Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Philos Trans R Soc Lond B Biol Sci ; 376(1831): 20200228, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1284967


The goal of achieving enhanced diagnosis and continuous monitoring of human health has led to a vibrant, dynamic and well-funded field of research in medical sensing and biosensor technologies. The field has many sub-disciplines which focus on different aspects of sensor science; engaging engineers, chemists, biochemists and clinicians, often in interdisciplinary teams. The trends which dominate include the efforts to develop effective point of care tests and implantable/wearable technologies for early diagnosis and continuous monitoring. This review will outline the current state of the art in a number of relevant fields, including device engineering, chemistry, nanoscience and biomolecular detection, and suggest how these advances might be employed to develop effective systems for measuring physiology, detecting infection and monitoring biomarker status in wild animals. Special consideration is also given to the emerging threat of antimicrobial resistance and in the light of the current SARS-CoV-2 outbreak, zoonotic infections. Both of these areas involve significant crossover between animal and human health and are therefore well placed to seed technological developments with applicability to both human and animal health and, more generally, the reviewed technologies have significant potential to find use in the measurement of physiology in wild animals. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.

Biosensing Techniques/instrumentation , COVID-19/diagnosis , Synthetic Biology/methods , Wearable Electronic Devices , Zika Virus Infection/veterinary , Zoonoses/diagnosis , Animals , Animals, Wild/microbiology , Animals, Wild/parasitology , Animals, Wild/virology , Biomarkers/analysis , Cell Engineering/methods , Humans , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Nanotechnology/instrumentation , Nanotechnology/methods , Point-of-Care Testing , Zika Virus Infection/diagnosis
ACS Nano ; 14(12): 16180-16193, 2020 12 22.
Article in English | MEDLINE | ID: covidwho-974870


The management of the COVID-19 pandemic has relied on cautious contact tracing, quarantine, and sterilization protocols while we await a vaccine to be made widely available. Telemedicine or mobile health (mHealth) is well-positioned during this time to reduce potential disease spread and prevent overloading of the healthcare system through at-home COVID-19 screening, diagnosis, and monitoring. With the rise of mass-fabricated electronics for wearable and portable sensors, emerging telemedicine tools have been developed to address shortcomings in COVID-19 diagnostics, monitoring, and management. In this Perspective, we summarize current implementations of mHealth sensors for COVID-19, highlight recent technological advances, and provide an overview on how these tools may be utilized to better control the COVID-19 pandemic.

COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/therapy , Disease Management , SARS-CoV-2/genetics , Telemedicine/methods , Antigens, Viral/analysis , Biosensing Techniques/instrumentation , COVID-19/pathology , COVID-19/virology , COVID-19 Testing/instrumentation , Contact Tracing/instrumentation , Humans , Mobile Applications/supply & distribution , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Nanotechnology/instrumentation , Nanotechnology/methods , Physical Distancing , Point-of-Care Systems/organization & administration , Point-of-Care Testing/organization & administration , Quarantine/organization & administration , SARS-CoV-2/immunology , Telemedicine/instrumentation
ACS Nano ; 14(4): 5135-5142, 2020 04 28.
Article in English | MEDLINE | ID: covidwho-59591


Coronavirus disease 2019 (COVID-19) is a newly emerging human infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously called 2019-nCoV). Based on the rapid increase in the rate of human infection, the World Health Organization (WHO) has classified the COVID-19 outbreak as a pandemic. Because no specific drugs or vaccines for COVID-19 are yet available, early diagnosis and management are crucial for containing the outbreak. Here, we report a field-effect transistor (FET)-based biosensing device for detecting SARS-CoV-2 in clinical samples. The sensor was produced by coating graphene sheets of the FET with a specific antibody against SARS-CoV-2 spike protein. The performance of the sensor was determined using antigen protein, cultured virus, and nasopharyngeal swab specimens from COVID-19 patients. Our FET device could detect the SARS-CoV-2 spike protein at concentrations of 1 fg/mL in phosphate-buffered saline and 100 fg/mL clinical transport medium. In addition, the FET sensor successfully detected SARS-CoV-2 in culture medium (limit of detection [LOD]: 1.6 × 101 pfu/mL) and clinical samples (LOD: 2.42 × 102 copies/mL). Thus, we have successfully fabricated a promising FET biosensor for SARS-CoV-2; our device is a highly sensitive immunological diagnostic method for COVID-19 that requires no sample pretreatment or labeling.

Betacoronavirus/isolation & purification , Biosensing Techniques , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Transistors, Electronic , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Graphite , Humans , Nanotechnology/instrumentation , Nasal Cavity , Pandemics , SARS-CoV-2 , Specimen Handling