Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add filters

Document Type
Year range
1.
Ann Intern Med ; 174(8): 1151-1158, 2021 08.
Article in English | MEDLINE | ID: covidwho-1481184

ABSTRACT

The development of the National Institutes of Health (NIH) COVID-19 Treatment Guidelines began in March 2020 in response to a request from the White House Coronavirus Task Force. Within 4 days of the request, the NIH COVID-19 Treatment Guidelines Panel was established and the first meeting took place (virtually-as did subsequent meetings). The Panel comprises 57 individuals representing 6 governmental agencies, 11 professional societies, and 33 medical centers, plus 2 community members, who have worked together to create and frequently update the guidelines on the basis of evidence from the most recent clinical studies available. The initial version of the guidelines was completed within 2 weeks and posted online on 21 April 2020. Initially, sparse evidence was available to guide COVID-19 treatment recommendations. However, treatment data rapidly accrued based on results from clinical studies that used various study designs and evaluated different therapeutic agents and approaches. Data have continued to evolve at a rapid pace, leading to 24 revisions and updates of the guidelines in the first year. This process has provided important lessons for responding to an unprecedented public health emergency: Providers and stakeholders are eager to access credible, current treatment guidelines; governmental agencies, professional societies, and health care leaders can work together effectively and expeditiously; panelists from various disciplines, including biostatistics, are important for quickly developing well-informed recommendations; well-powered randomized clinical trials continue to provide the most compelling evidence to guide treatment recommendations; treatment recommendations need to be developed in a confidential setting free from external pressures; development of a user-friendly, web-based format for communicating with health care providers requires substantial administrative support; and frequent updates are necessary as clinical evidence rapidly emerges.


Subject(s)
COVID-19/therapy , Pandemics , Practice Guidelines as Topic , Advisory Committees , COVID-19/drug therapy , COVID-19/epidemiology , Child , Data Interpretation, Statistical , Drug Approval , Evidence-Based Medicine , Female , Humans , Interprofessional Relations , National Institutes of Health (U.S.) , Pregnancy , SARS-CoV-2 , Stakeholder Participation , United States
4.
Crit Care Med ; 49(11): 1963-1973, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1467431

ABSTRACT

Given the urgent need for coronavirus disease 2019 therapeutics, early in the pandemic the Accelerating Coronavirus Disease 2019 Therapeutic Interventions and Vaccines (ACTIV) public-private partnership rapidly designed a unique therapeutic agent intake and assessment process for candidate treatments of coronavirus disease 2019. These treatments included antivirals, immune modulators, severe acute respiratory syndrome coronavirus 2 neutralizing antibodies, and organ-supportive treatments at both the preclinical and clinical stages of development. The ACTIV Therapeutics-Clinical Working Group Agent Prioritization subgroup established a uniform data collection process required to perform an assessment of any agent type using review criteria that were identified and differentially weighted for each agent class. The ACTIV Therapeutics-Clinical Working Group evaluated over 750 therapeutic agents with potential application for coronavirus disease 2019 and prioritized promising candidates for testing within the master protocols conducted by ACTIV. In addition, promising agents among preclinical candidates were selected by ACTIV to be matched with laboratories that could assist in executing rigorous preclinical studies. Between April 14, 2020, and May 31, 2021, the Agent Prioritization subgroup advanced 20 agents into the Accelerating Coronavirus Disease 2019 Therapeutic Interventions and Vaccines master protocols and matched 25 agents with laboratories to assist with preclinical testing.


Subject(s)
Antibodies/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , COVID-19/therapy , COVID-19/drug therapy , Drug Development/organization & administration , Drug Discovery/organization & administration , Humans , National Institutes of Health (U.S.) , Pandemics , Public-Private Sector Partnerships , SARS-CoV-2 , United States
5.
FASEB J ; 35(11): e21973, 2021 11.
Article in English | MEDLINE | ID: covidwho-1462504

ABSTRACT

Contemporary science has become increasingly multi-disciplinary and team-based, resulting in unprecedented growth in biomedical innovation and technology over the last several decades. Collaborative research efforts have enabled investigators to respond to the demands of an increasingly complex 21st century landscape, including pressing scientific challenges such as the COVID-19 pandemic. A major contributing factor to the success of team science is the mobilization of core facilities and shared research resources (SRRs), the scientific instrumentation and expertise that exist within research organizations that enable widespread access to advanced technologies for trainees, faculty, and staff. For over 40 years, SRRs have played a key role in accelerating biomedical research discoveries, yet a national strategy that addresses how to leverage these resources to enhance team science and achieve shared scientific goals is noticeably absent. We believe a national strategy for biomedical SRRs-led by the National Institutes of Health-is crucial to advance key national initiatives, enable long-term research efficiency, and provide a solid foundation for the next generation of scientists.


Subject(s)
Biomedical Research/organization & administration , COVID-19 , Intersectoral Collaboration , National Institutes of Health (U.S.)/organization & administration , Pandemics , SARS-CoV-2 , Academies and Institutes/organization & administration , Career Mobility , Congresses as Topic , Humans , Policy , Program Evaluation , Research Support as Topic , Societies, Scientific/organization & administration , Stakeholder Participation , United States , Universities/organization & administration
6.
Science ; 373(6562): 1429, 2021 Sep 24.
Article in English | MEDLINE | ID: covidwho-1434874
8.
Ann Intern Med ; 174(9): 1293-1300, 2021 09.
Article in English | MEDLINE | ID: covidwho-1417296

ABSTRACT

Working in an unprecedented time frame, the Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) public-private partnership developed and launched 9 master protocols between 14 April 2020 and 31 May 2021 to allow for the coordinated and efficient evaluation of multiple investigational therapeutic agents for COVID-19. The ACTIV master protocols were designed with a portfolio approach to serve the following patient populations with COVID-19: mild to moderately ill outpatients, moderately ill inpatients, and critically ill inpatients. To facilitate the execution of these studies and minimize start-up time, ACTIV selected several existing networks to launch the master protocols. The master protocols were also designed to test several agent classes prioritized by ACTIV that covered the spectrum of the disease pathophysiology. Each protocol, either adaptive or pragmatic, was designed to efficiently select those treatments that provide benefit to patients while rapidly eliminating those that were either ineffective or unsafe. The ACTIV Therapeutics-Clinical Working Group members describe the process by which these master protocols were designed, developed, and launched. Lessons learned that may be useful in meeting the challenges of a future pandemic are also described.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Vaccines , COVID-19/drug therapy , COVID-19/prevention & control , Clinical Protocols , Drug Development/organization & administration , Public-Private Sector Partnerships , Humans , National Institutes of Health (U.S.) , Pandemics/prevention & control , SARS-CoV-2 , United States
10.
IEEE Pulse ; 12(3): 21-23, 2021.
Article in English | MEDLINE | ID: covidwho-1280250

ABSTRACT

In the wake of the COVID-19 pandemic, the need for rapid and accurate diagnostic testing across populations quickly became evident. In response, the National Institutes of Health (NIH) was determined not only to invest heavily in this area but to change the process by which grant proposals were reviewed and funded in order to spur faster development of viable technologies. The Rapid Acceleration of Diagnostics (RADx) initiative was designed to speed innovation, commercialization, and implementation of potential COVID-19 diagnostic technology. As part of this effort, the RADx Tech initiative focuses on the development, validation, and commercialization of innovative point-of-care, home-based, and clinical lab-based tests that can detect SARS-CoV-2. This effort was enabled through the NIH's National Institute of Biomedical Imaging and Bioengineering (NIBIB) Point-of-Care Technology Research Network (POCTRN).


Subject(s)
Biomedical Engineering/economics , COVID-19 Testing/economics , COVID-19 , National Institutes of Health (U.S.)/economics , Pandemics , Point-of-Care Systems/economics , SARS-CoV-2 , Biomedical Engineering/trends , COVID-19/diagnosis , COVID-19/economics , COVID-19/epidemiology , Humans , United States
11.
J Am Med Inform Assoc ; 28(9): 2050-2067, 2021 08 13.
Article in English | MEDLINE | ID: covidwho-1276186

ABSTRACT

OBJECTIVE: To summarize how artificial intelligence (AI) is being applied in COVID-19 research and determine whether these AI applications integrated heterogenous data from different sources for modeling. MATERIALS AND METHODS: We searched 2 major COVID-19 literature databases, the National Institutes of Health's LitCovid and the World Health Organization's COVID-19 database on March 9, 2021. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline, 2 reviewers independently reviewed all the articles in 2 rounds of screening. RESULTS: In the 794 studies included in the final qualitative analysis, we identified 7 key COVID-19 research areas in which AI was applied, including disease forecasting, medical imaging-based diagnosis and prognosis, early detection and prognosis (non-imaging), drug repurposing and early drug discovery, social media data analysis, genomic, transcriptomic, and proteomic data analysis, and other COVID-19 research topics. We also found that there was a lack of heterogenous data integration in these AI applications. DISCUSSION: Risk factors relevant to COVID-19 outcomes exist in heterogeneous data sources, including electronic health records, surveillance systems, sociodemographic datasets, and many more. However, most AI applications in COVID-19 research adopted a single-sourced approach that could omit important risk factors and thus lead to biased algorithms. Integrating heterogeneous data for modeling will help realize the full potential of AI algorithms, improve precision, and reduce bias. CONCLUSION: There is a lack of data integration in the AI applications in COVID-19 research and a need for a multilevel AI framework that supports the analysis of heterogeneous data from different sources.


Subject(s)
Artificial Intelligence , Biomedical Research/trends , COVID-19 , Algorithms , Databases as Topic , Humans , National Institutes of Health (U.S.) , Proteomics , United States , World Health Organization
12.
J Infect Dis ; 224(Supplement_1): S1-S21, 2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1263668

ABSTRACT

The NIH Virtual SARS-CoV-2 Antiviral Summit, held on 6 November 2020, was organized to provide an overview on the status and challenges in developing antiviral therapeutics for coronavirus disease 2019 (COVID-19), including combinations of antivirals. Scientific experts from the public and private sectors convened virtually during a live videocast to discuss severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targets for drug discovery as well as the preclinical tools needed to develop and evaluate effective small-molecule antivirals. The goals of the Summit were to review the current state of the science, identify unmet research needs, share insights and lessons learned from treating other infectious diseases, identify opportunities for public-private partnerships, and assist the research community in designing and developing antiviral therapeutics. This report includes an overview of therapeutic approaches, individual panel summaries, and a summary of the discussions and perspectives on the challenges ahead for antiviral development.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , COVID-19/virology , Drug Development , Humans , National Institutes of Health (U.S.) , Peptide Hydrolases/metabolism , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , United States , Virus Replication/drug effects
13.
Transl Behav Med ; 11(7): 1354-1358, 2021 07 29.
Article in English | MEDLINE | ID: covidwho-1254836

ABSTRACT

Control of the COVID-19 pandemic relies heavily on behavioral mitigation strategies such as physical distancing, hand washing and mask wearing. Even with the availability of SARS-CoV-2 vaccines, the extraordinary effort to distribute the vaccines must be paired with continued adherence to behavioral recommendations as well as vaccine confidence. To facilitate rapid and equitable uptake of the vaccines, there is a need for responsive, trustworthy, and evidence-informed communication about vaccination, enhanced trust in science, and engaging populations disproportionately affected by the pandemic. Efforts to address vaccine hesitancy and increase vaccine confidence will address the emerging gaps between vaccine availability and actual vaccination. Although these gaps are attributable, in part, to challenges with logistics and access, social and behavioral drivers of vaccination decision making also have a significant role in vaccination uptake. As federal, state, and local health and public health agencies coordinate vaccine dissemination, there will be a continuous need to adapt to an evolving landscape of SARS-CoV-2 vaccines, new scientific information, and the spread of COVID-19- and vaccine-related misinformation. Facilitating widespread vaccination and maintaining a focus on equity requires thoughtful and compassionate approaches to reach and address the needs of those who are disproportionately affected by the pandemic such as underserved, vulnerable, and racial/ethnic minority populations. This commentary focuses on several National Institutes of Health initiatives that are supporting behavioral and social science research to address SARS-CoV-2 vaccine communication and increase the uptake of vaccination. We conclude with implications for future research.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Minority Groups , National Institutes of Health (U.S.) , Pandemics , SARS-CoV-2 , Social Sciences , United States , Vaccination
18.
Transl Behav Med ; 11(9): 1795-1801, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1174959

ABSTRACT

BACKGROUND: The National Institutes of Health Science of Behavior Change Common Fund Program has accelerated the investigation of mechanisms of behavior change applicable to multiple health behaviors and outcomes and facilitated the use of the experimental medicine approach to behavior change research. PURPOSE: This commentary provides a brief background of the program, plans for its next phase, and thoughts about how the experimental medicine approach to behavior change research can inform future directions in two areas of science-reproductive health and COVID-19 vaccine uptake. CONCLUSIONS: The incorporation of a mechanisms-based approach into behavior intervention research offers new opportunities for improving health.


Subject(s)
Biomedical Research , COVID-19 , COVID-19 Vaccines , Humans , National Institutes of Health (U.S.) , SARS-CoV-2 , United States
20.
Ann Intern Med ; 174(7): 999-1003, 2021 07.
Article in English | MEDLINE | ID: covidwho-1156199

ABSTRACT

Over the past year, the SARS-CoV-2 pandemic has swept the globe, resulting in an enormous worldwide burden of infection and mortality. However, the additional toll resulting from long-term consequences of the pandemic has yet to be tallied. Heterogeneous disease manifestations and syndromes are now recognized among some persons after their initial recovery from SARS-CoV-2 infection, representing in the broadest sense a failure to return to a baseline state of health after acute SARS-CoV-2 infection. On 3 to 4 December 2020, the National Institute of Allergy and Infectious Diseases, in collaboration with other Institutes and Centers of the National Institutes of Health, convened a virtual workshop to summarize existing knowledge on postacute COVID-19 and to identify key knowledge gaps regarding this condition.


Subject(s)
COVID-19/epidemiology , National Institutes of Health (U.S.) , Pandemics , SARS-CoV-2 , Humans , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...