense pathways, which contrasts with other coronaviruses, the IFN signaling response is generally weak. These host-virus interactions may contribute to the unique pathogenesis of SARS-CoV-2.


Subject(s)
Epithelial Cells/immunology , Epithelial Cells/virology , Immunity, Innate , Lung/pathology , Myocytes, Cardiac/immunology , Myocytes, Cardiac/virology , RNA, Double-Stranded/metabolism , SARS-CoV-2/immunology , A549 Cells , Endoribonucleases/metabolism , Humans , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/physiology , Nose/virology , Virus Replication , eIF-2 Kinase
13.
Sci Transl Med ; 13(590)2021 04 21.
Article in English | MEDLINE | ID: covidwho-1136062

ABSTRACT

Although coronavirus disease 2019 (COVID-19) causes cardiac dysfunction in up to 25% of patients, its pathogenesis remains unclear. Exposure of human induced pluripotent stem cell (iPSC)-derived heart cells to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed productive infection and robust transcriptomic and morphological signatures of damage, particularly in cardiomyocytes. Transcriptomic disruption of structural genes corroborates adverse morphologic features, which included a distinct pattern of myofibrillar fragmentation and nuclear disruption. Human autopsy specimens from patients with COVID-19 reflected similar alterations, particularly sarcomeric fragmentation. These notable cytopathic features in cardiomyocytes provide insights into SARS-CoV-2-induced cardiac damage, offer a platform for discovery of potential therapeutics, and raise concerns about the long-term consequences of COVID-19 in asymptomatic and severe cases.


Subject(s)
COVID-19/complications , Induced Pluripotent Stem Cells/virology , Myocytes, Cardiac/virology , SARS-CoV-2/pathogenicity , Autopsy , Cells, Cultured , Heart/virology , Humans , Myocardium/pathology , Transcriptome
14.
Comput Biol Med ; 131: 104293, 2021 04.
Article in English | MEDLINE | ID: covidwho-1101164

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is an emerging infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Up to 20%-30% of patients hospitalized with COVID-19 have evidence of cardiac dysfunction. Xuebijing injection is a compound injection containing five traditional Chinese medicine ingredients, which can protect cells from SARS-CoV-2-induced cell death and improve cardiac function. However, the specific protective mechanism of Xuebijing injection on COVID-19-induced cardiac dysfunction remains unclear. METHODS: The therapeutic effect of Xuebijing injection on COVID-19 was validated by the TCM Anti COVID-19 (TCMATCOV) platform. RNA-sequencing (RNA-seq) data from GSE150392 was used to find differentially expressed genes (DEGs) from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) infected with SARS-CoV-2. Data from GSE151879 was used to verify the expression of Angiotensin I Converting Enzyme 2 (ACE2) and central hub genes in both human embryonic-stem-cell-derived cardiomyocytes (hESC-CMs) and adult human CMs with SARS-CoV-2 infection. RESULTS: A total of 97 proteins were identified as the therapeutic targets of Xuebijing injection for COVID-19. There were 22 DEGs in SARS-CoV-2 infected hiPSC-CMs overlapped with the 97 therapeutic targets, which might be the therapeutic targets of Xuebijing injection on COVID-19-induced cardiac dysfunction. Based on the bioinformatics analysis, 7 genes (CCL2, CXCL8, FOS, IFNB1, IL-1A, IL-1B, SERPINE1) were identified as central hub genes and enriched in pathways including cytokines, inflammation, cell senescence and oxidative stress. ACE2, the receptor of SARS-CoV-2, and the 7 central hub genes were differentially expressed in at least two kinds of SARS-CoV-2 infected CMs. Besides, FOS and quercetin exhibited the tightest binding by molecular docking analysis. CONCLUSION: Our study indicated the underlying protective effect of Xuebijing injection on COVID-19, especially on COVID19-induced cardiac dysfunction, which provided the theoretical basis for exploring the potential protective mechanism of Xuebijing injection on COVID19-induced cardiac dysfunction.


Subject(s)
COVID-19/metabolism , Drugs, Chinese Herbal/pharmacology , Gene Expression Regulation/drug effects , Myocytes, Cardiac/metabolism , RNA-Seq , SARS-CoV-2/metabolism , COVID-19/drug therapy , Cell Line , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/pathology , Human Embryonic Stem Cells/virology , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Induced Pluripotent Stem Cells/virology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/virology
15.
Stem Cell Reports ; 16(3): 478-492, 2021 03 09.
Article in English | MEDLINE | ID: covidwho-1082779

ABSTRACT

COVID-19 patients often develop severe cardiovascular complications, but it remains unclear if these are caused directly by viral infection or are secondary to a systemic response. Here, we examine the cardiac tropism of SARS-CoV-2 in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) and smooth muscle cells (hPSC-SMCs). We find that that SARS-CoV-2 selectively infects hPSC-CMs through the viral receptor ACE2, whereas in hPSC-SMCs there is minimal viral entry or replication. After entry into cardiomyocytes, SARS-CoV-2 is assembled in lysosome-like vesicles and egresses via bulk exocytosis. The viral transcripts become a large fraction of cellular mRNA while host gene expression shifts from oxidative to glycolytic metabolism and upregulates chromatin modification and RNA splicing pathways. Most importantly, viral infection of hPSC-CMs progressively impairs both their electrophysiological and contractile function, and causes widespread cell death. These data support the hypothesis that COVID-19-related cardiac symptoms can result from a direct cardiotoxic effect of SARS-CoV-2.


Subject(s)
COVID-19/virology , Induced Pluripotent Stem Cells/virology , Myocytes, Cardiac/virology , SARS-CoV-2/pathogenicity , Cells, Cultured , Humans , RNA Splicing/genetics , RNA, Messenger/genetics , SARS-CoV-2/genetics , Virus Internalization
16.
Hereditas ; 158(1): 4, 2021 Jan 04.
Article in English | MEDLINE | ID: covidwho-1067345

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) has spread rapidly around the world. In addition to common respiratory symptoms such as cough and fever, some patients also have cardiac injury, however, the mechanism of cardiac injury is not clear. In this study, we analyzed the RNA expression atlases of angiotensin-converting enzyme 2(ACE2), cathepsin B (CTSB) and cathepsin L (CTSL) in the human embryonic heart at single-cell resolution. RESULTS: The results showed that ACE2 was preferentially enriched in cardiomyocytes. Interestingly, serine protease transmembrane serine protease 2 (TMPRSS2) had less expression in cardiomyocytes, but CTSB and CTSL, which belonged to cell protease, could be found to be enriched in cardiomyocytes. The results of enrichment analysis showed that differentially expressed genes (DEGs) in ACE2-positive cardiomyocytes were mainly enriched in the processes of cardiac muscle contraction, regulation of cardiac conduction, mitochondrial respiratory chain, ion channel binding, adrenergic signaling in cardiomyocytes and viral transcription. CONCLUSIONS: Our study suggests that both atrial and ventricular cardiomyocytes are potentially susceptible to severe acute respiratory syndrome coronavirus-2(SARS-CoV-2), and SARS-CoV-2 may enter ventricular cardiomyocytes using CTSB/CTSL for S protein priming. This may be the partial cellular mechanism of cardiac injury in patients with COVID-19.


Subject(s)
COVID-19/prevention & control , Gene Expression Regulation, Developmental , Heart/embryology , Myocytes, Cardiac/metabolism , SARS-CoV-2/genetics , Single-Cell Analysis/methods , Angiotensin-Converting Enzyme 2/genetics , COVID-19/epidemiology , COVID-19/virology , Cathepsin B/genetics , Cathepsin L/genetics , Gene Ontology , Humans , Myocytes, Cardiac/cytology , Myocytes, Cardiac/virology , Pandemics , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Signal Transduction/genetics
17.
Cardiovasc Res ; 116(14): 2207-2215, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-1048209

ABSTRACT

AIMS: Coronavirus disease 2019 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has emerged as a global pandemic. SARS-CoV-2 infection can lead to elevated markers of cardiac injury associated with higher risk of mortality. It is unclear whether cardiac injury is caused by direct infection of cardiomyocytes or is mainly secondary to lung injury and inflammation. Here, we investigate whether cardiomyocytes are permissive for SARS-CoV-2 infection. METHODS AND RESULTS: Two strains of SARS-CoV-2 infected human induced pluripotent stem cell-derived cardiomyocytes as demonstrated by detection of intracellular double-stranded viral RNA and viral spike glycoprotein expression. Increasing concentrations of viral RNA are detected in supernatants of infected cardiomyocytes, which induced infections in Caco-2 cell lines, documenting productive infections. SARS-CoV-2 infection and induced cytotoxic and proapoptotic effects associated with it abolished cardiomyocyte beating. RNA sequencing confirmed a transcriptional response to viral infection as demonstrated by the up-regulation of genes associated with pathways related to viral response and interferon signalling, apoptosis, and reactive oxygen stress. SARS-CoV-2 infection and cardiotoxicity was confirmed in a 3D cardiosphere tissue model. Importantly, viral spike protein and viral particles were detected in living human heart slices after infection with SARS-CoV-2. Coronavirus particles were further observed in cardiomyocytes of a patient with coronavirus disease 2019. Infection of induced pluripotent stem cell-derived cardiomyocytes was dependent on cathepsins and angiotensin-converting enzyme 2, and was blocked by remdesivir. CONCLUSION: This study demonstrates that SARS-CoV-2 infects cardiomyocytes in vitro in an angiotensin-converting enzyme 2- and cathepsin-dependent manner. SARS-CoV-2 infection of cardiomyocytes is inhibited by the antiviral drug remdesivir.


Subject(s)
Apoptosis , COVID-19/virology , Heart Diseases/virology , Myocytes, Cardiac/virology , SARS-CoV-2/pathogenicity , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , Apoptosis/drug effects , COVID-19/drug therapy , COVID-19/metabolism , COVID-19/pathology , Caco-2 Cells , Cathepsins/metabolism , Heart Diseases/drug therapy , Heart Diseases/metabolism , Heart Diseases/pathology , Host-Pathogen Interactions , Humans , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Reactive Oxygen Species/metabolism , SARS-CoV-2/drug effects , Signal Transduction
18.
Life Sci ; 253: 117723, 2020 Jul 15.
Article in English | MEDLINE | ID: covidwho-1023706

ABSTRACT

Coronavirus Disease 2019 (COVID-19) has quickly progressed to a global health emergency. Respiratory illness is the major cause of morbidity and mortality in these patients with the disease spectrum ranging from asymptomatic subclinical infection, to severe pneumonia progressing to acute respiratory distress syndrome. There is growing evidence describing pathophysiological resemblance of SARS-CoV-2 infection with other coronavirus infections such as Severe Acute Respiratory Syndrome coronavirus and Middle East Respiratory Syndrome coronavirus (MERS-CoV). Angiotensin Converting Enzyme-2 receptors play a pivotal role in the pathogenesis of the virus. Disruption of this receptor leads to cardiomyopathy, cardiac dysfunction, and heart failure. Patients with cardiovascular disease are more likely to be infected with SARS-CoV-2 and they are more likely to develop severe symptoms. Hypertension, arrhythmia, cardiomyopathy and coronary heart disease are amongst major cardiovascular disease comorbidities seen in severe cases of COVID-19. There is growing literature exploring cardiac involvement in SARS-CoV-2. Myocardial injury is one of the important pathogenic features of COVID-19. As a surrogate for myocardial injury, multiple studies have shown increased cardiac biomarkers mainly cardiac troponins I and T in the infected patients especially those with severe disease. Myocarditis is depicted as another cause of morbidity amongst COVID-19 patients. The exact mechanisms of how SARS-CoV-2 can cause myocardial injury are not clearly understood. The proposed mechanisms of myocardial injury are direct damage to the cardiomyocytes, systemic inflammation, myocardial interstitial fibrosis, interferon mediated immune response, exaggerated cytokine response by Type 1 and 2 helper T cells, in addition to coronary plaque destabilization, and hypoxia.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/pathology , Myocardium/pathology , Pneumonia, Viral/pathology , COVID-19 , Coronavirus Infections/immunology , Humans , Myocarditis/virology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/virology , Pandemics , Pneumonia, Viral/immunology , SARS-CoV-2
19.
Int J Legal Med ; 135(2): 577-581, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1002092

ABSTRACT

The coronavirus disease 2019 (COVID-19), due to SARS-CoV-2, is primarily a respiratory disease, causing in most severe cases life-threatening acute respiratory distress syndrome (ARDS). Cardiovascular involvement can also occur, such as thrombosis or myocarditis, generally associated with pulmonary lesions. Little is known about SARS-CoV-2-induced myocarditis. We report the case of a 69-year-old man suffering from a refractory cardiogenic shock, without significant lung involvement. Prior to death, several nasopharyngeal swabs and distal bronchoalveolar lavage were sampled in order to perform RT-PCR analyses for SARS-CoV-2-RNA, which all gave negative results. Autopsy showed coronary atherosclerosis, without acute complication. Microscopic examination of the heart revealed the existence of an intense multifocal inflammatory infiltration, in both ventricles and septum, composed in its majority of macrophages and CD8+ cytotoxic T lymphocytes (CD4/CD8 ratio: 0.11). Immunohistochemistry for anti-SARS nucleocapsid protein antibody was strongly positive in myocardial cells, but not in lung tissue. RT-PCR was realized on formalin-fixed paraffin-embedded lung and heart tissue blocks: only heart tissue was positive for SARS-CoV-2 RNA. In conclusion, this exhaustive post-mortem pathological case study of fulminant myocarditis demonstrates the presence of SARS-CoV-2 RNA in heart tissue, without significant lung involvement. Immunohistochemistry showed that the virus was specifically localized in cardiomyocytes and induced a strong cytotoxic T cells inflammatory response. This case report thus gives new insight in the pathogenesis of SARS-CoV-2-induced myocarditis and emphasizes on the importance and reliability of post-mortem analyses in order to better understand the physiopathology of this worldwide spreading new viral disease.


Subject(s)
COVID-19/diagnosis , Heart/virology , Myocarditis/virology , Myocardium/pathology , Myocytes, Cardiac/virology , SARS-CoV-2/pathogenicity , Aged , Coronary Stenosis/pathology , Humans , Male , Myocarditis/pathology
20.
Stem Cell Res Ther ; 11(1): 514, 2020 11 30.
Article in English | MEDLINE | ID: covidwho-949106

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global pandemic. The prevalence/severity of COVID-19 is higher among patients with cardiovascular risk factors. Despite the expression of angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoV-2 infection, in cardiomyocytes, there has been no conclusive evidence of direct viral infection although the presence of viral genome within COVID-19 patients' hearts has been reported. Here, we overexpressed SARS-CoV-2 genes in A549 lung epithelial cells. We then isolated extracellular vesicles (EVs) and detected the presence of viral RNA within these EVs. We observed that human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are receptive to these EVs, and viral genes were detectable in the cardiomyocytes. Accordingly, the uptake of viral RNA-harboring EVs led to an upregulation of inflammation-related genes in hiPSC-CMs. Thus, our findings indicate that SARS-CoV-2 RNA containing EVs represents an indirect route of viral RNA entry into cardiomyocytes.


Subject(s)
COVID-19/virology , Extracellular Vesicles/virology , Myocytes, Cardiac/virology , SARS-CoV-2/pathogenicity , Virus Internalization , A549 Cells , Humans , Induced Pluripotent Stem Cells , RNA, Viral
SELECTION OF CITATIONS
SEARCH DETAIL