Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
ACS Appl Bio Mater ; 4(5): 3880-3890, 2021 05 17.
Article in English | MEDLINE | ID: covidwho-1253882

ABSTRACT

Infectious diseases are a worldwide concern. They are responsible for increasing the mortality rate and causing economic and social problems. Viral epidemics and pandemics, such as the COVID-19 pandemic, force the scientific community to consider molecules with antiviral activity. A number of viral infections still do not have a vaccine or efficient treatment and it is imperative to search for vaccines to control these infections. In this context, nanotechnology in association with the design of vaccines has presented an option for virus control. Nanovaccines have displayed an impressive immune response using a low dosage. This review aims to describe the advances and update the data in studies using nanovaccines and their immunomodulatory effect against human viruses.


Subject(s)
Nanomedicine/trends , Viral Vaccines , Virus Diseases/prevention & control , Adaptive Immunity , COVID-19 Vaccines , Humans , Immunity, Innate , Vaccines, DNA , Vaccines, Subunit , Vaccines, Synthetic , Viral Vaccines/immunology
5.
Int J Nanomedicine ; 16: 539-560, 2021.
Article in English | MEDLINE | ID: covidwho-1058334

ABSTRACT

The newly emerged ribonucleic acid (RNA) enveloped human beta-coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection caused the COVID-19 pandemic, severely affects the respiratory system, and may lead to death. Lacking effective diagnostics and therapies made this pandemic challenging to manage since the SARS-CoV-2 transmits via human-to-human, enters via ACE2 and TMPSSR2 receptors, and damages organs rich in host cells, spreads via symptomatic carriers and is prominent in an immune-compromised population. New SARS-CoV-2 informatics (structure, strains, like-cycles, functional sites) motivated bio-pharma experts to investigate novel therapeutic agents that act to recognize, inhibit, and knockdown combinations of drugs, vaccines, and antibodies, have been optimized to manage COVID-19. However, successful targeted delivery of these agents to avoid off-targeting and unnecessary drug ingestion is very challenging. To overcome these obstacles, this mini-review projects nanomedicine technology, a pharmacologically relevant cargo of size within 10 to 200 nm, for site-specific delivery of a therapeutic agent to recognize and eradicate the SARS-CoV-2, and improving the human immune system. Such combinational therapy based on compartmentalization controls the delivery and releases of a drug optimized based on patient genomic profile and medical history. Nanotechnology could help combat COVID-19 via various methods such as avoiding viral contamination and spraying by developing personal protective equipment (PPE) to increase the protection of healthcare workers and produce effective antiviral disinfectants surface coatings capable of inactivating and preventing the virus from spreading. To quickly recognize the infection or immunological response, design highly accurate and sensitive nano-based sensors. Development of new drugs with improved activity, reduced toxicity, and sustained release to the lungs, as well as tissue targets; and development of nano-based immunizations to improve humoral and cellular immune responses. The desired and controlled features of suggested personalized therapeutics, nanomedicine, is a potential therapy to manage COVID-19 successfully. The state-of-the-art nanomedicine, challenges, and prospects of nanomedicine are carefully and critically discussed in this report, which may serve as a key platform for scholars to investigate the role of nanomedicine for higher efficacy to manage the COVID-19 pandemic.


Subject(s)
COVID-19/therapy , COVID-19/virology , Nanomedicine/trends , SARS-CoV-2/physiology , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Nanotechnology , Pandemics/prevention & control , SARS-CoV-2/drug effects
6.
Drug Deliv Transl Res ; 11(4): 1309-1315, 2021 08.
Article in English | MEDLINE | ID: covidwho-1053116

ABSTRACT

One year after the first human case of SARS-CoV-2, two nanomedicine-based mRNA vaccines have been fast-tracked, developed, and have received emergency use authorization throughout the globe with more vaccine approvals on the heels of these first two. Several SARS-CoV-2 vaccine compositions use nanotechnology-enabled formulations. A silver lining of the COVID-19 pandemic is that the fast-tracked vaccine development for SARS-CoV-2 has advanced the clinical translation pathway for nanomedicine drug delivery systems. The laboratory science of lipid-based nanoparticles was ready and rose to the clinical challenge of rapid vaccine development. The successful development and fast tracking of SARS-CoV-2 nanomedicine vaccines has exciting implications for the future of nanotechnology-enabled drug and gene delivery; it demonstrates that nanomedicine is necessary and critical to the successful delivery of advanced molecular therapeutics such as nucleic acids, it is establishing the precedent of safety and the population effect of phase four clinical trials, and it is laying the foundation for the clinical translation of more complex, non-lipid nanomedicines. The development, fast-tracking, and approval of SARS-CoV-2 nanotechnology-based vaccines has transformed the seemingly daunting challenges for clinically translating nanomedicines into measurable hurdles that can be overcome. Due to the tremendous scientific achievements that have occurred in response to the COVID-19 pandemic, years, perhaps even decades, have been streamlined for certain translational nanomedicines.


Subject(s)
COVID-19 Vaccines/administration & dosage , Drug Approval/methods , Nanomedicine/methods , Nanotechnology/methods , Vaccines, Synthetic/administration & dosage , COVID-19/epidemiology , COVID-19/genetics , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Clinical Trials, Phase IV as Topic/methods , Humans , Nanomedicine/trends , Nanotechnology/trends , RNA, Messenger/administration & dosage , RNA, Messenger/genetics , SARS-CoV-2/genetics , Vaccines, Synthetic/genetics
7.
ACS Appl Bio Mater ; 4(5): 3937-3961, 2021 05 17.
Article in English | MEDLINE | ID: covidwho-1026805

ABSTRACT

Bacterial infection is a universal threat to public health, which not only causes many serious diseases but also exacerbates the condition of the patients of cancer, pandemic diseases, e.g., COVID-19, and so on. Antibiotic therapy has been used to be an effective way for common bacterial disinfection. However, due to the misuse and abuse of antibiotics, more and more antibiotic-resistant bacteria have emerged as fatal threats to human beings. At present, more than 700,000 patients die every year with bacterial infections because of the lack of effective treatment. It is frustrating that the pace of development of antibiotics lags far behind that of bacterial resistance, with an estimation of 10 million deaths per year from bacterial infections after 2050. Facing such a rigorous challenge, approaches for bacterial disinfection are urgently demanded. The recently developed near-infrared (NIR) light-irradiation-based bacterial disinfection is highly promising to shatter bacterial resistance by employing NIR light-responsive materials as mediums to generate antibacterial factors such as heat, reactive oxygen species (ROS), and so on. This treatment approach is proved to be a potent candidate to accurately realize spatiotemporal control, while effectively eradicating multidrug-resistant bacteria and inhibiting antibiotic resistance. Herein, we summarize the latest progress of NIR light-based bacterial disinfection. Ultimately, current challenges and perspectives in this field are discussed.


Subject(s)
Bacteria/radiation effects , Disinfection/methods , Infrared Rays , Nanomedicine/trends , Bacterial Infections/prevention & control , Humans , Photochemotherapy , Photothermal Therapy
8.
J Control Release ; 330: 305-316, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-988296

ABSTRACT

The era of Nanomedicine has arrived with the approval of ONPATTRO™ by the FDA in 2018. Lipid nanoparticle (LNP) technology has succeeded in delivering siRNA to the human liver in genetic diseases and has also been applied to mRNA vaccinations for COVID-19 using a similar LNP technology. In this review, we focus on the current status of new lipids for use in LNP formulations including our original lipids (CL4H6/CL4C6/CL4D6) as well as mechanisms of targeting without a ligand. Clinical applications of nano DDS are moving forward rapidly in the field of cancer immunology since the successful introduction of OPDIVO™ in 2014. Antigen presentation and the maturation of immune cells can be controlled by nano DDS for cancer immunotherapy. YSK12-C4, a newly designed ionizable amino lipid can induce successful immune activation by silencing mRNA in DC and NK cells, which are expected to be evaluated for clinical use. Finally, new cancer therapy by targeting mitochondria involving the use of a MITO-Porter, a membrane fusion-type mitochondrial delivery system, has been introduced. The importance of delivering a photo sensitizer to mitochondria was clearly demonstrated in photodynamic cancer therapy. Clinical applications of MITO-Porters started in collaborative efforts with LUCA Science Co., Ltd. And was established in 2018. The future direction of Nanomedicine is discussed.


Subject(s)
COVID-19 Vaccines/chemistry , Drug Delivery Systems , Nanomedicine/trends , Animals , COVID-19 , Drug Compounding , Humans , Immunotherapy , Lipids/chemistry
10.
Expert Rev Anti Infect Ther ; 19(2): 137-145, 2021 02.
Article in English | MEDLINE | ID: covidwho-780230

ABSTRACT

INTRODUCTION: The novel coronavirus (CoV) disease 2019 (COVID-19) is a viral infection that causes severe acute respiratory syndrome (SARS). It is believed that early reports of COVID-19 cases were noticed in December 2019 and soon after it became a global public health emergency. It is advised that COVID-19 transmits through human to human contact and in most cases, it remains asymptomatic. Several approaches are being utilized to control the outbreak of this fatal viral disease. microRNAs (miRNAs) are known signature therapeutic tool for the viral diseases; they are small non-coding RNAs that target the mRNAs to inhibit their post-transcriptional expression, therefore, impeding their functions, can serve as watchdogs or micromanagers in the cells. AREAS COVERED: This review work delineated COVID-19 and its association with SARS and Middle East respiratory syndrome (MERS), the possible role of miRNAs in the pathogenesis of COVID-19, and therapeutic potential of miRNAs and their effective delivery to treat COVID-19. EXPERT OPINION: This review highlighted the importance of various miRNAs and their potential role in fighting with this pandemic as therapeutic molecules utilizing nanotechnology.


Subject(s)
COVID-19 , MicroRNAs , Nanomedicine , SARS-CoV-2/physiology , Betacoronavirus/physiology , COVID-19/genetics , COVID-19/physiopathology , Genome, Viral , Humans , MicroRNAs/genetics , MicroRNAs/immunology , Nanomedicine/methods , Nanomedicine/trends
11.
Theranostics ; 10(21): 9591-9600, 2020.
Article in English | MEDLINE | ID: covidwho-736835

ABSTRACT

Cytokine storms, defined by the dysregulated and excessive production of multiple pro-inflammatory cytokines, are closely associated with the pathology and mortality of several infectious diseases, including coronavirus disease 2019 (COVID-19). Effective therapies are urgently needed to block the development of cytokine storms to improve patient outcomes, but approaches that target individual cytokines may have limited effect due to the number of cytokines involved in this process. Dysfunctional macrophages appear to play an essential role in cytokine storm development, and therapeutic interventions that target these cells may be a more feasible approach than targeting specific cytokines. Nanomedicine-based therapeutics that target macrophages have recently been shown to reduce cytokine production in animal models of diseases that are associated with excessive proinflammatory responses. In this mini-review, we summarize important studies and discuss how macrophage-targeted nanomedicines can be employed to attenuate cytokine storms and their associated pathological effects to improve outcomes in patients with severe infections or other conditions associated with excessive pro-inflammatory responses. We also discuss engineering approaches that can improve nanocarriers targeting efficiency to macrophages, and key issues should be considered before initiating such studies.


Subject(s)
Anti-Infective Agents/therapeutic use , Cytokines/immunology , Infections/immunology , Macrophages/immunology , Nanomedicine/trends , Animals , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Humans , Infections/drug therapy , Macrophages/drug effects , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology
12.
Med Hypotheses ; 144: 109917, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-457162

ABSTRACT

Humanity's challenges are becoming increasingly difficult, and as these challenges become more advanced, the need for effective and intelligent action becomes more apparent. Meanwhile, the novel coronavirus disease (COVID-19) pandemic, which has plagued the world, could be considered as an opportunity to take a step toward the need for atomic engineering, compared to molecular engineering, as well as to accelerate this type of research. This approach, which can be expressed in terms of picotechnology, makes it possible to identify living cell types or in general, chemical and biological surfaces using their atomic arrays, and applied for early diagnosis even treatment of the disease.


Subject(s)
COVID-19/virology , Nanotechnology/methods , SARS-CoV-2/chemistry , Biomedical Engineering , Coronavirus Envelope Proteins/chemistry , Host Microbial Interactions , Humans , Nanomedicine/methods , Nanomedicine/trends , Nanotechnology/trends , Pandemics , Spike Glycoprotein, Coronavirus/chemistry , Viral Matrix Proteins/chemistry
13.
Nanomedicine (Lond) ; 15(17): 1719-1734, 2020 07.
Article in English | MEDLINE | ID: covidwho-401502

ABSTRACT

Prior research on nanotechnologies in diagnostics, prevention and treatment of coronavirus infections is reviewed. Gold nanoparticles and semiconductor quantum dots in colorimetric and immunochromatographic assays, silica nanoparticles in the polymerase chain reaction and spike protein nanospheres as antigen carriers and adjuvants in vaccine formulations present notable examples in diagnostics and prevention, while uses of nanoparticles in coronavirus infection treatments have been merely sporadic. The current absence of antiviral therapeutics that specifically target human coronaviruses, including SARS-CoV-2, might be largely due to the underuse of nanotechnologies. Elucidating the interface between nanoparticles and coronaviruses is timely, but presents the only route to the rational design of precisely targeted therapeutics for coronavirus infections. Such a fundamental approach is also a viable prophylaxis against future pandemics of this type.


Subject(s)
Betacoronavirus , Coronavirus Infections , Nanotechnology , Pandemics , Pneumonia, Viral , Animals , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Humans , Mice , Nanomedicine/methods , Nanomedicine/trends , Nanoparticles/therapeutic use , Nanotechnology/methods , Nanotechnology/trends , Pandemics/prevention & control , Pneumonia, Viral/diagnosis , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...