Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
ACS Appl Mater Interfaces ; 14(16): 18989-19001, 2022 Apr 27.
Article in English | MEDLINE | ID: covidwho-1795857

ABSTRACT

Antibacterial air filtration membranes are essential for personal protection during the pandemic of coronavirus disease 2019 (COVID-19). However, high-efficiency filtration with low pressure drop and effective antibiosis is difficult to achieve. To solve this problem, an innovative electrospinning system with low binding energy and high conductivity was built to enhance the jet splitting, and a fluffy nanofibrous membrane containing numerous ultrafine nanofibers and large quantities of antibacterial agents was achieved, which was fabricated by electrospinning polyamide 6 (PA6), poly(vinyl pyrrolidone) (PVP), chitosan (CS), and curcumin (Cur). The filtration efficiency for 0.3 µm NaCl particles was 99.83%, the pressure drop was 54 Pa, and the quality factor (QF) was up to 0.118 Pa-1. CS and Cur synergistically enhanced the antibacterial performance; the bacteriostatic rates against Escherichia coli and Staphylococcus aureus were 99.5 and 98.9%, respectively. This work will largely promote the application of natural antibacterial agents in the development of high-efficiency, low-resistance air filters for personal protection by manufacturing ultrafine nanofibers with enhanced antibiosis.


Subject(s)
Air Filters , COVID-19 , Chitosan , Curcumin , Nanofibers , Anti-Bacterial Agents/pharmacology , COVID-19/drug therapy , Chitosan/pharmacology , Curcumin/pharmacology , Escherichia coli , Filtration , Humans , Nanofibers/chemistry
2.
Biosensors (Basel) ; 12(3)2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1725509

ABSTRACT

Worldwide, human health is affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, the fabrication of the biosensors to diagnose SARS-CoV-2 is critical. In this paper, we report an electrochemical impedance spectroscopy (EIS)-based aptasensor for the determination of the SARS-CoV-2 receptor-binding domain (SARS-CoV-2-RBD). For this purpose, the carbon nanofibers (CNFs) were first decorated with gold nanoparticles (AuNPs). Then, the surface of the carbon-based screen-printed electrode (CSPE) was modified with the CNF-AuNP nanocomposite (CSPE/CNF-AuNP). After that, the thiol-terminal aptamer probe was immobilized on the surface of the CSPE/CNF-AuNP. The surface coverage of the aptamer was calculated to be 52.8 pmol·cm-2. The CSPE/CNF-AuNP/Aptamer was then used for the measurement of SARS-CoV-2-RBD by using the EIS method. The obtained results indicate that the signal had a linear-logarithmic relationship in the range of 0.01-64 nM with a limit of detection of 7.0 pM. The proposed aptasensor had a good selectivity to SARS-CoV-2-RBD in the presence of human serum albumin; human immunoglobulins G, A, and M, hemagglutinin, and neuraminidase. The analytical performance of the aptasensor was studied in human saliva samples. The present study indicates a practical application of the CSPE/CNF-AuNP/Aptamer for the determination of SARS-CoV-2-RBD in human saliva samples with high sensitivity and accuracy.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , COVID-19 , Metal Nanoparticles , Nanocomposites , Nanofibers , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , COVID-19/diagnosis , Carbon/chemistry , Dielectric Spectroscopy , Electrochemical Techniques/methods , Electrodes , Gold/chemistry , Humans , Limit of Detection , Metal Nanoparticles/chemistry , Nanofibers/chemistry , SARS-CoV-2
3.
Molecules ; 27(4)2022 Feb 16.
Article in English | MEDLINE | ID: covidwho-1703897

ABSTRACT

The COVID-19 pandemic has raised the problem of efficient, low-cost materials enabling the effective protection of people from viruses transmitted through the air or via surfaces. Nanofibers can be a great candidate for efficient air filtration due to their structure, although they cannot protect from viruses. In this work, we prepared a wide range of nanofibrous biodegradable samples containing Ag (up to 0.6 at.%) and Cu (up to 20.4 at.%) exhibiting various wettability. By adjusting the magnetron current (0.3 A) and implanter voltage (5 kV), the deposition of TiO2 and Ag+ implantation into PCL/PEO nanofibers was optimized in order to achieve implantation of Ag+ without damaging the nanofibrous structure of the PCL/PEO. The optimal conditions to implant silver were achieved for the PCL-Ti0.3-Ag-5kV sample. The coating of PCL nanofibers by a Cu layer was successfully realized by magnetron sputtering. The antiviral activity evaluated by widely used methodology involving the cultivation of VeroE6 cells was the highest for PCL-Cu and PCL-COOH, where the VeroE6 viability was 73.1 and 68.1%, respectively, which is significantly higher compared to SARS-CoV-2 samples without self-sanitizing (42.8%). Interestingly, the samples with implanted silver and TiO2 exhibited no antiviral effect. This difference between Cu and Ag containing nanofibers might be related to the different concentrations of ions released from the samples: 80 µg/L/day for Cu2+ versus 15 µg/L/day for Ag+. The high antiviral activity of PCL-Cu opens up an exciting opportunity to prepare low-cost self-sanitizing surfaces for anti-SARS-CoV-2 protection and can be essential for air filtration application and facemasks. The rough cost estimation for the production of a biodegradable nanohybrid PCL-Cu facemask revealed ~$0.28/piece, and the business case for the production of these facemasks would be highly positive, with an Internal Rate of Return of 34%.


Subject(s)
Antiviral Agents/chemistry , COVID-19/prevention & control , Coated Materials, Biocompatible/chemistry , Nanofibers/chemistry , SARS-CoV-2/chemistry , Animals , COVID-19/transmission , Chlorocebus aethiops , Copper/chemistry , Gold/chemistry , Humans , Polyesters/chemistry , Titanium/chemistry , Vero Cells
4.
Carbohydr Polym ; 283: 119160, 2022 May 01.
Article in English | MEDLINE | ID: covidwho-1654130

ABSTRACT

With the forthcoming of the post-COVID-19 and the ageing era, the novel biomaterials and bioelectronic devices are attracting more and more attention and favor. Cellulose as one of the most globe-abundant natural macromolecules has multiple merits of biocompatibility, processability, carbon neutral feature and mechanical designability. Due to its progressive advancement of multi-scale design from macro to micro followed by new cognitions, cellulose shows a promising application prospect in developing bio-functional materials. In this review, we briefly discuss the role of cellulose from the "top-down" perspective of macro-scale fibers, micro-scale nanofibers, and molecular-scale macromolecular chains for the design of advanced cellulose-based functional materials. The focus then turns to the construction and development of emerging cellulose-based flexible bioelectronic devices including biosensors, biomimetic electronic skins, and biological detection devices. Finally, the dilemma and challenge of cellulose-based bioelectronic materials and their application prospects in basic biology and medical care have been prospected.


Subject(s)
Biocompatible Materials , Biosensing Techniques , Cellulose , Wearable Electronic Devices , Nanofibers/chemistry
5.
Nanotechnology ; 33(6)2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1493587

ABSTRACT

Wearing a face mask has become a necessity following the outbreak of the coronavirus (COVID-19) disease, where its effectiveness in containing the pandemic has been confirmed. Nevertheless, the pandemic has revealed major deficiencies in the ability to manufacture and ramp up worldwide production of efficient surgical-grade face masks. As a result, many researchers have focused their efforts on the development of low cost, smart and effective face covers. In this article, following a short introduction concerning face mask requirements, the different nanotechnology-enabled techniques for achieving better protection against the SARS-CoV-2 virus are reviewed, including the development of nanoporous and nanofibrous membranes in addition to triboelectric nanogenerators based masks, which can filter the virus using various mechanisms such as straining, electrostatic attraction and electrocution. The development of nanomaterials-based mask coatings to achieve virus repellent and sterilizing capabilities, including antiviral, hydrophobic and photothermal features are also discussed. Finally, the usability of nanotechnology-enabled face masks is discussed and compared with that of current commercial-grade N95 masks. To conclude, we highlight the challenges associated with the quick transfer of nanomaterials-enabled face masks and provide an overall outlook of the importance of nanotechnology in counteracting the COVID-19 and future pandemics.


Subject(s)
COVID-19/prevention & control , Masks , Nanotechnology , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , COVID-19/transmission , Filtration , Humans , Hydrophobic and Hydrophilic Interactions , Nanofibers/chemistry , Nanostructures/chemistry , User-Centered Design
6.
Molecules ; 26(17)2021 Aug 27.
Article in English | MEDLINE | ID: covidwho-1403854

ABSTRACT

This paper presents the results of the first part of testing a novel electrospun fiber mat based on a unique macromolecule: polyisobutylene (PIB). A PIB-based compound containing zinc oxide (ZnO) was electrospun into self-supporting mats of 203.75 and 295.5 g/m2 that were investigated using a variety of techniques. The results show that the hydrophobic mats are not cytotoxic, resist fibroblast cell adhesion and biofilm formation and are comfortable and easy to breathe through for use as a mask. The mats show great promise for personal protective equipment and other applications.


Subject(s)
Polyenes/chemistry , Polymers/chemistry , Biofilms/drug effects , Cell Adhesion/drug effects , Cells, Cultured , Fibroblasts/drug effects , Humans , Materials Testing/methods , Nanofibers/chemistry , Zinc Oxide/chemistry
7.
Angew Chem Int Ed Engl ; 60(44): 23756-23762, 2021 10 25.
Article in English | MEDLINE | ID: covidwho-1375593

ABSTRACT

The longevity and reusability of N95-grade filtering facepiece respirators (N95 FFRs) are limited by consecutive donning and disinfection treatments. Herein, we developed stable N97 nanofibrous respirators based on chemically modified surface to enable remarkable filtration characteristics via polarity driven interaction. This was achieved by a thin-film coated polyacrylonitrile nanofibrous membrane (TFPNM), giving an overall long-lasting filtration performance with high quality factor at 0.42 Pa-1 (filtration efficiency: over 97 %; pressure drop: around 10 Pa), which is higher than that of the commercial N95 FFRs (0.10-0.41 Pa-1 ) tested with a flow rate of 5 L min-1 and the 0.26 µm NaCl aerosol. A coxsackie B4 virus filtration test demonstrated that TFPNM also had strong virus capture capacity of 97.67 %. As compared with N95 FFRs, the TFPNM was more resistant to a wider variety of disinfection protocols, and the overall filtration characteristics remained N97 standard.


Subject(s)
Enterovirus B, Human/metabolism , Nanofibers/chemistry , Ventilators, Mechanical/virology
8.
Molecules ; 26(9)2021 May 03.
Article in English | MEDLINE | ID: covidwho-1238921

ABSTRACT

Chitosan has many useful intrinsic properties (e.g., non-toxicity, antibacterial properties, and biodegradability) and can be processed into high-surface-area nanofiber constructs for a broad range of sustainable research and commercial applications. These nanofibers can be further functionalized with bioactive agents. In the food industry, for example, edible films can be formed from chitosan-based composite fibers filled with nanoparticles, exhibiting excellent antioxidant and antimicrobial properties for a variety of products. Processing 'pure' chitosan into nanofibers can be challenging due to its cationic nature and high crystallinity; therefore, chitosan is often modified or blended with other materials to improve its processability and tailor its performance to specific needs. Chitosan can be blended with a variety of natural and synthetic polymers and processed into fibers while maintaining many of its intrinsic properties that are important for textile, cosmeceutical, and biomedical applications. The abundance of amine groups in the chemical structure of chitosan allows for facile modification (e.g., into soluble derivatives) and the binding of negatively charged domains. In particular, high-surface-area chitosan nanofibers are effective in binding negatively charged biomolecules. Recent developments of chitosan-based nanofibers with biological activities for various applications in biomedical, food packaging, and textiles are discussed herein.


Subject(s)
Chitosan/chemistry , Cosmeceuticals/chemistry , Food Packaging , Textiles , Amines/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Antioxidants/chemistry , Crystallization , Edible Films , Humans , Nanofibers/chemistry , Nanoparticles/chemistry , Polymers , Regeneration , Skin/pathology , Skin, Artificial , Solubility , Tissue Engineering , Wound Healing
9.
Carbohydr Polym ; 264: 118011, 2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1172080

ABSTRACT

Veklury™ by Gilead Sciences, Inc., containing antiviral drug, remdesivir (REM) has received emergency authorization in the USA and in Europe for COVID-19 therapy. Here, for the first time, we describe details of the non-covalent, host-guest type interaction between REM and the solubilizing excipient, sulfobutylether-beta-cyclodextrin (SBECD) that results in significant solubility enhancement. Complete amorphousness of the cyclodextrin-enabled REM formulation was demonstrated by X-ray diffraction, thermal analysis, Raman chemical mapping and electron microscopy/energy dispersive spectroscopy. The use of solubilizing carbohydrate resulted in a 300-fold improvement of the aqueous solubility of REM, and enhanced dissolution rate of the drug enabling the preparation of stable infusion solutions for therapy. 2D ROESY NMR spectroscopy provided information on the nature of REM-excipient interaction and indicated the presence of inclusion phenomenon and the electrostatic attraction between anionic SBECD and nitrogen-containing REM in aqueous solution.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Excipients/chemistry , beta-Cyclodextrins/chemistry , Adenosine Monophosphate/chemistry , Alanine/chemistry , Antiviral Agents/chemistry , COVID-19/drug therapy , Calorimetry, Differential Scanning , Freeze Drying/methods , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Molecular Docking Simulation , Nanofibers/chemistry , Powders , Solubility , Spectrum Analysis, Raman , X-Ray Diffraction
10.
Int J Nanomedicine ; 16: 1789-1804, 2021.
Article in English | MEDLINE | ID: covidwho-1124835

ABSTRACT

BACKGROUND: SARS-COVID-2 has recently been one of the most life-threatening problems which urgently needs new therapeutic antiviral agents, especially those of herbal origin. PURPOSE: The study aimed to load acaciin (ACA) into the new self-assembled nanofibers (NFs) followed by investigating their possible antiviral effect against bovine coronavirus (BCV) as a surrogate model for SARS-COV-2. METHODS: ACA was identified using 1H-NMR and DEPT-Q 13C-NMR spectroscopy, the molecular docking study was performed using Autodock 4 and a modification of the traditional solvent injection method was applied for the synthesis of the biodegradable NFs. Different characterization techniques were used to inspect the formation of the NFs, which is followed by antiviral investigation against BCV as well as MTT assay using MDBK cells. RESULTS: Core/shell NFs, ranging between 80-330 nm with tiny thorn-like branches, were formed which attained an enhanced encapsulation efficiency (97.5 ± 0.53%, P<0.05) and a dual controlled release (a burst release of 65% at 1 h and a sustained release up to >24 h). The antiviral investigation of the formed NFs revealed a significant inhibition of 98.88 ± 0.16% (P<0.05) with IC50 of 12.6 µM against BCV cells. CONCLUSION: The results introduced a new, time/cost-saving strategy for the synthesis of biodegradable NFs without the need for electric current or hazardous cross-linking agents. Moreover, it provided an innovative avenue for the discovery of drugs of herbal origin for the fight against SARS-CoV-2 infection.


Subject(s)
Coronavirus, Bovine/drug effects , Glycosides/pharmacology , Nanofibers/chemistry , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/virology , Cell Line , Glycosides/chemistry , Glycosides/isolation & purification , Glycosides/therapeutic use , Humans , Ligands , Models, Biological , Molecular Docking Simulation , Nanofibers/ultrastructure , Solvents , Ultraviolet Rays
11.
Adv Mater ; 33(16): e2100218, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1121010

ABSTRACT

From typical electrical appliances to thriving intelligent robots, the exchange of information between humans and machines has mainly relied on the contact sensor medium. However, this kind of contact interaction can cause severe problems, such as inevitable mechanical wear and cross-infection of bacteria or viruses between the users, especially during the COVID-19 pandemic. Therefore, revolutionary noncontact human-machine interaction (HMI) is highly desired in remote online detection and noncontact control systems. In this study, a flexible high-sensitivity humidity sensor and array are presented, fabricated by anchoring multilayer graphene (MG) into electrospun polyamide (PA) 66. The sensor works in noncontact mode for asthma detection, via monitoring the respiration rate in real time, and remote alarm systems and provides touchless interfaces in medicine delivery for bedridden patients. The physical structure of the large specific surface area and the chemical structure of the abundant water-absorbing functional groups of the PA66 nanofiber networks contribute to the high performance synergistically. This work can lead to a new era of noncontact HMI without the risk of contagiousness and provide a general and effective strategy for the development of smart electronics that require noncontact interaction.


Subject(s)
Biosensing Techniques/methods , Electronics , Asthma/diagnosis , Biocompatible Materials/chemistry , Biosensing Techniques/instrumentation , Electrodes , Graphite/chemistry , Humans , Humidity , Internet of Things , Mobile Applications , Nanofibers/chemistry , Respiratory Rate , Wearable Electronic Devices
12.
Small ; 17(12): e2100139, 2021 03.
Article in English | MEDLINE | ID: covidwho-1114230

ABSTRACT

The novel coronavirus SARS-CoV-2 has prompted a worldwide pandemic and poses a great threat to public safety and global economies. Most present personal protective equipment (PPE) used to intercept pathogenic microorganisms is deficient in biocidal properties. Herein, we present green nanofibers with effective antibacterial and antiviral activities that can provide sustainable bioprotection by continuously producing reactive oxygen species (ROS). The superiority of the design is that the nanofibers can absorb and store visible light energy and maintain the activity under light or dark environment. Moreover, the nanofibers can uninterruptedly release ROS in the absence of an external hydrogen donor, acting as a biocide under all weather conditions. A facile spraying method is proposed to rapidly deploy the functional nanofibers to existing PPE, such as protective suits and masks. The modified PPE exhibit stable ROS production, excellent capacity for storing activity potential, long-term durability, and high bactericidal (>99.9%) and viricidal (>99.999%) efficacies.


Subject(s)
Anti-Infective Agents/pharmacology , Hydrogen/chemistry , Light , Nanofibers/chemistry , Benzophenones/chemistry , Cellulose/pharmacology , Nanofibers/ultrastructure , Riboflavin/pharmacology
13.
ACS Appl Mater Interfaces ; 13(4): 5678-5690, 2021 Feb 03.
Article in English | MEDLINE | ID: covidwho-1065790

ABSTRACT

The COVID-19 pandemic has clearly shown the importance of developments in fabrication of advanced protective equipment. This study investigates the potential of using multifunctional electrospun poly(methyl methacrylate) (PMMA) nanofibers decorated with ZnO nanorods and Ag nanoparticles (PMMA/ZnO-Ag NFs) in protective mats. Herein, the PMMA/ZnO-Ag NFs with an average diameter of 450 nm were simply prepared on a nonwoven fabric by directly electrospinning from solutions containing PMMA, ZnO nanorods, and Ag nanoparticles. The novel material showed high performance with four functionalities (i) antibacterial agent for killing of Gram-negative and Gram-positive bacteria, (ii) antiviral agent for inhibition of corona and influenza viruses, (iii) photocatalyst for degradation of organic pollutants, enabling a self-cleaning protective mat, and (iv) reusable surface-enhanced Raman scattering substrate for quantitative analysis of trace pollutants on the nanofiber. This multi-functional material has high potential for use in protective clothing applications by providing passive and active protection pathways together with sensing capabilities.


Subject(s)
Anti-Infective Agents/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Zinc Oxide/chemistry , Anti-Bacterial Agents/chemistry , Antiviral Agents/chemistry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Nanofibers/chemistry , Nanotubes/chemistry , Polymethyl Methacrylate/chemistry , Spectrum Analysis, Raman
14.
Anal Chem ; 93(3): 1826-1833, 2021 01 26.
Article in English | MEDLINE | ID: covidwho-997756

ABSTRACT

Collection of nasopharyngeal samples using swabs followed by the transfer of the virus into a solution and an RNA extraction step to perform reverse transcription polymerase chain reaction (PCR) is the primary method currently used for the diagnosis of COVID-19. However, the need for several reagents and steps and the high cost of PCR hinder its worldwide implementation to contain the outbreak. Here, we report a cotton-tipped electrochemical immunosensor for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus antigen. Unlike the reported approaches, we integrated the sample collection and detection tools into a single platform by coating screen-printed electrodes with absorbing cotton padding. The immunosensor was fabricated by immobilizing the virus nucleocapsid (N) protein on carbon nanofiber-modified screen-printed electrodes which were functionalized by diazonium electrografting. The detection of the virus antigen was achieved via swabbing followed by competitive assay using a fixed amount of N protein antibody in the solution. A square wave voltammetric technique was used for the detection. The limit of detection for our electrochemical biosensor was 0.8 pg/mL for SARS-CoV-2, indicating very good sensitivity for the sensor. The biosensor did not show significant cross-reactivity with other virus antigens such as influenza A and HCoV, indicating high selectivity of the method. Moreover, the biosensor was successfully applied for the detection of the virus antigen in spiked nasal samples showing excellent recovery percentages. Thus, our electrochemical immunosensor is a promising diagnostic tool for the direct rapid detection of the COVID-19 virus that requires no sample transfer or pretreatment.


Subject(s)
COVID-19/diagnosis , Cotton Fiber , Electrochemical Techniques/methods , Immunoassay/methods , SARS-CoV-2/isolation & purification , Antibodies, Viral/immunology , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Carbon/chemistry , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/immunology , Electrochemical Techniques/instrumentation , Electrodes , Gossypium/chemistry , Humans , Immobilized Proteins/chemistry , Immobilized Proteins/immunology , Immunoassay/instrumentation , Limit of Detection , Nanofibers/chemistry , Phosphoproteins/chemistry , Phosphoproteins/immunology , SARS-CoV-2/immunology
15.
Biotechnol J ; 15(12): e2000100, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-650634

ABSTRACT

Biotinylated peptide amphiphile (Biotin-PA) nanofibers, are designed as a noncovalent binding location for antigens, which are adjuvants to enhance, accelerate, and prolong the immune response triggered by antigens. Presenting antigens on synthetic Biotin-PA nanofibers generated a higher immune response than the free antigens delivered with a cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODN) (TLR9 agonist) adjuvant. Antigen attached Biotin-PA nanofibers trigger splenocytes to produce high levels of cytokines (IFN-γ, IL-12, TNF-α, and IL-6) and to exhibit a superior cross-presentation of the antigen. Both Biotin-PA nanofibers and CpG ODN induce a Th-1-biased IgG subclass response; however, delivering the antigen with Biotin-PA nanofibers induce significantly greater production of total IgG and subclasses of IgG compared to delivering the antigen with CpG ODN. Contrary to CpG ODN, Biotin-PA nanofibers also enhance antigen-specific splenocyte proliferation and increase the proportion of the antigen-specific CD8(+) T cells. Given their biodegradability and biocompatibility, Biotin-PA nanofibers have a significant potential in immunoengineering applications as a biomaterial for the delivery of a diverse set of antigens derived from intracellular pathogens, emerging viral diseases such as COVID-19, or cancer cells to induce humoral and cellular immune responses against the antigens.


Subject(s)
Adjuvants, Immunologic/chemistry , Nanofibers/chemistry , Peptides/chemistry , Peptides/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antigen Presentation , Antigen-Presenting Cells/cytology , Antigen-Presenting Cells/immunology , Antigens/administration & dosage , Antigens/chemistry , Biocompatible Materials/chemistry , Biotechnology , Biotin/analogs & derivatives , Cytokines/metabolism , Drug Design , Immunity, Cellular , Immunity, Humoral , In Vitro Techniques , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanofibers/administration & dosage , Nanofibers/ultrastructure , Ovalbumin/administration & dosage , Ovalbumin/immunology , Peptides/administration & dosage , Protein Engineering
SELECTION OF CITATIONS
SEARCH DETAIL