Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
1.
Wiley Interdiscip Rev Nanomed Nanobiotechnol ; 14(6): e1809, 2022 11.
Article in English | MEDLINE | ID: covidwho-2170335

ABSTRACT

Nucleic acid therapeutics can be used to control virtually every aspect of cell behavior and therefore have significant potential to treat genetic disorders, infectious diseases, and cancer. However, while clinically approved to treat a small number of diseases, the full potential of nucleic acid therapeutics is hampered by inefficient delivery. Nucleic acids are large, highly charged biomolecules that are sensitive to degradation and so the approaches to deliver these molecules differ significantly from traditional small molecule drugs. Current studies suggest less than 1% of the injected nucleic acid dose is delivered to the target cell in an active form. This inefficient delivery increases costs and limits their use to applications where a small amount of nucleic acid is sufficient. In this review, we focus on two of the major barriers to efficient nucleic acid delivery: (1) delivery to the target cell and (2) transport to the subcellular compartment where the nucleic acids are therapeutically active. We explore how nanoparticles can be modified with targeting ligands to increase accumulation in specific cells, and how the composition of the nanoparticle can be engineered to manipulate or disrupt cellular membranes and facilitate delivery to the optimal subcellular compartments. Finally, we highlight how with intelligent material design, nanoparticle delivery systems have been developed to deliver nucleic acids that silence aberrant genes, correct genetic mutations, and act as both therapeutic and prophylactic vaccines. This article is categorized under: Nanotechnology Approaches to Biology > Cells at the Nanoscale Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.


Subject(s)
Communicable Diseases , Nanoparticles , Nucleic Acids , Vaccines , Humans , Nucleic Acids/therapeutic use , Genetic Therapy/methods , Nanoparticles/chemistry , Nanomedicine , Communicable Diseases/drug therapy
2.
Chem Pharm Bull (Tokyo) ; 69(12): 1141-1159, 2021.
Article in English | MEDLINE | ID: covidwho-2115208

ABSTRACT

Considerable efforts have been made on the development of lipid nanoparticles (LNPs) for delivering of nucleic acids in LNP-based medicines, including a first-ever short interfering RNA (siRNA) medicine, Onpattro, and the mRNA vaccines against the coronavirus disease 2019 (COVID-19), which have been approved and are currently in use worldwide. The successful rational design of ionizable cationic lipids was a major breakthrough that dramatically increased delivery efficiency in this field. The LNPs would be expected to be useful as a platform technology for the delivery of various therapeutic modalities for genome editing and even for undiscovered therapeutic mechanisms. In this review, the current progress of my research, including the molecular design of pH-sensitive cationic lipids, their applications for various tissues and cell types, and for delivering various macromolecules, including siRNA, antisense oligonucleotide, mRNA, and the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) system will be described. Mechanistic studies regarding relationships between the physicochemical properties of LNPs, drug delivery, and biosafety are also summarized. Furthermore, current issues that need to be addressed for next generation drug delivery systems are discussed.


Subject(s)
Drug Carriers/chemistry , Lipids/chemistry , Liposomes/chemistry , Nanoparticles/chemistry , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Cations/chemistry , Hydrogen-Ion Concentration , RNA, Guide/chemistry , RNA, Guide/metabolism , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , SARS-CoV-2/isolation & purification , /metabolism
3.
ACS Appl Mater Interfaces ; 14(46): 52334-52346, 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2117028

ABSTRACT

The high antibacterial and antiviral performance of synthesized copper(I) oxide (Cu2O) incorporated in zeolite nanoparticles (Cu-Z) was determined. Various Cu contents (1-9 wt %) in solutions were loaded in the zeolite matrix under neutral conditions at room temperature. All synthesized Cu-Z nanoparticles showed high selectivity of the cuprous oxide, as confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. An advantage of the prepared Cu-Z over the pristine Cu2O nanoparticles was its high thermal stability. The 7 and 9 wt % Cu contents (07Cu-Z and 09Cu-Z) exhibited the best activities to deactivate Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. The film coated with 07Cu-Z nanoparticles also had high antiviral activities against porcine coronavirus (porcine epidemic diarrhea virus, PEDV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Specifically, the 07Cu-Z-coated film could reduce 99.93% of PEDV and 99.94% of SARS-CoV-2 viruses in 5 min of contact time, which were higher efficacies and faster than those of any previously reported works. The anti-SARS-CoV-2 virus film was coated on a low-cost PET or PVC film. A very small amount of cuprous oxide in zeolite was used to fabricate the antivirus film; therefore, the film was more transparent (79.4% transparency) than the cuprous oxide film or other commercial products. The toxicity of 07Cu-Z nanoparticles was determined by a toxicity test on zebrafish embryo and a skin irritation test to reconstruct a human epidermis (RhE) model. It was found that the impact on the aquatic environment and human skin was lower than that of the pristine Cu2O.


Subject(s)
COVID-19 , Nanoparticles , Zeolites , Humans , Swine , Animals , Zeolites/chemistry , SARS-CoV-2 , Oxides , Microbial Sensitivity Tests , Zebrafish , Copper/pharmacology , Copper/chemistry , Nanoparticles/chemistry , Anti-Bacterial Agents/chemistry , Gram-Positive Bacteria , Antiviral Agents/pharmacology
4.
Science ; 376(6594): 680-681, 2022 05 13.
Article in English | MEDLINE | ID: covidwho-2103175

ABSTRACT

New delivery systems aim to increase vaccine potency and reduce side effects.


Subject(s)
Lipids , Nanoparticles , Humans , Lipids/chemistry , Nanoparticles/adverse effects , Nanoparticles/chemistry , /chemistry
5.
ACS Nano ; 16(11): 18936-18950, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2087127

ABSTRACT

Ionizable cationic lipid-containing lipid nanoparticles (LNPs) are the most clinically advanced non-viral gene delivery platforms, holding great potential for gene therapeutics. This is exemplified by the two COVID-19 vaccines employing mRNA-LNP technology from Pfizer/BioNTech and Moderna. Herein, we develop a chemical library of ionizable cationic lipids through a one-step chemical-biological enzyme-catalyzed esterification method, and the synthesized ionizable lipids were further prepared to be LNPs for mRNA delivery. Through orthogonal design of experiment methodology screening, the top-performing AA3-DLin LNPs show outstanding mRNA delivery efficacy and long-term storage capability. Furthermore, the AA3-DLin LNP COVID-19 vaccines encapsulating SARS-CoV-2 spike mRNAs successfully induced strong immunogenicity in a BALB/c mouse model demonstrated by the antibody titers, virus challenge, and T cell immune response studies. The developed AA3-DLin LNPs are an excellent mRNA delivery platform, and this study provides an overall perspective of the ionizable cationic lipids, from aspects of lipid design, synthesis, screening, optimization, fabrication, characterization, and application.


Subject(s)
COVID-19 , Nanoparticles , Mice , Animals , Humans , RNA, Messenger/genetics , RNA, Messenger/chemistry , COVID-19 Vaccines , Lipids/chemistry , COVID-19/prevention & control , SARS-CoV-2/genetics , Nanoparticles/chemistry , Liposomes , Cations , Catalysis
6.
Mol Pharm ; 19(11): 4275-4285, 2022 Nov 07.
Article in English | MEDLINE | ID: covidwho-2036744

ABSTRACT

Lipid nanoparticles containing messenger RNA (mRNA-LNPs) have launched to the forefront of nonviral delivery systems with their realized potential during the COVID-19 pandemic. Here, we investigate the impact of commonly used biological buffers on the performance and durability of mRNA-LNPs. We tested the compatibility of three common buffers─HEPES, Tris, and phosphate-buffered saline─with a DLin-MC3-DMA mRNA-LNP formulation before and after a single controlled freeze-thaw cycle. We hypothesized that buffer composition would affect lipid-aqueous phase separation. Indeed, the buffers imposed structural changes in LNP morphology as indicated by electron microscopy, differential scanning calorimetry, and membrane fluidity assays. We employed in vitro and in vivo models to measure mRNA transfection and found that Tris or HEPES-buffered LNPs yielded better cryoprotection and transfection efficiency compared to PBS. Understanding the effects of various buffers on LNP morphology and efficacy provides valuable insights into maintaining the stability of LNPs after long-term storage.


Subject(s)
COVID-19 , Nanoparticles , Humans , RNA, Messenger/genetics , RNA, Messenger/chemistry , Lipids/chemistry , Pandemics , Nanoparticles/chemistry , Liposomes , RNA, Small Interfering/chemistry
7.
Mol Ther ; 30(5): 1941-1951, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1663945

ABSTRACT

Lipid nanoparticle (LNP)-formulated nucleoside-modified mRNA vaccines have proven to be very successful in the fight against the coronavirus disease 2019 (COVID-19) pandemic. They are effective, safe, and can be produced in large quantities. However, the long-term storage of mRNA-LNP vaccines without freezing is still a challenge. Here, we demonstrate that nucleoside-modified mRNA-LNPs can be lyophilized, and the physicochemical properties of the lyophilized material do not significantly change for 12 weeks after storage at room temperature and for at least 24 weeks after storage at 4°C. Importantly, we show in comparative mouse studies that lyophilized firefly luciferase-encoding mRNA-LNPs maintain their high expression, and no decrease in the immunogenicity of a lyophilized influenza virus hemagglutinin-encoding mRNA-LNP vaccine was observed after 12 weeks of storage at room temperature or for at least 24 weeks after storage at 4°C. Our studies offer a potential solution to overcome the long-term storage-related limitations of nucleoside-modified mRNA-LNP vaccines.


Subject(s)
COVID-19 , Influenza Vaccines , Nanoparticles , Animals , COVID-19/prevention & control , Freeze Drying , Liposomes , Mice , Nanoparticles/chemistry , Nucleosides , RNA, Messenger/genetics , Vaccines, Synthetic , mRNA Vaccines
8.
Mar Drugs ; 20(8)2022 Aug 18.
Article in English | MEDLINE | ID: covidwho-2023893

ABSTRACT

The increased interest in nanomedicine and its applicability for a wide range of biological functions demands the search for raw materials to create nanomaterials. Recent trends have focused on the use of green chemistry to synthesize metal and metal-oxide nanoparticles. Bioactive chemicals have been found in a variety of marine organisms, including invertebrates, marine mammals, fish, algae, plankton, fungi, and bacteria. These marine-derived active chemicals have been widely used for various biological properties. Marine-derived materials, either whole extracts or pure components, are employed in the synthesis of nanoparticles due to their ease of availability, low cost of production, biocompatibility, and low cytotoxicity toward eukaryotic cells. These marine-derived nanomaterials have been employed to treat infectious diseases caused by bacteria, fungi, and viruses as well as treat non-infectious diseases, such as tumors, cancer, inflammatory responses, and diabetes, and support wound healing. Furthermore, several polymeric materials derived from the marine, such as chitosan and alginate, are exploited as nanocarriers in drug delivery. Moreover, a variety of pure bioactive compounds have been loaded onto polymeric nanocarriers and employed to treat infectious and non-infectious diseases. The current review is focused on a thorough overview of nanoparticle synthesis and its biological applications made from their entire extracts or pure chemicals derived from marine sources.


Subject(s)
Chitosan , Metal Nanoparticles , Nanoparticles , Neoplasms , Noncommunicable Diseases , Animals , Bacteria , Chitosan/chemistry , Drug Delivery Systems , Fungi , Mammals , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Neoplasms/drug therapy , Noncommunicable Diseases/drug therapy , Pharmaceutical Preparations , Polymers/therapeutic use
9.
Mar Drugs ; 20(8)2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-2023891

ABSTRACT

Nowadays, the therapeutic efficiency of small interfering RNAs (siRNA) is still limited by the efficiency of gene therapy vectors capable of carrying them inside the target cells. In this study, siRNA nanocarriers based on low molecular weight chitosan grafted with increasing proportions (5 to 55%) of diisopropylethylamine (DIPEA) groups were developed, which allowed precise control of the degree of ionization of the polycations at pH 7.4. This approach made obtaining siRNA nanocarriers with small sizes (100-200 nm), positive surface charge and enhanced colloidal stability (up to 24 h) at physiological conditions of pH (7.4) and ionic strength (150 mmol L-1) possible. Moreover, the PEGylation improved the stability of the nanoparticles, which maintained their colloidal stability and nanometric sizes even in an albumin-containing medium. The chitosan-derivatives displayed non-cytotoxic effects in both fibroblasts (NIH/3T3) and macrophages (RAW 264.7) at high N/P ratios and polymer concentrations (up to 0.5 g L-1). Confocal microscopy showed a successful uptake of nanocarriers by RAW 264.7 macrophages and a promising ability to silence green fluorescent protein (GFP) in HeLa cells. These results were confirmed by a high level of tumor necrosis factor-α (TNFα) knockdown (higher than 60%) in LPS-stimulated macrophages treated with the siRNA-loaded nanoparticles even in the FBS-containing medium, findings that reveal a good correlation between the degree of ionization of the polycations and the physicochemical properties of nanocarriers. Overall, this study provides an approach to enhance siRNA condensation by chitosan-based carriers and highlights the potential of these nanocarriers for in vivo studies.


Subject(s)
Chitosan , Nanoparticles , Chitosan/chemistry , HeLa Cells , Humans , Nanoparticles/chemistry , Particle Size , Polyethylene Glycols/chemistry , RNA, Small Interfering/metabolism
10.
Biophys J ; 121(20): 3927-3939, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2007564

ABSTRACT

Crucial for mRNA-based vaccines are the composition, structure, and properties of lipid nanoparticles (LNPs) as their delivery vehicle. Using all-atom molecular dynamics simulations as a computational microscope, we provide an atomistic view of the structure of the Comirnaty vaccine LNP, its molecular organization, physicochemical properties, and insight in its pH-driven phase transition enabling mRNA release at atomistic resolution. At physiological pH, our simulations suggest an oil-like LNP core that is composed of the aminolipid ALC-0315 and cholesterol (ratio 72:28). It is surrounded by a lipid monolayer formed by distearoylphosphatidylcholine, ALC-0315, PEGylated lipids, and cholesterol at a ratio of 22:9:6:63. Protonated aminolipids enveloping mRNA formed inverted micellar structures that provide a shielding and likely protection from environmental factors. In contrast, at low pH, the Comirnaty lipid composition instead spontaneously formed lipid bilayers that display a high degree of elasticity. These pH-dependent lipid phases suggest that a change in pH of the environment upon LNP transfer to the endosome likely acts as trigger for cargo release from the LNP core by turning aminolipids inside out, thereby destabilizing both the LNP shell and the endosomal membrane.


Subject(s)
Lipid Bilayers , Nanoparticles , RNA, Messenger/genetics , Nanoparticles/chemistry , Liposomes , Cholesterol , Polyethylene Glycols/chemistry , RNA, Small Interfering
11.
J Pharm Biomed Anal ; 220: 115011, 2022 Oct 25.
Article in English | MEDLINE | ID: covidwho-1996386

ABSTRACT

Lipid nanoparticles (LNPs) have shown great success as drug delivery systems, especially for mRNA vaccines, as those developed during the Covid-19 pandemics. Lipid analysis is critical to monitor the formulation process and control the quality of LNPs. The present study is focused on the development and validation of a high-performance liquid chromatography - diode array detector -evaporative light scattering detector (HPLC-DAD/ELSD) based method for the simultaneous quantification of 7 lipids, illustrating the main components of LNPs: ionizable lipids, the neutral co-lipid cholesterol, phospholipids, hydrophilic polymer-lipids for colloidal stability (e.g., a PEGylated lipid). In particular, this study focuses on two innovative synthetic lipids: a switchable cationic lipid (CSL3) which has demonstrated in vitro and in vivo siRNA transfection abilities, and the palmitic acid-grafted-poly(ethyloxazoline)5000 (PolyEtOx), used as an alternative polymer to address allergic reactions attributed to PEGylated lipids. The HPLC separation was achieved on a Poroshell C18 column at 50 °C using a step gradient of a mobile phase composed of water/methanol mixtures with 0.1% (v/v) trifluoroacetic acid (TFA). This method was validated following ICH Q2(R1) & (R2) guidelines in terms of linearity (R² ≥ 0.997), precision (relative standard deviation on peak areas < 5% for intermediate repeatability), accuracy (recoveries between 92.9% and 108.5%), and sensitivity. Indeed, low detection and quantitation limits were determined (between 0.02 and 0.04 µg and between 0.04 and 0.10 µg, respectively). Due to its high selectivity, this method allowed the analysis of lipid degradation products produced through degradation studies in basic, acidic, and oxidative conditions. Moreover, the method was successfully applied to the analysis of several liposome formulations at two key steps of the development process. Consequently, the reported HPLC method offers fast, versatile, selective and quantitative analysis of lipids, essential for development optimization, chemical characterization, and stability testing of LNP formulations.


Subject(s)
COVID-19 , Nanoparticles , Cholesterol , Chromatography, High Pressure Liquid/methods , Humans , Liposomes , Methanol , Nanoparticles/chemistry , Palmitic Acid , Phospholipids , Polyethylene Glycols , Polymers , RNA, Small Interfering , Trifluoroacetic Acid , Water
12.
J Control Release ; 350: 256-270, 2022 10.
Article in English | MEDLINE | ID: covidwho-1991137

ABSTRACT

Since the recent clinical approval of siRNA-based drugs and COVID-19 mRNA vaccines, the potential of RNA therapeutics for patient healthcare has become widely accepted. Lipid nanoparticles (LNPs) are currently the most advanced nanocarriers for RNA packaging and delivery. Nevertheless, the intracellular delivery efficiency of state-of-the-art LNPs remains relatively low and safety and immunogenicity concerns with synthetic lipid components persist, altogether rationalizing the exploration of alternative LNP compositions. In addition, there is an interest in exploiting LNP technology for simultaneous encapsulation of small molecule drugs and RNA in a single nanocarrier. Here, we describe how well-known tricyclic cationic amphiphilic drugs (CADs) can be repurposed as both structural and functional components of lipid-based NPs for mRNA formulation, further referred to as CADosomes. We demonstrate that selected CADs, such as tricyclic antidepressants and antihistamines, self-assemble with the widely-used helper lipid DOPE to form cationic lipid vesicles for subsequent mRNA complexation and delivery, without the need for prior lipophilic derivatization. Selected CADosomes enabled efficient mRNA delivery in various in vitro cell models, including easy-to-transfect cancer cells (e.g. human cervical carcinoma HeLa cell line) as well as hard-to-transfect primary cells (e.g. primary bovine corneal epithelial cells), outperforming commercially available cationic liposomes and state-of-the-art LNPs. In addition, using the antidepressant nortriptyline as a model compound, we show that CADs can maintain their pharmacological activity upon CADosome incorporation. Furthermore, in vivo proof-of-concept was obtained, demonstrating CADosome-mediated mRNA delivery in the corneal epithelial cells of rabbit eyes, which could pave the way for future applications in ophthalmology. Based on our results, the co-formulation of CADs, helper lipids and mRNA into lipid-based nanocarriers is proposed as a versatile and straightforward approach for the rational development of drug combination therapies.


Subject(s)
COVID-19 , Nanoparticles , Animals , Antidepressive Agents, Tricyclic , COVID-19/drug therapy , Cations , Cattle , Drug Combinations , Drug Repositioning , HeLa Cells , Humans , Lipids/chemistry , Liposomes , Nanoparticles/chemistry , Nortriptyline , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Rabbits
13.
Molecules ; 27(12)2022 Jun 17.
Article in English | MEDLINE | ID: covidwho-1964031

ABSTRACT

Aerosol transmission constitutes one of the major transmission routes of the SARS-CoV-2 pathogen. Due to the pathogen's properties, research on its airborne transmission has some limitations. This paper focuses on silica nanoparticles (SiO2) of 40 and 200 nm sizes as the physicochemical markers of a single SARS-CoV-2 particle enabling experiments on the transmission of bioaerosols in public spaces. Mixtures of a determined silica concentration were sprayed on as an aerosol, whose particles, sedimented on dedicated matrices, were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Since it was not possible to quantitatively identify the markers based on the obtained images, the filters exposed with the AirSampler aspirator were analyzed based on inductively coupled plasma optical emission spectroscopy (ICP-OES). The ICP-OES method enabled us to determine the concentration of silica after extracting the marker from the filter, and consequently to estimate the number of markers. The developed procedure opens up the possibility of the quantitative estimation of the spread of the coronavirus, for example in studies on the aerosol transmission of the pathogen in an open environment where biological markers-surrogates included-cannot be used.


Subject(s)
COVID-19 , Nanoparticles , Aerosols/chemistry , Humans , Nanoparticles/chemistry , SARS-CoV-2 , Silicon Dioxide/chemistry
14.
Front Immunol ; 13: 912898, 2022.
Article in English | MEDLINE | ID: covidwho-1957161

ABSTRACT

Two years into the COVID-19 pandemic there is still a need for vaccines to effectively control the spread of novel SARS-CoV-2 variants and associated cases of severe disease. Here we report a messenger RNA vaccine directly encoding for a nanoparticle displaying 60 receptor binding domains (RBDs) of SARS-CoV-2 that acts as a highly effective antigen. A construct encoding the RBD of the Delta variant elicits robust neutralizing antibody response, and also provides protective immunity against the Delta variant in a widely used transgenic mouse model. We ultimately find that the proposed mRNA RBD nanoparticle-based vaccine provides a flexible platform for rapid development and will likely be of great value in combatting current and future SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , Nanoparticles , mRNA Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Mice , Mice, Inbred BALB C , Mice, Transgenic , Nanoparticles/chemistry , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , mRNA Vaccines/immunology
15.
Int J Nanomedicine ; 17: 3043-3054, 2022.
Article in English | MEDLINE | ID: covidwho-1951780

ABSTRACT

Introduction: Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly prevalent and endemic swine pathogen that causes significant economic losses to the global swine industry. Selenium nanoparticles (SeNPs) have attracted increasing attention in the biomedical field, given their antiviral effects. This study aimed to investigate the inhibitory effect of chitosan-coated SeNPs (CS-SeNPs) on PRRSV replication. Methods: In this study, CS-SeNPs were synthesized by chemical reduction and characterized by assessing the morphology, size distribution, zeta potential, and element composition. Marc-145 cells were infected with r-PRRSV-EGFP (0.1 MOI) and inoculated with CS-SeNPs (10 µM). Subsequently, the concentrations of hydrogen peroxide (H2O2) and glutathione (GSH), and glutathione peroxidase (GSH-Px) activity were measured using specific commercial assay kits. ORF5 RNA expression, viral titer, and nucleocapsid (N) protein expression were assessed using qRT-PCR, TCID50, and Western blot. ROS generation, apoptosis rates, and JNK /caspase-3/PARP protein expression were evaluated using dihydroethidium staining, flow cytometry, and Western blot. Results: The results showed that CS-SeNPs treatment significantly suppressed oxidative stress induced by r-PRRSV-EGFP infection by increasing GSH-Px activity, promoting GSH production, and inhibiting H2O2 synthesis. CS-SeNPs treatment significantly inhibited ORF5 gene expression, viral titers, and N protein of r-PRRSV-EGFP at 24 and 48 hours post-infection (hpi) in Marc-145 cells. The increase in apoptosis rates induced by r-PRRSV-EGFP infection was significantly decreased by CS-SeNPs inoculation through inhibiting ROS generation, JNK phosphorylation levels, and cleavage of caspase-3 and PARP mainly at 48 hpi. Conclusion: These results demonstrated that CS-SeNPs suppress PRRSV-induced apoptosis in Marc-145 cells via the ROS/JNK signaling pathway, thereby inhibiting PRRSV replication, which suggested the potential antiviral activity of CS-SeNPs that deserves further investigation for clinical applications.


Subject(s)
Chitosan , Nanoparticles , Porcine respiratory and reproductive syndrome virus , Selenium , Animals , Antioxidants/pharmacology , Antiviral Agents/pharmacology , Apoptosis , Caspase 3/metabolism , Chitosan/chemistry , Chitosan/pharmacology , Hydrogen Peroxide/pharmacology , Nanoparticles/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Porcine respiratory and reproductive syndrome virus/metabolism , Reactive Oxygen Species/metabolism , Selenium/chemistry , Selenium/pharmacology , Swine , Virus Replication
16.
J Nanobiotechnology ; 20(1): 320, 2022 Jul 14.
Article in English | MEDLINE | ID: covidwho-1933142

ABSTRACT

BACKGROUND: Nanovaccines have shown the promising potential in controlling and eradicating the threat of infectious diseases worldwide. There has been a great need in developing a versatile strategy to conveniently construct diverse types of nanovaccines and induce potent immune responses. To that end, it is critical for obtaining a potent self-adjuvant platform to assemble with different types of antigens into nanovaccines. RESULTS: In this study, we identified a new natural polysaccharide from the rhizomes of Bletilla striata (PRBS), and used this polysaccharide as a platform to construct diverse types of nanovaccines with potent self-adjuvant property. In the construction process of SARS-CoV-2 nanovaccine, PRBS molecules and RBD protein antigens were assembled into ~ 300 nm nanoparticles by hydrogen bond. For HIV nanovaccine, hydrophobic effect dominantly drove the co-assembly between PRBS molecules and Env expression plasmid into ~ 350 nm nanospheres. Importantly, PRBS can potently activate the behaviors and functions of multiple immune cells such as macrophages, B cells and dendritic cells. Depending on PRBS-mediated immune activation, these self-adjuvant nanovaccines can elicit significantly stronger antigen-specific antibody and cellular responses in vivo, in comparison with their corresponding traditional vaccine forms. Moreover, we also revealed the construction models of PRBS-based nanovaccines by analyzing multiple assembly parameters such as bond energy, bond length and interaction sites. CONCLUSIONS: PRBS, a newly-identified natural polysaccharide which can co-assemble with different types of antigens and activate multiple critical immune cells, has presented a great potential as a versatile platform to develop potent self-adjuvant nanovaccines.


Subject(s)
COVID-19 , Nanoparticles , Adjuvants, Immunologic/chemistry , COVID-19/prevention & control , Humans , Immunity , Nanoparticles/chemistry , Polysaccharides , SARS-CoV-2
17.
Adv Drug Deliv Rev ; 188: 114416, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1914095

ABSTRACT

Lipid nanoparticles (LNPs) play an important role in mRNA vaccines against COVID-19. In addition, many preclinical and clinical studies, including the siRNA-LNP product, Onpattro®, highlight that LNPs unlock the potential of nucleic acid-based therapies and vaccines. To understand what is key to the success of LNPs, we need to understand the role of the building blocks that constitute them. In this Review, we discuss what each lipid component adds to the LNP delivery platform in terms of size, structure, stability, apparent pKa, nucleic acid encapsulation efficiency, cellular uptake, and endosomal escape. To explore this, we present findings from the liposome field as well as from landmark and recent articles in the LNP literature. We also discuss challenges and strategies related to in vitro/in vivo studies of LNPs based on fluorescence readouts, immunogenicity/reactogenicity, and LNP delivery beyond the liver. How these fundamental challenges are pursued, including what lipid components are added and combined, will likely determine the scope of LNP-based gene therapies and vaccines for treating various diseases.


Subject(s)
COVID-19 , Nanoparticles , Nucleic Acids , Vaccines , COVID-19/prevention & control , COVID-19 Vaccines , Genetic Therapy , Humans , Lipids/chemistry , Liposomes , Nanoparticles/chemistry , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics
18.
Nat Nanotechnol ; 17(6): 570-576, 2022 06.
Article in English | MEDLINE | ID: covidwho-1900493

ABSTRACT

Several vaccines against COVID-19 use nanoparticles to protect the antigen cargo (either proteins or nucleic acids), increase the immunogenicity and ultimately the efficacy. The characterization of these nanomedicines is challenging due to their intrinsic complexity and requires the use of multidisciplinary techniques and competencies. The accurate characterization of nanovaccines can be conceptualized as a combination of physicochemical, immunological and toxicological assays. This will help to address key challenges in the preclinical characterization, will guide the rapid development of safe and effective vaccines for current and future health crises, and will streamline the regulatory process.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Humans , Nanomedicine/methods , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Vaccines/chemistry
19.
Mol Pharm ; 19(7): 2022-2031, 2022 07 04.
Article in English | MEDLINE | ID: covidwho-1898414

ABSTRACT

Preservation of the integrity of macromolecular higher-order structure is a tenet central to achieving biologic drug and vaccine product stability toward manufacturing, distribution, storage, handling, and administration. Given that mRNA lipid nanoparticles (mRNA-LNPs) are held together by an intricate ensemble of weak forces, there are some intriguing parallels to biologic drugs, at least at first glance. However, mRNA vaccines are not without unique formulation and stabilization challenges derived from the instability of unmodified mRNA and its limited history as a drug or vaccine. Since certain learning gained from biologic drug development may be applicable for the improvement of mRNA vaccines, we present a perspective on parallels and contrasts between the emerging role of higher-order structure pertaining to mRNA-LNPs compared to pharmaceutical proteins. In a recent publication, the location of mRNA encapsulated within lipid nanoparticles was identified, revealing new insights into the LNP structure, nanoheterogeneity, and microenvironment of the encapsulated mRNA molecules [Brader et al. Biophys. J. 2021, 120, 2766]. We extend those findings by considering the effect of encapsulation on mRNA thermal unfolding with the observation that encapsulation in LNPs increases mRNA unfolding temperatures.


Subject(s)
Lipids , Nanoparticles , Lipids/chemistry , Liposomes , Nanoparticles/chemistry , RNA, Messenger , Vaccines, Synthetic/genetics , mRNA Vaccines
20.
Sci Rep ; 12(1): 9483, 2022 Jun 08.
Article in English | MEDLINE | ID: covidwho-1890258

ABSTRACT

Lipid nanoparticles (LNPs) for RNA and DNA delivery have attracted considerable attention for their ability to treat a broad range of diseases and to vectorize mRNA for COVID vaccines. LNPs are produced by mixing biomolecules and lipids, which self-assemble to form the desired structure. In this domain, microfluidics shows clear advantages: high mixing quality, low-stress conditions, and fast preparation. Studies of LNPs produced in micromixers have revealed, in certain ranges of flow rates, a degradation in performance in terms of size, monodispersity and encapsulation efficiency. In this study, we focus on the ring micromixer, which is well adapted to high throughput. We reveal three regimes, side-by-side, transitional and highly mixed, that control the mixing performance of the device. Furthermore, using cryo-TEM and biochemical analysis, we show that the mixing performances are strongly correlated to the characteristics of the LNPs we produce. We emphasize the importance of the flow-rate ratio and propose a physical criterion based on the onset of temporal instabilities for producing LNPs with optimal characteristics in terms of geometry, monodispersity and encapsulation yield. These criteria are generally applicable.


Subject(s)
COVID-19 , Nanoparticles , Humans , Lipids/chemistry , Liposomes , Nanoparticles/chemistry , RNA, Small Interfering/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL