Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Acta Otolaryngol ; 141(11): 989-993, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1479845


BACKGROUND: The effect of Covid-19 infection on nasal mucociliary clearance (MCC) is unknown. AIMS/OBJECTIVES: The aim of this study is to investigate the relationship between Covid-19 and nasal MCC in terms of smoking, Covid-19 symptoms and treatment. METHODS: Thirty-six patients who were hospitalized in the pandemic ward due to Covid-19 and 36 volunteers (Covid-19 negative test result) who presented to the otolaryngology outpatient clinic with non-nasal symptoms were included in this study. The Saccharin test was performed in both groups to evaluate nasal MCC. RESULTS: The patients and control groups were not significantly different in terms of age and gender. The nasal MCC time was significantly higher in the patient group compared to the control group (19.18 ± 10.84 min and 13.78 ± 8.18 min, p = .003). CONCLUSIONS AND SIGNIFICANCE: In this study, we found that Covid-19 prolonged nasal MCC time regardless of age. We suggest that corticosteroids should be included in the treatment of Covid-19, both with its symptom reduction and its positive effect on MCC duration.

COVID-19/physiopathology , Mucociliary Clearance/physiology , Nasal Mucosa/physiopathology , Smoking/physiopathology , Adrenal Cortex Hormones/pharmacology , Adrenal Cortex Hormones/therapeutic use , Adult , Amides/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/complications , COVID-19/drug therapy , Case-Control Studies , Female , Humans , Hydroxychloroquine/adverse effects , Length of Stay , Male , Middle Aged , Mucociliary Clearance/drug effects , Pyrazines/therapeutic use
J Clin Invest ; 131(13)2021 07 01.
Article in English | MEDLINE | ID: covidwho-1304352


The upper respiratory tract is compromised in the early period of COVID-19, but SARS-CoV-2 tropism at the cellular level is not fully defined. Unlike recent single-cell RNA-Seq analyses indicating uniformly low mRNA expression of SARS-CoV-2 entry-related host molecules in all nasal epithelial cells, we show that the protein levels are relatively high and that their localizations are restricted to the apical side of multiciliated epithelial cells. In addition, we provide evidence in patients with COVID-19 that SARS-CoV-2 is massively detected and replicated within the multiciliated cells. We observed these findings during the early stage of COVID-19, when infected ciliated cells were rapidly replaced by differentiating precursor cells. Moreover, our analyses revealed that SARS-CoV-2 cellular tropism was restricted to the nasal ciliated versus oral squamous epithelium. These results imply that targeting ciliated cells of the nasal epithelium during the early stage of COVID-19 could be an ideal strategy to prevent SARS-CoV-2 propagation.

COVID-19/virology , Host Microbial Interactions , Nasal Mucosa/virology , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/pathology , COVID-19/physiopathology , Cell Differentiation , Cilia/pathology , Cilia/physiology , Cilia/virology , Furin/genetics , Furin/metabolism , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , Macaca , Models, Biological , Nasal Mucosa/pathology , Nasal Mucosa/physiopathology , Pandemics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Seq , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Stem Cells/pathology , Stem Cells/virology , Virus Internalization , Virus Replication/genetics , Virus Replication/physiology