Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Curr Rheumatol Rep ; 23(8): 63, 2021 07 03.
Article in English | MEDLINE | ID: covidwho-1293439


PURPOSE: Myositis as a rare manifestation of COVID-19 is only recently being reported. This review examines the current literature on COVID-19-induced myositis focusing on etiopathogenesis, clinical presentations, diagnostic practices, and therapeutic challenges with immunosuppression, and the difficulties experienced by rheumatologists in established myositis in the COVID-19 era. RECENT FINDINGS: COVID-19 is associated with a viral myositis attributable to direct myocyte invasion or induction of autoimmunity. COVID-19-induced myositis may be varied in presentation, from typical dermatomyositis to rhabdomyolysis, and a paraspinal affliction with back pain. It may or may not present with acute exponential elevations of enzyme markers such as creatine kinase (CK). Virus-mediated muscle inflammation is attributed to ACE2 (angiotensin-converting enzyme) receptor-mediated direct entry and affliction of muscle fibers, leading on to innate and adaptive immune activation. A greater recognition of the stark similarity between anti-MDA5-positive myositis with COVID-19 has thrown researchers into the alley of exploration - finding common etiopathogenic basis as well as therapeutic strategies. For patients with established myositis, chronic care was disrupted during the pandemic with several logistic challenges and treatment dilemmas leading to high flare rates. Teleconsultation bridged the gap while ushering in an era of patient-led care with the digital transition to tools of remote disease assessment. COVID-19 has brought along greater insight into unique manifestations of COVID-19-related myositis, ranging from direct virus-induced muscle disease to triggered autoimmunity and other etiopathogenic links to explore. A remarkable shift in the means of delivering chronic care has led patients and caregivers worldwide to embrace a virtual shift with teleconsultation and opened doorways to a new era of patient-led care.

COVID-19/physiopathology , Myositis/physiopathology , Rhabdomyolysis/physiopathology , Adaptive Immunity/immunology , Angiotensin-Converting Enzyme 2/metabolism , Autoantibodies/immunology , Back Pain/etiology , COVID-19/complications , COVID-19/immunology , COVID-19/metabolism , Creatine Kinase/metabolism , Dermatomyositis/etiology , Dermatomyositis/immunology , Dermatomyositis/metabolism , Dermatomyositis/physiopathology , Humans , Immunity, Innate/immunology , Interferon-Induced Helicase, IFIH1/immunology , Myasthenia Gravis/etiology , Myasthenia Gravis/immunology , Myasthenia Gravis/metabolism , Myasthenia Gravis/physiopathology , Myositis/etiology , Myositis/immunology , Myositis/metabolism , Paraspinal Muscles/physiopathology , Receptors, Coronavirus/metabolism , Rhabdomyolysis/etiology , Rhabdomyolysis/immunology , Rhabdomyolysis/metabolism , SARS-CoV-2
JAMA Neurol ; 78(8): 948-960, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1265359


Importance: Myalgia, increased levels of creatine kinase, and persistent muscle weakness have been reported in patients with COVID-19. Objective: To study skeletal muscle and myocardial inflammation in patients with COVID-19 who had died. Design, Setting, and Participants: This case-control autopsy series was conducted in a university hospital as a multidisciplinary postmortem investigation. Patients with COVID-19 or other critical illnesses who had died between March 2020 and February 2021 and on whom an autopsy was performed were included. Individuals for whom informed consent to autopsy was available and the postmortem interval was less than 6 days were randomly selected. Individuals who were infected with SARS-CoV-2 per polymerase chain reaction test results and had clinical features suggestive of COVID-19 were compared with individuals with negative SARS-CoV-2 polymerase chain reaction test results and an absence of clinical features suggestive of COVID-19. Main Outcomes and Measures: Inflammation of skeletal muscle tissue was assessed by quantification of immune cell infiltrates, expression of major histocompatibility complex (MHC) class I and class II antigens on the sarcolemma, and a blinded evaluation on a visual analog scale ranging from absence of pathology to the most pronounced pathology. Inflammation of cardiac muscles was assessed by quantification of immune cell infiltrates. Results: Forty-three patients with COVID-19 (median [interquartile range] age, 72 [16] years; 31 men [72%]) and 11 patients with diseases other than COVID-19 (median [interquartile range] age, 71 [5] years; 7 men [64%]) were included. Skeletal muscle samples from the patients who died with COVID-19 showed a higher overall pathology score (mean [SD], 3.4 [1.8] vs 1.5 [1.0]; 95% CI, 0-3; P < .001) and a higher inflammation score (mean [SD], 3.5 [2.1] vs 1.0 [0.6]; 95% CI, 0-4; P < .001). Relevant expression of MHC class I antigens on the sarcolemma was present in 23 of 42 specimens from patients with COVID-19 (55%) and upregulation of MHC class II antigens in 7 of 42 specimens from patients with COVID-19 (17%), but neither were found in any of the controls. Increased numbers of natural killer cells (median [interquartile range], 8 [8] vs 3 [4] cells per 10 high-power fields; 95% CI, 1-10 cells per 10 high-power fields; P < .001) were found. Skeletal muscles showed more inflammatory features than cardiac muscles, and inflammation was most pronounced in patients with COVID-19 with chronic courses. In some muscle specimens, SARS-CoV-2 RNA was detected by reverse transcription-polymerase chain reaction, but no evidence for a direct viral infection of myofibers was found by immunohistochemistry and electron microscopy. Conclusions and Relevance: In this case-control study of patients who had died with and without COVID-19, most individuals with severe COVID-19 showed signs of myositis ranging from mild to severe. Inflammation of skeletal muscles was associated with the duration of illness and was more pronounced than cardiac inflammation. Detection of viral load was low or negative in most skeletal and cardiac muscles and probably attributable to circulating viral RNA rather than genuine infection of myocytes. This suggests that SARS-CoV-2 may be associated with a postinfectious, immune-mediated myopathy.

COVID-19/pathology , Muscle, Skeletal/pathology , Myocarditis/pathology , Myocardium/pathology , Myositis/pathology , Aged , Aged, 80 and over , Autopsy , CD8-Positive T-Lymphocytes/pathology , COVID-19/metabolism , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Case-Control Studies , Female , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class II/metabolism , Humans , Killer Cells, Natural/pathology , Leukocytes/pathology , Macrophages/pathology , Male , Middle Aged , Muscle, Skeletal/metabolism , Myocarditis/metabolism , Myocardium/metabolism , Myositis/metabolism , RNA, Viral/metabolism , SARS-CoV-2 , Sarcolemma/metabolism , Time Factors