Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Immunol ; 207(5): 1275-1287, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1771322

ABSTRACT

The airway epithelial cells (AECs) lining the conducting passageways of the lung secrete a variety of immunomodulatory factors. Among these, PGE2 limits lung inflammation and promotes bronchodilation. By contrast, IL-6 drives intense airway inflammation, remodeling, and fibrosis. The signaling that differentiates the production of these opposing mediators is not understood. In this study, we find that the production of PGE2 and IL-6 following stimulation of human AECs by the damage-associated molecular pattern extracellular ATP shares a common requirement for Ca2+ release-activated Ca2+ (CRAC) channels. ATP-mediated synthesis of PGE2 required activation of metabotropic P2Y2 receptors and CRAC channel-mediated cytosolic phospholipase A2 signaling. By contrast, ATP-evoked synthesis of IL-6 occurred via activation of ionotropic P2X receptors and CRAC channel-mediated calcineurin/NFAT signaling. In contrast to ATP, which elicited the production of both PGE2 and IL-6, the uridine nucleotide, UTP, stimulated PGE2 but not IL-6 production. These results reveal that human AECs employ unique receptor-specific signaling mechanisms with CRAC channels as a signaling nexus to regulate release of opposing immunomodulatory mediators. Collectively, our results identify P2Y2 receptors, CRAC channels, and P2X receptors as potential intervention targets for airway diseases.


Subject(s)
Dinoprostone/metabolism , Inflammation/immunology , Interleukin-6/metabolism , Respiratory Mucosa/metabolism , Adenosine Triphosphate/pharmacokinetics , Alarmins/metabolism , Calcium Release Activated Calcium Channels/metabolism , Cells, Cultured , Humans , Immunomodulation , Interleukin-6/genetics , NFATC Transcription Factors/metabolism , Phospholipases A2/metabolism , Receptors, Purinergic P2X/metabolism , Respiratory Mucosa/pathology , Signal Transduction , Uracil Nucleotides/metabolism
2.
J Cell Physiol ; 237(2): 1521-1531, 2022 02.
Article in English | MEDLINE | ID: covidwho-1490820

ABSTRACT

Mechanical forces can modulate the immune response, mostly described as promoting the activation of immune cells, but the role and mechanism of pathological levels of mechanical stress in lymphocyte activation have not been focused on before. By an ex vivo experimental approach, we observed that mechanical stressing of murine spleen lymphocytes with 50 mmHg for 3 h induced the nuclear localization of NFAT1, increased C-Jun, and increased the expression of early activation marker CD69 in resting CD8+ cells. Interestingly, 50 mmHg mechanical stressing induced the nuclear localization of NFAT1; but conversely decreased C-Jun and inhibited the expression of CD69 in lymphocytes under lipopolysaccharide or phorbol 12-myristate 13-acetate/ionomycin stimulation. Additionally, we observed similar changes trends when comparing RNA-seq data of hypertensive and normotensive COVID-19 patients. Our results indicate a biphasic effect of mechanical stress on lymphocyte activation, which provides insight into the variety of immune responses in pathologies involving elevated mechanical stress.


Subject(s)
Lymphocyte Activation/immunology , Stress, Mechanical , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Biomarkers/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , COVID-19/complications , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Comorbidity , Gene Expression Regulation/drug effects , Humans , Hypertension/complications , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Ion Channels/metabolism , Lectins, C-Type/metabolism , Lipopolysaccharides/pharmacology , Lymphocyte Activation/drug effects , Lymphocyte Activation/genetics , Male , Mice, Inbred C57BL , NFATC Transcription Factors/metabolism , Protein Transport/drug effects , Proto-Oncogene Proteins c-jun/metabolism , Signal Transduction/drug effects , Tetradecanoylphorbol Acetate/pharmacology
3.
Cells ; 10(9)2021 08 31.
Article in English | MEDLINE | ID: covidwho-1390542

ABSTRACT

The rising prevalence of diabetes is threatening global health. It is known not only for the occurrence of severe complications but also for the SARS-Cov-2 pandemic, which shows that it exacerbates susceptibility to infections. Current therapies focus on artificially maintaining insulin homeostasis, and a durable cure has not yet been achieved. We demonstrate that our set of small molecule inhibitors of DYRK1A kinase potently promotes ß-cell proliferation, enhances long-term insulin secretion, and balances glucagon level in the organoid model of the human islets. Comparable activity is seen in INS-1E and MIN6 cells, in isolated mice islets, and human iPSC-derived ß-cells. Our compounds exert a significantly more pronounced effect compared to harmine, the best-documented molecule enhancing ß-cell proliferation. Using a body-like environment of the organoid, we provide a proof-of-concept that small-molecule-induced human ß-cell proliferation via DYRK1A inhibition is achievable, which lends a considerable promise for regenerative medicine in T1DM and T2DM treatment.


Subject(s)
Homeostasis , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/enzymology , Insulin/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Genes, Reporter , Harmine/pharmacology , Homeostasis/drug effects , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Insulin-Secreting Cells/drug effects , Kinetics , Male , Mice , Models, Biological , NFATC Transcription Factors/metabolism , Organoids/drug effects , Organoids/metabolism , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Rats , Transforming Growth Factor beta/antagonists & inhibitors , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL