Unable to write in log file ../../bases/logs/gimorg/logerror.txt Search | WHO COVID-19 Research Database
Show: 20 | 50 | 100
Results 1 - 4 de 4
Anat Rec (Hoboken) ; 305(8): 2065-2074, 2022 08.
Article in English | MEDLINE | ID: covidwho-1787646


The nasopharynx is an integral component of the upper aerodigestive tract, whose morphologic features share an intimate relationship with a vast array of clinical, functional, and quality of life conditions related to contemporary humans. Its composite architecture and central location amidst the nasal cavity, pharyngotympanic tube, palate, and skull base bears implications for basic physiologic functions including breathing, vocalization, and alimentation. Over the course of evolution, morphological modifications of nasopharyngeal anatomy have occurred in genus Homo which serve to distinguish the human upper aerodigestive tract from that of other mammals. Understanding of these adaptive changes from both a comparative anatomy and clinical perspective offers insight into the unique blueprint which underpins many clinical pathologies currently encountered by anthropologists, scientists, and otorhinolaryngologists alike. This discussion intends to familiarize readers with the fundamental role that nasopharyngeal morphology plays in upper aerodigestive tract conditions, with consideration of its newfound clinical relevance in the era of the COVID-19 pandemic.

COVID-19 , Hominidae , Animals , Humans , Mammals , Nasopharynx/anatomy & histology , Nasopharynx/physiology , Pandemics , Quality of Life
J Korean Med Sci ; 37(11): e88, 2022 Mar 21.
Article in English | MEDLINE | ID: covidwho-1753355


Nasopharyngeal swabs have been widely to prevent the spread of coronavirus disease 2019 (COVID-19). Nasopharyngeal COVID-19 testing is a generally safe and well-tolerated procedure, but numerous complications have been reported in the media. Therefore, the present study aimed to review and document adverse events and suggest procedural references to minimize preventable but often underestimated risks. A total of 27 articles were selected for the review of 842 related documents in PubMed, Embase, and KoreaMed. The complications related to nasopharyngeal COVID-19 testing were reported to be rarely happened, ranging from 0.0012 to 0.026%. Frequently documented adverse events were retained swabs, epistaxis, and cerebrospinal fluid leakage, often associated with high-risk factors, including severe septal deviations, pre-existing skull base defects, and previous sinus or transsphenoidal pituitary surgery. Appropriate techniques based on sufficient anatomical knowledge are mandatory for clinicians to perform nasopharyngeal COVID-19 testing. The nasal floor can be predicted by the line between the nostril and external ear canal. For safe testing, the angle of swab insertion in the nasal passage should remain within 30° of the nasal floor. The swab was gently inserted along the nasal septum just above the nasal floor to the nasopharynx and remained on the nasopharynx for several seconds before removal. Forceful insertion should be attempted, and alternative examinations should be considered, especially in vulnerable patients. In conclusion, patients and clinicians should be aware of rare but possible complications and associated high-risk factors. The suggested procedural pearls enable more comfortable and safe nasopharyngeal COVID-19 testing for both clinicians and patients.

COVID-19 Testing/methods , COVID-19/diagnosis , Nasopharynx/virology , SARS-CoV-2/isolation & purification , Specimen Handling/adverse effects , Humans , Nasal Cavity/anatomy & histology , Nasal Cavity/virology , Nasopharynx/anatomy & histology , Specimen Handling/methods
J Virol Methods ; 294: 114153, 2021 08.
Article in English | MEDLINE | ID: covidwho-1226314


The COVID-19 pandemic has resulted in an unparalleled need for viral testing capacity across the world and is a critical requirement for successful re-opening of economies. The logistical barriers to near-universal testing are considerable. We have designed an injection molded polypropylene anterior nares swab, the Rhinostic, with a screw cap integrated into the swab handle that is compatible with fully automated sample accessioning and processing. The ability to collect and release both human and viral material is comparable to that of several commonly used swabs on the market. SARS-CoV-2 is stable on dry Rhinostic swabs for at least 3 days, even at 42 °C, and elution can be achieved with small volumes. To test the performance of the Rhinostic in patients, 119 samples were collected with Rhinostic and the positive and negative determinations were 100 % concordant with samples collected using Clinical Laboratory Improvement Amendments (CLIA) use approved nasal swabs at a clinical lab. The Rhinostic swab and barcoded tube set can be produced, sterilized, and packaged cost effectively and is designed to be adopted by clinical laboratories using automation to increase throughput and dramatically reduce the cost of a standard SARS-CoV-2 detection pipeline.

COVID-19 Nucleic Acid Testing/instrumentation , Nasopharynx/virology , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , Specimen Handling/instrumentation , Specimen Handling/methods , Automation, Laboratory , COVID-19 Nucleic Acid Testing/methods , Humans , Nasopharynx/anatomy & histology , Polypropylenes