Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Biomed Pharmacother ; 143: 112162, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1401248

ABSTRACT

BACKGROUND: The global healthcare sector has been dealing with a situation known as a novel severe acute respiratory syndrome (SARS-CoV-2) since the end of 2019. Covid-19 is an acronym for Covid-19 (Coronavirus Disease- 2019). It causes a respiratory infection that includes cold, sneezing and coughing, and pneumonia. In the case of an animal, it causes diarrhea and upper respiratory diseases. Covid-19 transmitted human to human via airborne droplets. First Covid-19 emerged in Wuhan market China and it spread rapidly throughout the World. As we know nanoparticles are a novel drug delivery system. They have various advantageous effects like increasing the efficacy of the drug, safety, etc. In this review, we study about the nanoparticles and summarize how it is effective during drug delivery system in Covid-19. Chitosan is a much focused biopolymeric nanoparticle. It delivers drugs to the specific target site. In a recent health crisis, chitosan nanoparticles are one of the ways to release drugs of Covid-19, and specifically in the lungs of the affected patients. We studied and extracted our data from various research papers, review papers, and some other articles. OBJECTIVE: The main goal is to study the nanoparticles and their future aspects which is an effective drug delivery system in Covid-19. METHODS: The bibliographic search was done through a systematic search. The terms "Nanoparticles", "Covid-19 ", "Drug delivery" etc. were used to search the databases/search engines like "Google Scholar", "NCBI", "PubMed", "Science Direct" etc. These databases and search engines used here perform the limited criteria of search to conduct a systematic literature survey for the study and report writing. All the text from the articles and research papers were studied and analyzed. The various articles and research papers were used in writing this report and all of which are mentioned in the reference section of this report. CONCLUSION: Our current studies reveal that nanoparticles may prove very helpful in the delivery of drugs for Covid-19 treatment. Many cases showed that patients, where drugs are delivered with the help of nanoparticles, produced very few side effects.


Subject(s)
COVID-19/drug therapy , Nanoparticles , Animals , Biopolymers/adverse effects , Biopolymers/chemistry , Biopolymers/therapeutic use , COVID-19/virology , Drug Delivery Systems/methods , Humans , Nanomedicine , Nanoparticles/adverse effects , Nanoparticles/chemistry , SARS-CoV-2/pathogenicity
2.
J Allergy Clin Immunol ; 148(1): 91-95, 2021 07.
Article in English | MEDLINE | ID: covidwho-1291943

ABSTRACT

BACKGROUND: The mechanisms underpinning allergic reactions to the BNT162b2 (Pfizer) COVID-19 vaccine remain unknown, with polyethylene glycol (PEG) contained in the lipid nanoparticle suspected as being the cause. OBJECTIVE: Our aim was to evaluate the performance of skin testing and basophil activation testing to PEG, polysorbate 80, and the BNT162b2 (Pfizer) and AZD1222 (AstraZeneca) COVID-19 vaccines in patients with a history of PEG allergy. METHODS: Three known individuals with PEG allergy and 3 healthy controls were recruited and evaluated for hypersensitivity to the BNT162b2 and AZD1222 vaccines, and to related compounds by skin testing and basophil activation, as measured by CD63 upregulation using flow cytometry. RESULTS: We found that the BNT162b2 vaccine induced positive skin test results in patients with PEG allergy, whereas the result of traditional PEG skin testing was negative in 2 of 3 patients. One patient was found to be cosensitized to both the BNT162b2 and AZD1222 vaccines because of cross-reactive PEG and polysorbate allergy. The BNT162b2 vaccine, but not PEG alone, induced dose-dependent activation of all patients' basophils ex vivo. Similar basophil activation could be induced by PEGylated liposomal doxorubicin, suggesting that PEGylated lipids within nanoparticles, but not PEG in its native state, are able to efficiently induce degranulation. CONCLUSIONS: Our findings implicate PEG, as covalently modified and arranged on the vaccine lipid nanoparticle, as a potential trigger of anaphylaxis in response to BNT162b2, and highlight shortcomings of current skin testing protocols for allergy to PEGylated liposomal drugs.


Subject(s)
Anaphylaxis/immunology , Basophils/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Doxorubicin/analogs & derivatives , Drug Hypersensitivity/immunology , Nanoparticles/adverse effects , Polyethylene Glycols/adverse effects , SARS-CoV-2/physiology , Adult , Cell Degranulation , Cells, Cultured , Doxorubicin/adverse effects , Doxorubicin/chemistry , Female , Humans , Lipids/chemistry , Male , Middle Aged , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Skin Tests , Young Adult
3.
J Allergy Clin Immunol ; 147(6): 2075-2082.e2, 2021 06.
Article in English | MEDLINE | ID: covidwho-1185028

ABSTRACT

Anaphylaxis to vaccines is historically a rare event. The coronavirus disease 2019 pandemic drove the need for rapid vaccine production applying a novel antigen delivery system: messenger RNA vaccines packaged in lipid nanoparticles. Unexpectedly, public vaccine administration led to a small number of severe allergic reactions, with resultant substantial public concern, especially within atopic individuals. We reviewed the constituents of the messenger RNA lipid nanoparticle vaccine and considered several contributors to these reactions: (1) contact system activation by nucleic acid, (2) complement recognition of the vaccine-activating allergic effector cells, (3) preexisting antibody recognition of polyethylene glycol, a lipid nanoparticle surface hydrophilic polymer, and (4) direct mast cell activation, coupled with potential genetic or environmental predispositions to hypersensitivity. Unfortunately, measurement of anti-polyethylene glycol antibodies in vitro is not clinically available, and the predictive value of skin testing to polyethylene glycol components as a coronavirus disease 2019 messenger RNA vaccine-specific anaphylaxis marker is unknown. Even less is known regarding the applicability of vaccine use for testing (in vitro/vivo) to ascertain pathogenesis or predict reactivity risk. Expedient and thorough research-based evaluation of patients who have suffered anaphylactic vaccine reactions and prospective clinical trials in putative at-risk individuals are needed to address these concerns during a public health crisis.


Subject(s)
Anaphylaxis/immunology , COVID-19 Vaccines/adverse effects , COVID-19/immunology , Drug Hypersensitivity/immunology , Lipids/adverse effects , Nanoparticles/adverse effects , RNA, Messenger/adverse effects , SARS-CoV-2/immunology , Anaphylaxis/chemically induced , Animals , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Drug Hypersensitivity/pathology , Humans , Lipids/immunology , Lipids/therapeutic use , Mast Cells/immunology , Mast Cells/pathology , Nanoparticles/therapeutic use , RNA, Messenger/immunology , RNA, Messenger/therapeutic use , Risk Factors
4.
J Med Virol ; 93(7): 4054-4057, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1148833

ABSTRACT

On March 11, 2020, the World Health Organization declared coronavirus disease 2019 (COVID-19) a pandemic; from that date, the vaccine race has begun, and many technology platforms to develop a specific and effective COVID-19 vaccine have been launched in several clinical trials (protein subunit, RNA-based, DNA-based, replicating viral vector, nonreplicating viral vector, inactivated virus, live attenuated virus, and virus-like particle). Among the next-generation strategies, nucleoside-modified messenger RNA vaccines appear the most attractive, not only to counteract emerging pathogens but also for the possible applications in regenerative medicine and cancer therapy. However, exactly as all innovative drugs, they deserve careful pharmacovigilance in the short and long term.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Vaccines, Synthetic , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Humans , Hypersensitivity/etiology , Liposomes/adverse effects , Nanoparticles/adverse effects , Nucleosides , Pandemics/prevention & control , Pharmacovigilance , Polyethylene Glycols/adverse effects , RNA, Messenger/chemistry , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology
5.
J Med Virol ; 93(7): 4049-4053, 2021 07.
Article in English | MEDLINE | ID: covidwho-1118170

ABSTRACT

Coronavirus disease 2019 (COVID-19) vaccination campaign in Italy has started with a huge perplexity about vaccine efficacy, vaccine-borne adverse effects and vaccine clinical trial studies. In this commentary I tried to elucidate these issues, which represent a fundamental topic to be thoroughly addressed in COVID-19 pandemic.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Vaccination Refusal , Vaccines, Synthetic , Anaphylaxis/etiology , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Health Knowledge, Attitudes, Practice , Humans , Italy/epidemiology , Liposomes/adverse effects , Mass Vaccination , Nanoparticles/adverse effects , Pandemics/prevention & control , Polyethylene Glycols/adverse effects , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology
6.
J Alzheimers Dis ; 78(2): 479-503, 2020.
Article in English | MEDLINE | ID: covidwho-1080922

ABSTRACT

Alzheimer's and Parkinson's diseases (AD, PD) have a pediatric and young adult onset in Metropolitan Mexico City (MMC). The SARS-CoV-2 neurotropic RNA virus is triggering neurological complications and deep concern regarding acceleration of neuroinflammatory and neurodegenerative processes already in progress. This review, based on our MMC experience, will discuss two major issues: 1) why residents chronically exposed to air pollution are likely to be more susceptible to SARS-CoV-2 systemic and brain effects and 2) why young people with AD and PD already in progress will accelerate neurodegenerative processes. Secondary mental consequences of social distancing and isolation, fear, financial insecurity, violence, poor health support, and lack of understanding of the complex crisis are expected in MMC residents infected or free of SARS-CoV-2. MMC residents with pre-SARS-CoV-2 accumulation of misfolded proteins diagnostic of AD and PD and metal-rich, magnetic nanoparticles damaging key neural organelles are an ideal host for neurotropic SARS-CoV-2 RNA virus invading the body through the same portals damaged by nanoparticles: nasal olfactory epithelium, the gastrointestinal tract, and the alveolar-capillary portal. We urgently need MMC multicenter retrospective-prospective neurological and psychiatric population follow-up and intervention strategies in place in case of acceleration of neurodegenerative processes, increased risk of suicide, and mental disease worsening. Identification of vulnerable populations and continuous effort to lower air pollution ought to be critical steps.


Subject(s)
Alzheimer Disease/complications , Brain Diseases/etiology , Coronavirus Infections/complications , Environmental Pollutants/adverse effects , Nanoparticles/adverse effects , Parkinson Disease/complications , Pneumonia, Viral/complications , Adult , Air Pollution/adverse effects , Alzheimer Disease/physiopathology , COVID-19 , Disease Progression , Humans , Middle Aged , Pandemics , Parkinson Disease/physiopathology , Suicide/statistics & numerical data , Urban Population
SELECTION OF CITATIONS
SEARCH DETAIL
...