Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Int J Mol Sci ; 23(18)2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-2200315

ABSTRACT

Z-conformation nucleic acid binding protein 1 (ZBP1), a powerful innate immune sensor, has been identified as the important signaling initiation factor in innate immune response and the multiple inflammatory cell death known as PANoptosis. The initiation of ZBP1 signaling requires recognition of left-handed double-helix Z-nucleic acid (includes Z-DNA and Z-RNA) and subsequent signaling transduction depends on the interaction between ZBP1 and its adapter proteins, such as TANK-binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), receptor-interacting serine/threonine-protein kinase 1 (RIPK1), and RIPK3. ZBP1 activated innate immunity, including type-I interferon (IFN-I) response and NF-κB signaling, constitutes an important line of defense against pathogenic infection. In addition, ZBP1-mediated PANoptosis is a double-edged sword in anti-infection, auto-inflammatory diseases, and tumor immunity. ZBP1-mediated PANoptosis is beneficial for eliminating infected cells and tumor cells, but abnormal or excessive PANoptosis can lead to a strong inflammatory response that is harmful to the host. Thus, pathogens and host have each developed multiplex tactics targeting ZBP1 signaling to maintain strong virulence or immune homeostasis. In this paper, we reviewed the mechanisms of ZBP1 signaling, the effects of ZBP1 signaling on host immunity and pathogen infection, and various antagonistic strategies of host and pathogen against ZBP1. We also discuss existent gaps regarding ZBP1 signaling and forecast potential directions for future research.


Subject(s)
DNA, Z-Form , Interferon Type I , Nucleic Acids , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , NF-kappa B/metabolism , RNA , RNA-Binding Proteins/metabolism , Serine/genetics , Threonine/genetics
2.
Iran J Immunol ; 19(3): 330-336, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2111332

ABSTRACT

Pregnant women with coronavirus disease 2019 (COVID-19) have a higher risk of morbidity and mortality compared with the general population. Possible pathways are: I) in patients with COVID-19, cytokine storm defined as the excess release of pro-inflammatory cytokines such as interleukin 1ß (IL-1ß), IL-6, and tumor necrosis factor-α (TNF-α) has been associated with morbidities and an even higher rate of mortality. II) Labor, despite being a term/preterm, has an inflammatory nature, although, inflammation is more prominent in preterm delivery. During labor, different pro-inflammatory cytokines such as IL-1ß, IL-6, and TNF-α are involved which as mentioned, all are crucial role players in the cytokine storm. III) Tissue injury, and during labor, (especially cesarean section) is shown to cause inflammation via pro-inflammatory cytokines release including those involved in the cytokine storm through the activation of nuclear factor κB (NFκB). IV) post-partum hemorrhage with a notable amount of blood loss which can cause significant hypoxemia. In this condition, hypoxia-inducible factor 1α which has a cross-talk with NFκB, leads to the expression of IL-1ß, IL-6, and TNF-α as both angiogenic and pro-inflammatory factors. Considering all the mentioned issues and pathways, we suggest that clinicians be careful about the escalation of the inflammatory status in their pregnant COVID-19 patients during/following labor.


Subject(s)
COVID-19 , Tumor Necrosis Factor-alpha , Cesarean Section , Cytokine Release Syndrome , Cytokines/metabolism , Female , Humans , Infant, Newborn , Inflammation/pathology , Interleukin-1beta/metabolism , Interleukin-6 , NF-kappa B/metabolism , Pregnancy , Tumor Necrosis Factor-alpha/metabolism
4.
Int J Mol Sci ; 23(21)2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2099576

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces immune-mediated type 1 interferon (IFN-1) production, the pathophysiology of which involves sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1) tetramerization and the cytosolic DNA sensor cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. As a result, type I interferonopathies are exacerbated. Aspirin inhibits cGAS-mediated signaling through cGAS acetylation. Acetylation contributes to cGAS activity control and activates IFN-1 production and nuclear factor-κB (NF-κB) signaling via STING. Aspirin and dapsone inhibit the activation of both IFN-1 and NF-κB by targeting cGAS. We define these as anticatalytic mechanisms. It is necessary to alleviate the pathologic course and take the lag time of the odds of achieving viral clearance by day 7 to coordinate innate or adaptive immune cell reactions.


Subject(s)
COVID-19 , Interferon Type I , Humans , COVID-19/drug therapy , Acetylation , NF-kappa B/metabolism , Drug Repositioning , Membrane Proteins/metabolism , SARS-CoV-2 , Nucleotidyltransferases/metabolism , Interferon Type I/metabolism , Aspirin , Immunity, Innate/genetics
5.
Int J Mol Sci ; 23(21)2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2090207

ABSTRACT

The inflammasome complex is a key part of chronic diseases and acute infections, being responsible for cytokine release and cell death mechanism regulation. The SARS-CoV-2 infection is characterized by a dysregulated cytokine release. In this context, the inflammasome complex analysis within SARS-CoV-2 infection may prove beneficial to understand the disease's mechanisms. Post-mortem minimally invasive autopsies were performed in patients who died from COVID-19 (n = 24), and lung samples were compared to a patient control group (n = 11) and an Influenza A virus H1N1 subtype group from the 2009 pandemics (n = 10). Histological analysis was performed using hematoxylin-eosin staining. Immunohistochemical (IHC) staining was performed using monoclonal antibodies against targets: ACE2, TLR4, NF-κB, NLRP-3 (or NALP), IL-1ß, IL-18, ASC, CASP1, CASP9, GSDMD, NOX4, TNF-α. Data obtained from digital analysis underwent appropriate statistical tests. IHC analysis showed biomarkers that indicate inflammasome activation (ACE2; NF-κB; NOX4; ASC) were significantly increased in the COVID-19 group (p < 0.05 for all) and biomarkers that indicate cell pyroptosis and inflammasome derived cytokines such as IL-18 (p < 0.005) and CASP1 were greatly increased (p < 0.0001) even when compared to the H1N1 group. We propose that the SARS-CoV-2 pathogenesis is connected to the inflammasome complex activation. Further studies are still warranted to elucidate the pathophysiology of the disease.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Humans , Inflammasomes/metabolism , SARS-CoV-2 , Interleukin-18 , NF-kappa B/metabolism , Angiotensin-Converting Enzyme 2 , Autopsy , Influenza A Virus, H1N1 Subtype/metabolism , Caspase 1/metabolism , Lung/metabolism , Cytokines/metabolism , Biopsy , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
6.
Vet Microbiol ; 274: 109553, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2076830

ABSTRACT

Infection induces the production of proinflammatory cytokines and chemokines such as interleukin-8 (IL-8) and interleukin-6 (IL-6). Although they facilitate local antiviral immunity, their excessive release leads to life-threatening cytokine release syndrome, exemplified by the severe cases of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In the present study, we found that interleukin-8 (IL-8) was upregulated by PDCoV infection. We then demonstrated that PDCoV E protein induced IL-8 production and that the TM domain and the C-terminal domain of the E protein were important for IL-8 production. Subsequently, we showed here that deleting the AP-1 and NF-κB binding motif in porcine IL-8 promoter abrogated its activation, suggesting that IL-8 expression was dependent on AP-1 and NF-κB. Furthermore, PDCoV E induced IL-8 production, which was also dependent on the NF-κB pathway through activating nuclear factor p65 phosphorylation and NF-κB inhibitor alpha (IκBα) protein phosphorylation, as well as inducing the nuclear translocation of p65, eventually resulting in the promotion of IL-8 production. PDCoV E also activated c-fos and c-jun, both of which are members of the AP-1 family. These findings provide new insights into the molecular mechanisms of PDCoV-induced IL-8 production and help us further understand the pathogenesis of PDCoV infection.


Subject(s)
COVID-19 , Swine Diseases , Swine , Animals , NF-kappa B/metabolism , NF-KappaB Inhibitor alpha , Interleukin-6/genetics , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , SARS-CoV-2 , COVID-19/veterinary , Cytokines , Antiviral Agents/pharmacology
7.
Front Immunol ; 13: 1007089, 2022.
Article in English | MEDLINE | ID: covidwho-2055023

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to NF-κB activation and induction of pro-inflammatory cytokines, though the underlying mechanism for this activation is not fully understood. Our results reveal that the SARS-CoV-2 Nsp14 protein contributes to the viral activation of NF-κB signaling. Nsp14 caused the nuclear translocation of NF-κB p65. Nsp14 induced the upregulation of IL-6 and IL-8, which also occurred in SARS-CoV-2 infected cells. IL-8 upregulation was further confirmed in lung tissue samples from COVID-19 patients. A previous proteomic screen identified the putative interaction of Nsp14 with host Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2), which is known to regulate NF-κB signaling. We confirmed the Nsp14-IMPDH2 protein interaction and identified that IMPDH2 knockdown or chemical inhibition using ribavirin (RIB) and mycophenolic acid (MPA) abolishes Nsp14- mediated NF-κB activation and cytokine induction. Furthermore, IMPDH2 inhibitors (RIB, MPA) or NF-κB inhibitors (bortezomib, BAY 11-7082) restricted SARS-CoV-2 infection, indicating that IMPDH2-mediated activation of NF-κB signaling is beneficial to viral replication. Overall, our results identify a novel role of SARS-CoV-2 Nsp14 in inducing NF-κB activation through IMPDH2 to promote viral infection.


Subject(s)
COVID-19 , Exoribonucleases , IMP Dehydrogenase , NF-kappa B , Viral Nonstructural Proteins , Bortezomib , Cytokines/metabolism , Exoribonucleases/metabolism , Humans , IMP Dehydrogenase/metabolism , Inosine , Interleukin-6 , Interleukin-8 , Mycophenolic Acid , NF-kappa B/metabolism , Oxidoreductases , Proteomics , Ribavirin , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism
8.
Osteoarthritis Cartilage ; 30(12): 1575-1582, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2041960

ABSTRACT

The field of osteoarthritis (OA) biology is rapidly evolving and brilliant progress has been made this year as well. Landmark studies of OA biology published in 2021 and early 2022 were selected through PubMed search by personal opinion. These papers were classified by their molecular mechanisms, and it was largely divided into the intracellular signaling mechanisms and the inter-compartment interaction in chondrocyte homeostasis and OA progression. The intracellular signaling mechanisms involving OA progression included (1) Piezo1/transient receptor potential channels of the vanilloid subtype (TRPV) 4-mediated calcium signaling, (2) mechanical load-F-box and WD repeat domain containing 7 (FBXW7) in chondrocyte senescence, (3) mechanical loading-primary cilia-hedgehog signaling, (4) low grade inflammation by toll-like receptor (TLR)-CD14-lipopolysaccharide-binding protein (LBP) complex and inhibitor of NF-κB kinase (IKK) ß-nuclear factor kappa B (NF-κB) signaling, (5) selenium pathway and reactive oxygen species (ROS) production, (6) G protein-coupled receptor (GPCR) and cyclic adenosine monophosphate (cAMP) signaling, (7) peroxisome proliferator-activated receptor α (PPARα)-acyl-CoA thioesterase 12 (ACOT12)-mediated de novo lipogenesis and (8) hypoxia-disruptor of telomeric silencing 1-like (DOT1L)-H3-lysine 79 (H3K79) methylation pathway. The studies on inter-compartment or intercellular interaction in OA progression included the following subjects; (1) the anabolic role of lubricin, glycoprotein from superficial zone cells, (2) osteoclast-chondrocyte interaction via exosomal miRNA and sphingosine 1-phosphate (S1P), (3) senescent fibroblast-like synoviocyte and chondrocyte interaction, (4) synovial macrophage and chondrocyte interaction through Flightless I, (5) αV integrin-mediated transforming growth factor beta (TGFß) activation by mechanical loading, and (6) osteocytic TGFß in subchondral bone thickening. Despite the disastrous Covid-19 pandemic, many outstanding studies have expanded the boundary of OA biology. They provide both critical insight into the pathophysiology as well as clues for the treatment of OA.


Subject(s)
COVID-19 , Osteoarthritis , Humans , NF-kappa B/metabolism , Hedgehog Proteins , Pandemics , Osteoarthritis/metabolism , Chondrocytes/metabolism , Transforming Growth Factor beta/metabolism , Biology , Ion Channels/metabolism , Thiolester Hydrolases/metabolism
9.
Molecules ; 27(16)2022 Aug 19.
Article in English | MEDLINE | ID: covidwho-2023937

ABSTRACT

The G-protein-coupled bile acid receptor, Gpbar1 or TGR5, is characterized as a membrane receptor specifically activated by bile acids. A series of evidence shows that TGR5 induces protein kinase B (AKT), nuclear factor kappa-B (NF-κB), extracellular regulated protein kinases (ERK1/2), signal transducer and activator of transcription 3 (STAT3), cyclic adenosine monophosphate (cAMP), Ras homolog family member A (RhoA), exchange protein activated by cAMP (Epac), and transient receptor potential ankyrin subtype 1 protein (TRPA1) signaling pathways, thereby regulating proliferation, inflammation, adhesion, migration, insulin release, muscle relaxation, and cancer development. TGR5 is widely distributed in the brain, lung, heart, liver, spleen, pancreas, kidney, stomach, jejunum, ileum, colon, brown adipose tissue (BAT), white adipose tissue (WAT), and skeletal muscle. Several recent studies have demonstrated that TGR5 exerts inconsistent effects in different cancer cells upon activating via TGR5 agonists, such as INT-777, ursodeoxycholic acid (UDCA), and taurolithocholic acid (TLCA). In this review, we discuss both the 'friend' and 'foe' features of TGR5 by summarizing its tumor-suppressing and oncogenic functions and mechanisms.


Subject(s)
Neoplasms , Receptors, G-Protein-Coupled , Bile Acids and Salts , Humans , NF-kappa B/metabolism , Neoplasms/drug therapy , Receptors, G-Protein-Coupled/metabolism
10.
Biomed Res Int ; 2022: 3510423, 2022.
Article in English | MEDLINE | ID: covidwho-2020494

ABSTRACT

Purpose: Aurantiamide acetate (AA) is a dipeptide derivative with complex pharmacological activities and remarkable effects on preventing and treating various diseases. In the current study, we aimed to investigate whether AA can exert protective effects in a mouse model of ALI induced by LPS. Materials and Methods: In this model, mice were given intranasal LPS for 3 days prior to receiving AA (2.5, 5, and 10 mg/kg) via oral gavage. An assessment of histopathological changes was performed by hematoxylin and eosin (HE). Proinflammatory cytokines were detected in bronchoalveolar lavage fluids (BALFs) by enzyme-linked immunosorbent assays (ELISAs). The effects of AA on protein expression of NF-κB and PI3K/AKT signaling pathways were determined by Western blot. In addition, lung wet/dry (W/D) weight ratio, myeloperoxidase (MPO) activity, cell counts, and protein content were also measured. Results: According to results, AA pretreatment significantly reduced lung pathological changes, W/D ratio, MPO activity, and protein content. Additionally, AA resulted in a significant reduction in the number of total cells, neutrophils, and proinflammatory cytokines in the BALF after LPS stimulation. The subsequent study revealed that pretreatment with AA dose dependently suppressed LPS-induced activation of NF-κB as well as PI3K/AKT phosphorylation. Conclusion: The results indicated that the AA had a protective effect on LPS-induced ALI in mice and could be a potential drug for ALI.


Subject(s)
Acute Lung Injury , Pneumonia , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Animals , Bronchoalveolar Lavage Fluid/chemistry , Cytokines/metabolism , Dipeptides/pharmacology , Lipopolysaccharides/adverse effects , Lung/pathology , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pneumonia/pathology , Proto-Oncogene Proteins c-akt/metabolism
11.
J Ethnopharmacol ; 298: 115661, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2015648

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Shufeng Jiedu capsule (SFJDC) is a pure form of traditional Chinese medicine (TCM) that contains eight medicinal plants. Known for its anti-inflammatory and antipyretic effects, it is mostly used to treat upper respiratory tract infections and other infectious diseases, such as colds, pharyngitis, laryngitis, and tonsillitis. Both acute lung injury (ALI) and COVID-19 are closely related to lung damage, primarily manifesting as lung inflammation and epithelial cell damage. However, whether SFJDC can improve ALI and by what mechanism remain unclear. The purpose of this study was to explore whether SFJDC could be used as a prophylactic treatment for COVID-19 by improving acute lung injury. AIM OF THE STUDY: The purpose of this study was to determine whether SFJDC could protect against ALI caused by lipopolysaccharide (LPS), and we wanted to determine how SFJDC reduces inflammation and apoptosis pharmacologically and molecularly. MATERIALS AND METHODS: Preadministering SFJDC at 0.1 g/kg, 0.3 g/kg, or 0.5 g/kg for one week was followed by 5 mg/kg LPS to induce ALI in mice. Observations included the study of lung histomorphology, tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) secretion, as well as the ratio of lung wet/dry weights. In addition, RAW264.7 cells were treated for 24 h with 1 µg/mL LPS after being pretreated for 1 h with 0.5 mg/mL SFJDC. In the samples, we detected TNF-α, IL-1ß, and IL-6. Cell apoptosis was detected by stimulating A549 cells for 24 h with RAW264.7 supernatant. Both in vitro and in vivo, the levels of A2A adenosine receptor (A2AAR), PKA, IκB, p-IκB, NF-κB P65 (P65), p-NF-κB P65 (p-P65), cleaved caspases-3 (Cc3), Bcl-2 associated X protein (Bax), and B-cell lymphoma-2 (Bcl-2) proteins were determined using Western blot analysis. RESULTS: Lung tissue morphology was improved as SFJDC decreased cytokine secretion, the ratio of lung wet/dry weights, and lung tissue secretion of proinflammatory cytokines. The expression of A2AAR was increased by SFJDC, and the phosphorylation of NF-κB was inhibited. TUNEL staining and flow cytometry showed that SFJDC inhibited apoptosis by reducing the expression of Cc3 and the ratio of Bax/Bcl-2. CONCLUSIONS: According to the results of this study, SFJDC can reduce inflammation and inhibit apoptosis. A2AAR activation and regulation of NF-κB expression are thought to make SFJDC anti-inflammatory and anti-apoptotic. A wide range of active ingredients may result in an anti-inflammatory and antipyretic effect with SFJDC.


Subject(s)
Acute Lung Injury , COVID-19 , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Animals , Anti-Inflammatory Agents , Apoptosis , Drugs, Chinese Herbal , Inflammation/pathology , Interleukin-6/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/toxicity , Lung , Mice , NF-kappa B/metabolism , Receptors, Purinergic P1/metabolism , Receptors, Purinergic P1/therapeutic use , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , bcl-2-Associated X Protein/metabolism
12.
Front Immunol ; 13: 921613, 2022.
Article in English | MEDLINE | ID: covidwho-2009864

ABSTRACT

Increasing evidence supports the ability of eugenol to maintain intestinal barrier integrity and anti-inflammatory in vitro and in vivo; however, whether eugenol alleviates virus-mediated intestinal barrier damage and inflammation remains a mystery. Transmissible gastroenteritis virus (TGEV), a coronavirus, is one of the main causative agents of diarrhea in piglets and significantly impacts the global swine industry. Here, we found that eugenol could alleviate TGEV-induced intestinal functional impairment and inflammatory responses in piglets. Our results indicated that eugenol improved feed efficiency in TGEV-infected piglets. Eugenol not only increased serum immunoglobulin concentration (IgG) but also significantly decreased serum inflammatory cytokine concentration (TNF-α) in TGEV-infected piglets. In addition, eugenol also significantly decreased the expression of NF-κB mRNA and the phosphorylation level of NF-κB P65 protein in the jejunum mucosa of TGEV-infected piglets. Eugenol increased villus height and the ratio of villus height to crypt depth in the jejunum and ileum, and decreased serum D-lactic acid levels. Importantly, eugenol increased tight junction protein (ZO-1) and mRNA expression levels of nutrient transporter-related genes (GluT-2 and CaT-1) in the jejunum mucosa of TGEV-infected piglets. Meanwhile, compared with TGEV-infected IPEC-J2 cells, treatment with eugenol reduced the cell cytopathic effect, attenuated the inflammatory response. Interestingly, eugenol did not increase the expression of ZO-1 and Occludin in IPEC-J2 cells. However, western blot and immunofluorescence results showed that eugenol restored TGEV-induced down-regulation of ZO-1 and Occludin, while BAY11-7082 (The NF-κB specific inhibitor) enhanced the regulatory ability of eugenol. Our findings demonstrated that eugenol attenuated TGEV-induced intestinal injury by increasing the expression of ZO-1 and Occludin, which may be related to the inhibition of NF-κB signaling pathway. Eugenol may offer some therapeutic opportunities for coronavirus-related diseases.


Subject(s)
Coronavirus , Transmissible gastroenteritis virus , Animals , Cell Line , Coronavirus/metabolism , Eugenol/pharmacology , Eugenol/therapeutic use , NF-kappa B/metabolism , Occludin , RNA, Messenger , Signal Transduction , Swine , Transmissible gastroenteritis virus/physiology
13.
Turk Neurosurg ; 32(4): 680-687, 2022.
Article in English | MEDLINE | ID: covidwho-2006417

ABSTRACT

AIM: To evaluate the effects of favipiravir (FVP) on cell viability and cytotoxicity in human degenerated primary intervertebral disc (IVD) tissue cell cultures. Furthermore, the protein expressions of hypoxia-inducible factor 1 alpha (HIF-1α), nuclear factor-kappa-b (NF-kB), and interleukin-1 beta (IL-1ß) were also examined. MATERIAL AND METHODS: Untreated cell cultures served as the control group, named group 1. Cell cultures treated with FVP served as the study group, named group 2. Pharmacomolecular analyses were performed in all groups at 0, 24, 48, and 72 hours (h). Obtained data were evaluated statistically. RESULTS: Cell proliferation was suppressed in the FVP-treated samples compared to the control group samples at 24 and 72 h, and this was statistically significant (p < 0.05). Decreased or increased protein expression levels of HIF-1α, NF-κB, and IL-1ß in FVPtreated samples may be an indication of suppression in anabolic events as well as proliferation in IVD cultures. FVP administration showed that AF/NP cells in a culture medium may induce a strong inflammatory response to FVP. This strong inflammatory response is likely to cause slowed proliferation. It may also be a trigger for many catabolic events. NF-κB expression increased within the first 24 h and then decreased rapidly. Based on the data obtained, it may be suggested that the rapidly increasing NF-kB may have stimulated the expression of many antiproliferative genes. CONCLUSION: The suppression of IL-1ß and NF-kB protein expressions in IVD cells treated with FVP is important in the treatment of IVD degeneration (IDD). If the protein expression of HIF-1α could be increased along with the suppression of IL-1ß and NF-kB, FVP would perhaps be a promising pharmacological agent in the treatment of IDD.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Amides , Apoptosis , Autophagy , Cells, Cultured , Humans , Interleukin-1beta/metabolism , Intervertebral Disc Degeneration/genetics , NF-kappa B/metabolism , Pyrazines
14.
Mediators Inflamm ; 2022: 7138756, 2022.
Article in English | MEDLINE | ID: covidwho-2001956

ABSTRACT

Resveratrol is a naturally occurring stilbene phytoalexin phenolic compound, which has been extensively studied on its biological activity. It has been widely accepted that resveratrol possesses anti-inflammatory and antiviral activities. In this review, we summarize the anti-inflammatory dosages and mechanism and antiviral mechanism of resveratrol. Since viral infections are often accompanied by inflammation, we propose that the NF-κB signaling pathway is a key and common molecular mechanism of resveratrol to exert anti-inflammatory and antiviral effects. For future studies, we believe that resveratrol's anti-inflammatory and antiviral mechanisms can consider the upstream signaling molecules of the NF-κB signaling pathway. For resveratrol antivirus, future studies can be conducted on the interaction of resveratrol with key proteins or important enzymes of the virus. In addition, we also think that the clinical application of resveratrol is very important. In short, resveratrol is a promising anti-inflammatory and antiviral drug, and research on it needs to be expanded.


Subject(s)
NF-kappa B , Stilbenes , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , NF-kappa B/metabolism , Resveratrol , Stilbenes/pharmacology , Stilbenes/therapeutic use
15.
Vet Microbiol ; 272: 109516, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1991332

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is one of the main pathogens causing severe diarrhea in piglets. Infection of the host induces apoptosis, causing huge economic losses to the pig industry. At present, the preventive and therapeutic effects of commercial vaccines are not satisfactory, and it is necessary to develop new anti-PEDV drugs. In this study, we screened the PEDV-inhibiting drug Buddlejasaponin IVb from the natural product library, and determined the inhibitory effect of Buddlejasaponin IVb on PEDV proliferation in a dose-dependent manner. By exploring the effect of Buddlejasaponin IVb on the life cycle of PEDV, it was found that Buddlejasaponin IVb mainly inhibits the replication and release stages of PEDV, but there is no report at home and abroad. In addition, Buddlejasaponin IVb can inhibit PEDV-activated NF-κB signaling pathway by downregulating PEDV or LPS induced elevation of cytokine levels (IL-6, IL-8, IL-1ß, TNF-α). Finally, we returned to in vivo experiments to explore the antiviral effects of the drug in pigs. The results show that Buddlejasaponin IVb can effectively relieve the clinical symptoms and intestinal damage caused by PEDV infection in pigs. Therefore, this study will provide an important basis for the research on antiviral drugs of PEDV and its members, and at the same time provide guidance for the actual production, which has important application prospects.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Saponins , Swine Diseases , Animals , Antiviral Agents/pharmacology , Coronavirus Infections/drug therapy , Coronavirus Infections/veterinary , NF-kappa B/metabolism , Saponins/pharmacology , Swine , Swine Diseases/drug therapy
16.
Inflamm Res ; 71(10-11): 1327-1345, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1990592

ABSTRACT

BACKGROUND AND OBJECTIVE: Acute lung injury (ALI)/ acute respiratory distress syndrome (ARDS) was increasingly recognized as one of the most severe acute hyperimmune response of coronavirus disease 2019 (COVID-19). Clofazimine (CFZ) has attracted attention due to its anti-inflammatory property in immune diseases as well as infectious diseases. However, the role and potential molecular mechanism of CFZ in anti-inflammatory responses remain unclear. METHODS: We analyze the protein expression profiles of CFZ and LPS from Raw264.7 macrophages using quantitative proteomics. Next, the protective effect of CFZ on LPS-induced inflammatory model is assessed, and its underlying mechanism is validated by molecular biology analysis. RESULTS: LC-MS/MS-based shotgun proteomics analysis identified 4746 (LPS) and 4766 (CFZ) proteins with quantitative information. The key proteins and their critical signal transduction pathways including TLR4/NF-κB/HIF-1α signaling was highlighted, which was involved in multiple inflammatory processes. A further analysis of molecular biology revealed that CFZ could significantly inhibit the proliferation of Raw264.7 macrophages, decrease the levels of TNF-α and IL-1ß, alleviate lung histological changes and pulmonary edema, improve the survival rate, and down-regulate TLR4/NF-κB/HIF-1α signaling in LPS model. CONCLUSION: This study can provide significant insight into the proteomics-guided pharmacological mechanism study of CFZ and suggest potential therapeutic strategies for infectious disease.


Subject(s)
Acute Lung Injury , COVID-19 , Respiratory Distress Syndrome , Animals , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Chromatography, Liquid , Clofazimine , COVID-19/drug therapy , Lipopolysaccharides/pharmacology , Lung/pathology , NF-kappa B/metabolism , Proteomics , Tandem Mass Spectrometry , Toll-Like Receptor 4/metabolism
17.
Front Immunol ; 13: 921728, 2022.
Article in English | MEDLINE | ID: covidwho-1987494

ABSTRACT

Fibroblasts of different origins are known to possess stromal memory after inflammatory episodes. However, there are no studies exploring human lung fibroblast memory which may predict a subsequent inflammatory response in chronic respiratory diseases and COVID-19. MRC-5 and HF19 human lung fibroblast cell lines were treated using different primary and secondary stimulus combinations: TNFα-WD-TNFα, Poly (I:C)-WD-TNFα, TNFα-WD-Poly (I:C), or LPS-WD-TNFα with a 24-h rest period (withdrawal period; WD) between the two 24-h stimulations. TLR3 and NF-κB inhibitors were used to determine pathways involved. The effect of SARS-Cov-2 spike protein to inflammatory response of lung fibroblasts was also investigated. mRNA expressions of genes and IL6 release were measured using qRT-PCR and ELISA, respectively. Statistical significance was determined by using one- or two-way ANOVA, followed by Bonferroni's post hoc analysis for comparison of multiple groups. Preexposure with Poly (I:C) significantly increased TNFα-induced IL6 gene expression and IL6 release in both cell lines, while it affected neither gene expressions of IL1B, IL2, IL8, and MMP8 nor fibrosis-related genes: ACTA2, COL1A1, POSTN, and TGFB1. Inhibition of TLR3 or NF-κB during primary stimulation significantly downregulated IL6 release. Simultaneous treatment of MRC-5 cells with SARS-CoV-2 spike protein further increased TNFα-induced IL6 release; however, preexposure to Poly (I:C) did not affect it. Human lung fibroblasts are capable of retaining inflammatory memory and showed an augmented response upon secondary exposure. These results may contribute to the possibility of training human lung fibroblasts to respond suitably on inflammatory episodes after viral infection.


Subject(s)
COVID-19 , Interleukin-6/genetics , Tumor Necrosis Factor-alpha , Fibroblasts/metabolism , Gene Expression , Humans , Inflammation/chemically induced , Inflammation/genetics , Inflammation/metabolism , Interleukin-6/metabolism , Lung/metabolism , NF-kappa B/metabolism , Poly I-C/metabolism , Poly I-C/pharmacology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Tumor Necrosis Factor-alpha/metabolism
18.
Int J Mol Sci ; 23(9)2022 May 09.
Article in English | MEDLINE | ID: covidwho-1953474

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 19 (COVID-19), a disease that has affected more than 500 million people worldwide since the end of 2019. Due to its high complications and death rates, there is still a need to find the best therapy for SARS-CoV-2 infection. The dysregulation of the inflammatory response in COVID-19 plays a very important role in disease progression. It has been observed that abnormal activity of Nuclear Factor kappa B (NF-κB) is directly associated with, inter alia, increased synthesis of proinflammatory factors. Therefore, this review paper focuses on the functions of NF-κB in the development of SARS-CoV-2 infection and potential application of NF-κB inhibitors in COVID-19 immunotherapy. A comprehensive literature search was performed using the MEDLINE/PubMed database. In the current review, it is highlighted that NF-κB plays important functions in the modulation of an adaptive inflammatory response, including inducing the expression of proinflammatory genes. Increased activation of NF-κB in SARS-CoV-2 infection was observed. The association between NF-κB activation and the expression of SARS-CoV-2 structural and non-structural proteins were also reported. It was observed that modulation of NF-κB using, e.g., traditional Chinese medicine or glucocorticosteroids resulted in decreased synthesis of proinflammatory factors caused by SARS-CoV-2 infection. This review summarizes the role of NF-κB in COVID-19 and describes its potential immunotherapeutic target in treatment of SARS-CoV-2 infection. However, indisputably more studies involving patients with a severe course of COVID-19 are sorely needed.


Subject(s)
COVID-19/pathology , NF-kappa B/metabolism , COVID-19/drug therapy , COVID-19/immunology , Humans , Inflammation/pathology , SARS-CoV-2
19.
mBio ; 13(4): e0097122, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-1950002

ABSTRACT

Patients with severe coronavirus disease 2019 tend to have high levels of proinflammatory cytokines, which eventually lead to cytokine storm and the development of acute respiratory distress syndrome. However, the detailed molecular mechanisms of proinflammatory cytokine production remain unknown. Here, we screened severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genes and found that nonstructural protein 6 (NSP6) and open reading frame 7a (ORF7a) activated the NF-κB pathway. NSP6 and ORF7a interacted with transforming growth factor ß-activated kinase 1 (TAK1), and knockout (KO) of TAK1 or NF-κB essential modulator (NEMO) abolished NF-κB activation by NSP6 and ORF7a. Interestingly, K61 of NSP6 was conjugated to K63-linked polyubiquitin chains by the E3 ubiquitin ligase tripartite motif-containing 13, and this polyubiquitination of NSP6 appeared crucial for recruitment of NEMO to the NSP6-TAK1 complex and NF-κB activation. On the other hand, ring finger protein 121 (RNF121) was required for the polyubiquitination of ORF7a. Knockdown of RNF121 significantly decreased ORF7a binding of TAK1 and NEMO, resulting in the suppression of NF-κB activation. Taken together, our results provide novel molecular insights into the pathogenesis of SARS-CoV-2 and the host immune response to SARS-CoV-2 infection. IMPORTANCE The detailed molecular basis of the induction of proinflammatory cytokines and chemokines by SARS-CoV-2 is unclear, although such induction is clearly related to the severity of COVID-19. Here, we show that SARS-CoV-2 NSP6 and ORF7a lead to NF-κB activation through associations with TAK1. K63-linked polyubiquitination of NSP6 and ORF7a by TRIM13 and RNF121, respectively, appears essential for NF-κB activation. These results suggest that inhibition of the NSP6 and ORF7a gene products may reduce the severity of COVID-19 symptoms by decreasing proinflammatory cytokine levels.


Subject(s)
COVID-19 , NF-kappa B , Cytokines/metabolism , Humans , NF-kappa B/metabolism , Open Reading Frames , SARS-CoV-2/genetics , Ubiquitination
20.
Nutrients ; 14(13)2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1917652

ABSTRACT

Black rice is a functional food that is high in anthocyanin content, primarily C3G and P3G. It possesses nutraceutical properties that exhibit a range of beneficial effects on human health. Currently, the spike glycoprotein S1 subunit of SARS-CoV-2 (SP) has been reported for its contribution to pathological inflammatory responses in targeting lung tissue and innate immune cells during COVID-19 infection and in the long-COVID phenomenon. Our objectives focused on the health benefits of the C3G and P3G-rich fraction of black rice germ and bran (BR extract) on the inhibition of inflammatory responses induced by SP, as well as the inhibition of NF-kB activation and the NLRP3 inflammasome pathway in an in vitro model. In this study, BR extract was identified for its active anthocyanins, C3G and P3G, using the HPLC technique. A549-lung cells and differentiated THP-1 macrophages were treated with BR extract, C3G, or P3G prior to exposure to 100 ng/mL of SP. Their anti-inflammatory properties were then determined. BR extract at concentrations of 12.5-100 µg/mL exhibited anti-inflammation activity for both A549 and THP-1 cells through the significant suppression of NLRP3, IL-1ß, and IL-18 inflammatory gene expressions and IL-6, IL-1ß, and IL-18 cytokine secretions in a dose-dependent manner (p < 0.05). It was determined that both cell lines, C3G and P3G (at 1.25-10 µg/mL), were compatibly responsible for the significant inhibition of SP-induced inflammatory responses for both gene and protein levels (p < 0.05). With regard to the anti-inflammation mechanism, BR extract, C3G, and P3G could attenuate SP-induced inflammation via counteraction with NF-kB activation and downregulation of the inflammasome-dependent inflammatory pathway proteins (NLRP3, ASC, and capase-1). Overall, the protective effects of anthocyanins obtained from black rice germ and bran can be employed in potentially preventive strategies that use pigmented rice against the long-term sequelae of COVID-19 infection.


Subject(s)
COVID-19 , Oryza , Anthocyanins/pharmacology , COVID-19/complications , Glucosides/pharmacology , Humans , Inflammasomes , Interleukin-18 , Lung/metabolism , Macrophages/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Oryza/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL