Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
2.
Viruses ; 14(3)2022 03 19.
Article in English | MEDLINE | ID: covidwho-1760847

ABSTRACT

Little is understood about the impact of nebulisation on the viability of SARS-CoV-2. In this study, a range of nebulisers with differing methods of aerosol generation were evaluated to determine SARS-CoV-2 viability following aerosolization. The aerosol particle size distribution was assessed using an aerosol particle sizer (APS) and SARS-CoV-2 viability was determined after collection into liquid media using All-Glass Impingers (AGI). Viable particles of SARS-CoV-2 were further characterised using the Collison 6-jet nebuliser in conjunction with novel sample techniques in an Andersen size-fractioning sampler to predict lung deposition profiles. Results demonstrate that all the tested nebulisers can generate stable, polydisperse aerosols (Geometric standard deviation (GSD) circa 1.8) in the respirable range (1.2 to 2.2 µm). Viable fractions (VF, units PFU/particle, the virus viability as a function of total particles produced) were circa 5 × 10-3. VF and spray factors were not significantly affected by relative humidity, within this system where aerosols were in the spray tube an extremely short time. The novel Andersen sample collection methods successfully captured viable virus particles across all sizes; with most particle sizes below 3.3 µm. Particle sizes, in MMAD (Mass Median Aerodynamic Diameters), were calculated from linear regression of log10-log10 transformed cumulative PFU data, and calculated MMADs accorded well with APS measurements and did not differ across collection method types. These data will be vital in informing animal aerosol challenge models, and infection prevention and control policies.


Subject(s)
COVID-19 , SARS-CoV-2 , Aerosols , Animals , Nebulizers and Vaporizers , Particle Size
3.
MAbs ; 14(1): 2047144, 2022.
Article in English | MEDLINE | ID: covidwho-1740685

ABSTRACT

There remains an unmet need for globally deployable, low-cost therapeutics for the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Previously, we reported on the isolation and in vitro characterization of a potent single-domain nanobody, NIH-CoVnb-112, specific for the receptor-binding domain (RBD) of SARS-CoV-2. Here, we report on the molecular basis for the observed broad in vitro neutralization capability of NIH-CoVnb-112 against variant SARS-CoV-2 pseudoviruses. The structure of NIH-CoVnb-112 bound to SARS-CoV-2 RBD reveals a large contact surface area overlapping the angiotensin converting enzyme 2 (ACE2) binding site, which is largely unencumbered by the common RBD mutations. In an in vivo pilot study, we demonstrate effective reductions in weight loss, viral burden, and lung pathology in a Syrian hamster model of COVID-19 following nebulized delivery of NIH-CoVnb-112. These findings support the further development of NIH-CoVnb-112 as a potential adjunct preventative therapeutic for the treatment of SARS-CoV-2 infection.Abbreviations: ACE2 - angiotensin converting enzyme 2BSA - buried surface areaCDR - complementary determining regionRBD - receptor binding domainRBM - receptor-binding motifSARS-CoV-2 - severe acute respiratory syndrome coronavirus 2.


Subject(s)
Antibodies, Viral/metabolism , Broadly Neutralizing Antibodies/metabolism , COVID-19/immunology , Lung/pathology , SARS-CoV-2/physiology , Single-Domain Antibodies/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Viral/immunology , Binding Sites/genetics , Broadly Neutralizing Antibodies/immunology , Cricetinae , Disease Models, Animal , Humans , Mesocricetus , Nebulizers and Vaporizers , Protein Binding , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Load
5.
J Allergy Clin Immunol Pract ; 10(1S): S19-S30, 2022 01.
Article in English | MEDLINE | ID: covidwho-1592348

ABSTRACT

The 2020 National Asthma Education and Prevention Program Coordinating Committee Expert Panel Working Group (NAEPP [2020 Focused Asthma Update]) guidelines and the Global Initiative for Asthma (GINA) 2021 strategy report are compared in this Rostrum article. The methodologies of each publication are described. Subsequently, 4 different selected pharmacological recommendations are compared in the 2 documents: step 1 for children 0 to 4 years of age with viral-induced wheezing, step 2 in ages 12 years and older with the intermittent use of inhaled corticosteroid, steps 3 and 4 with single-inhaler maintenance and reliever therapy with inhaled corticosteroids-formoterol (SMART), and steps 3, 4, and 5 with add-on long-acting muscarinic antagonist therapy. Nonpharmacological recommendations are also considered and contrasted, including for exhaled nitric oxide, environmental control, immunotherapy, and bronchial thermoplasty. Similarities and differences in these 2 documents are highlighted, and recommendations are made about harmonizing the approaches where possible.


Subject(s)
Anti-Asthmatic Agents , Asthma , Administration, Inhalation , Adrenal Cortex Hormones/therapeutic use , Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Child , Formoterol Fumarate/therapeutic use , Humans , Nebulizers and Vaporizers
7.
Drug Deliv ; 29(1): 10-17, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1577575

ABSTRACT

Aerosol therapy is used to deliver medical therapeutics directly to the airways to treat respiratory conditions. A potential consequence of this form of treatment is the release of fugitive aerosols, both patient derived and medical, into the environment and the subsequent exposure of caregivers and bystanders to potential viral infections. This study examined the release of these fugitive aerosols during a standard aerosol therapy to a simulated adult patient. An aerosol holding chamber and mouthpiece were connected to a representative head model and breathing simulator. A combination of laser and Schlieren imaging was used to non-invasively visualize the release and dispersion of fugitive aerosol particles. Time-varying aerosol particle number concentrations and size distributions were measured with optical particle sizers at clinically relevant positions to the simulated patient. The influence of breathing pattern, normal and distressed, supplemental air flow, at 0.2 and 6 LPM, and the addition of a bacterial filter to the exhalation port of the mouthpiece were assessed. Images showed large quantities of fugitive aerosols emitted from the unfiltered mouthpiece. The images and particle counter data show that the addition of a bacterial filter limited the release of these fugitive aerosols, with the peak fugitive aerosol concentrations decreasing by 47.3-83.3%, depending on distance from the simulated patient. The addition of a bacterial filter to the mouthpiece significantly reduces the levels of fugitive aerosols emitted during a simulated aerosol therapy, p≤ .05, and would greatly aid in reducing healthcare worker and bystander exposure to potentially harmful fugitive aerosols.


Subject(s)
Aerosols , COVID-19 , Drug Delivery Systems , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Nebulizers and Vaporizers , Respiratory Therapy , Aerosols/administration & dosage , Aerosols/adverse effects , COVID-19/prevention & control , COVID-19/transmission , Computer Simulation , Drug Delivery Systems/instrumentation , Drug Delivery Systems/methods , Equipment Design , Humans , Infection Control/methods , Models, Biological , Particle Size , Respiratory Therapy/adverse effects , Respiratory Therapy/instrumentation , Respiratory Therapy/methods , SARS-CoV-2
9.
Immunopharmacol Immunotoxicol ; 43(6): 644-650, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1545788

ABSTRACT

BACKGROUND: The current outbreak of coronavirus disease 2019 (COVID-19) has rapidly spread throughout the world. During treatment, we found that the majority of patients had a decrease in hemoglobin (Hb). Interferon-α2b (IFN-α2b) was the primary suspected drug that was related to Hb reduction. Thus, the study aimed to investigate whether IFN-α2b could induce Hb reduction in severe patients with COVID-19 and its potential mechanism. MATERIAL AND METHODS: A total of 50 patients who were admitted to the First Affiliated Hospital of Harbin Medical University with severe COVID-19 infection were enrolled from February 12th to 24th, 2020. The demographics, baseline characteristics, clinical data, and therapeutic regimen were collected retrospectively. The patients were divided into two groups according to the declined use of IFN-α2b on day 14. The Hb levels on admission, day 7, day14, and day 21 were collected and analyzed. The primary endpoint was the level of Hb on day 21. RESULTS: A total of 31 patients in the IFN-stop group and 19 patients in the non-IFN-stop group were reviewed. The age, gender, comorbidities, clinical symptoms, nutritional status, disease severity, complications, and other factors of the patients were compared, no difference was found between the IFN-stop group and the non-IFN-stop group. The Hb levels of all patients significantly decreased on day 7 compared with that on admission (p < .0001). In the IFN-stop group, the Hb level was increased in 7 days after IFN-α2b was stopped (p = .0008), whereas no difference was found between day 14 and day 21 in the non-IFN-stop group (p = .3152). CONCLUSIONS: IFN-α2b was associated with Hb reduction in the treatment of severe patients of COVID-19. Clinicians should be aware of the high incidence of Hb reduction for patients treated by IFN-α2b.


Subject(s)
Anemia/chemically induced , Antiviral Agents/adverse effects , COVID-19/drug therapy , Interferon alpha-2/adverse effects , SARS-CoV-2/drug effects , Administration, Inhalation , Adult , Aged , Aged, 80 and over , Anemia/blood , Anemia/diagnosis , Antiviral Agents/administration & dosage , Biomarkers/blood , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , China , Female , Hemoglobins/metabolism , Host-Pathogen Interactions , Humans , Interferon alpha-2/administration & dosage , Male , Middle Aged , Nebulizers and Vaporizers , Retrospective Studies , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Severity of Illness Index , Time Factors , Treatment Outcome , Young Adult
10.
NPJ Prim Care Respir Med ; 31(1): 45, 2021 11 25.
Article in English | MEDLINE | ID: covidwho-1537316

ABSTRACT

In the beginning of the COVID-19 pandemic, there were major concerns regarding the huge demand for asthma inhalers. Using the primary-care medical records for 614,700 asthma patients between January and June 2020, we found that there was a substantial increase in inhalers solely in March 2020. Patients significantly associated with receiving higher inhaled corticosteroid prescriptions were younger, of higher socioeconomic status, and had milder asthma.


Subject(s)
Asthma , COVID-19 , Administration, Inhalation , Asthma/drug therapy , Humans , Nebulizers and Vaporizers , Pandemics , Prescriptions , SARS-CoV-2
11.
Auris Nasus Larynx ; 49(3): 504-510, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1525670

ABSTRACT

OBJECTIVE: Nebulizer therapy is an effective and safe topical treatment for rhinosinusitis and is frequently used by otolaryngologists in Japan. However, treatment methods used vary among regions and according to doctors' preferences. In this study, we aimed to investigate the use of nebulizer therapy for rhinosinusitis. Administration of nebulizer therapy has been affected by the coronavirus disease 2019 (COVID-19) pandemic. Thus, we also investigated the difference in the prevalence of nebulizer use before and during the pandemic. METHODS: Between February and September 2016 and in January 2021, we administered questionnaire surveys on nebulizer treatment for rhinosinusitis to otorhinolaryngologists, who were members of the Oto-Rhino-Laryngological Society of Japan, in Aomori, Saitama, Mie, Fukui, Shiga, Okayama, and Kagoshima prefectures. RESULTS: More than 90% of the otorhinolaryngologists performed nebulizer treatment for rhinosinusitis in 2016. In April 2020 (the first wave of the COVID-19 pandemic), the use rate decreased to 20%, but in January 2021, the use rate increased to 60%. Jet nebulizers were the most frequently used type. One-third of the otolaryngologists enlarged the natural opening of the paranasal sinuses in more than half of their patients by using vasoconstrictors. Cefmenoxime and betamethasone were the most commonly used antibiotics and steroids, respectively. CONCLUSION: Because it is important to perform nasal pretreatment and strict disinfection of nebulizer equipment, it is clear that education of otorhinolaryngologists as well as paramedical personnel is required to ensure safe and effective use of nebulizer therapy in Japan.


Subject(s)
COVID-19 , Sinusitis , Humans , Japan/epidemiology , Nebulizers and Vaporizers , Pandemics , Sinusitis/drug therapy , Surveys and Questionnaires
12.
Respir Care ; 67(4): 404-414, 2022 04.
Article in English | MEDLINE | ID: covidwho-1520112

ABSTRACT

BACKGROUND: Aerosol delivery via high-flow nasal cannula (HFNC) has attracted clinical interest in recent years. However, both HFNC and nebulization are categorized as aerosol-generating procedures (AGPs). In vitro studies raised concerns that AGPs had high transmission risk. Very few in vivo studies examined fugitive aerosols with nebulization via HFNC, and effective methods to mitigate aerosol dispersion are unknown. METHODS: Two HFNC devices (Airvo 2 and Vapotherm) with or without a vibrating mesh nebulizer were compared; HFNC alone, surgical mask over HFNC interface, and HFNC with face tent scavenger were used in a random order for 9 healthy volunteers. Fugitive aerosol concentrations at sizes of 0.3-10.0 µm were continuously measured by particle sizers placed at 1 and 3 ft from participants. On a different day, 6 of the 9 participants received 6 additional nebulizer treatments via vibrating mesh nebulizer or small-volume nebulizer (SVN) with a face mask or a mouthpiece with/without an expiratory filter. In vitro simulation was employed to quantify inhaled dose of albuterol with vibrating mesh nebulizer via Airvo 2 and Vapotherm. RESULTS: Compared to baseline, neither HFNC device generated higher aerosol concentrations. Compared to HFNC alone, vibrating mesh nebulizer via Airvo 2 generated higher 0.3-1.0 µm particles (all P < .05), but vibrating mesh nebulizer via Vapotherm did not. Concentrations of 1.0-3.0 µm particles with vibrating mesh nebulizer via Airvo 2 were similar with vibrating mesh nebulizer and a mouthpiece/face mask but less than SVN with a mouthpiece/face mask (all P < .05). Placing a surgical mask over HFNC during nebulization reduced 0.5-1.0 µm particles (all P < .05) to levels similar to the use of a nebulizer with mouthpiece and expiratory filter. In vitro the inhaled dose of albuterol with vibrating mesh nebulizer via Airvo 2 was ≥ 6 times higher than vibrating mesh nebulizer via Vapotherm. CONCLUSIONS: During aerosol delivery via HFNC, Airvo 2 generated higher inhaled dose and consequently higher fugitive aerosols than Vapotherm. Simple measures, such as placing a surgical mask over nasal cannula during nebulization via HFNC, could effectively reduce fugitive aerosol concentrations.


Subject(s)
Bronchodilator Agents , Cannula , Administration, Inhalation , Aerosols , Albuterol , Humans , Nebulizers and Vaporizers
13.
Respir Care ; 66(12): 1858-1865, 2021 12.
Article in English | MEDLINE | ID: covidwho-1524338

ABSTRACT

BACKGROUND: Methacholine bronchoprovocation or challenge testing (MCT) is commonly performed to assess airway hyper-responsiveness in the setting of suspected asthma. Nebulization is an aerosol-generating procedure, but little is known about the risks of MCT in the context of the ongoing coronavirus disease 2019 (COVID-19) pandemic. We aimed to quantify and characterize aerosol generation during MCT by using different delivery methods and to assess the impact of adding a viral filter. METHODS: Seven healthy subjects performed simulated MCT in a near particle-free laboratory space with 4 different nebulizers and with a dosimeter. Two devices continuously sampled the ambient air during the procedure, which detected ultrafine particles, from 0.02-1 µm, and particles of sizes 0.3, 0.5, 1.0, 2.0, 5.0, and 10 µm, respectively. Particle generation was compared among all the devices, with and without viral filter placement. RESULTS: Ultrafine-particle generation during simulated MCT was significant across all the devices. Ultrafine-particle (0.02-1 µm) concentrations decreased 77%-91% with the addition of a viral filter and varied significantly between unfiltered (P < .001) and filtered devices (P < .001). Ultrafine-particle generation was lowest when using the dosimeter with filtered Hudson nebulizer (1,258 ± 1,644 particle/mL). Ultrafine-particle concentrations with the filtered nebulizer devices using a compressor were higher than particle concentrations detected when using the dosimeter: Monaghan (3,472 ± 1,794 particles/mL), PARI (4,403 ± 2,948), Hudson (6,320 ± 1,787) and AirLife (9,523 ± 5,098). CONCLUSIONS: The high particle concentrations generated during MCT pose significant infection control concerns during the COVID-19 pandemic. Particle generation during MCT was significantly reduced by using breath-actuated delivery and a viral filter, which offers an effective mitigation strategy.


Subject(s)
COVID-19 , Pandemics , Aerosols , Humans , Infection Control , Methacholine Chloride , Nebulizers and Vaporizers , Particle Size , SARS-CoV-2
14.
Ther Deliv ; 13(1): 31-49, 2022 01.
Article in English | MEDLINE | ID: covidwho-1515596

ABSTRACT

Drug delivery via the pulmonary route is a cornerstone in the pharmaceutical sector as an alternative to oral and parenteral administration. Nebulizer inhalation treatment offers multiple drug administration, easily employed with tidal breathing, suitable for children and elderly, can be adapted for severe patients and visible spray ensures patient satisfaction. This review discusses the operational and mechanical characteristics of nebulizer delivery devices in terms of aerosol production processes, their usage, benefits and drawbacks that are currently shaping the contemporary landscape of inhaled drug delivery. With the advent of particle engineering, novel inhaled nanosystems can be successfully developed to increase lung deposition and decrease pulmonary clearance. The above-mentioned advances might pave the path for treating a life-threatening disorder like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which is also discussed in the current state of the art.


Subject(s)
COVID-19 , Drug Delivery Systems , Administration, Inhalation , Aerosols , Aged , Bronchodilator Agents , Child , Equipment Design , Humans , Lung , Nebulizers and Vaporizers , SARS-CoV-2
15.
Biomolecules ; 11(11)2021 10 27.
Article in English | MEDLINE | ID: covidwho-1488477

ABSTRACT

The COVID-19 pandemic has escalated the occurrence of hypoxia including thrombotic stroke worldwide, for which nitric oxide (NO) therapy seems very promising and translatable. Therefore, various modes/routes of NO-delivery are now being tested in different clinical trials for safer, faster, and more effective interventions against ischemic insults. Intravenous (IV) infusion of S-Nitrosoglutathione (GSNO), the major endogenous molecular pool of NO, has been reported to protect against mechanical cerebral ischemia-reperfusion (IR); however, it has been never tested in any kind of "clinically" relevant thromboembolic stroke models with or without comorbidities and in combination with the thrombolytic reperfusion therapy. Moreover, "IV-effects" of higher dose of GSNO following IR-injury have been contradicted to augment stroke injury. Herein, we tested the hypothesis that nebulization of low-dose GSNO will not alter blood pressure (BP) and will mitigate stroke injury in diabetic mice via enhanced cerebral blood flow (CBF) and brain tissue oxygenation (PbtO2). GSNO-nebulization (200 µg/kgbwt) did not alter BP, but augmented the restoration of CBF, improved behavioral outcomes and reduced stroke injury. Moreover, GSNO-nebulization increased early reoxygenation of brain tissue/PbtO2 as measured at 6.5 h post-stroke following thrombolytic reperfusion, and enervated unwanted effects of late thrombolysis in diabetic stroke. We conclude that the GSNO-nebulization is safe and effective for enhancing collateral microvascular perfusion in the early hours following stroke. Hence, nebulized-GSNO therapy has the potential to be developed and translated into an affordable field therapy against ischemic events including strokes, particularly in developing countries with limited healthcare infrastructure.


Subject(s)
Diabetes Complications/drug therapy , Diabetes Mellitus/drug therapy , Hemorrhage/prevention & control , S-Nitrosoglutathione/administration & dosage , Stroke/complications , Thrombolytic Therapy/adverse effects , Animals , Behavior, Animal , Blood Pressure , Blood-Brain Barrier , COVID-19/epidemiology , Hemorrhage/complications , Hypoxia , Infusions, Intravenous , Laser-Doppler Flowmetry , Male , Mice , Mice, Inbred C57BL , Microcirculation , Nebulizers and Vaporizers , Neuroprotective Agents/pharmacology , Perfusion , Reperfusion Injury/drug therapy , Risk , Stress, Mechanical
17.
Platelets ; 33(3): 471-478, 2022 Apr 03.
Article in English | MEDLINE | ID: covidwho-1366890

ABSTRACT

We analyze changes in circulating platelets in COVID-19 positive patients who received conventional treatment Dexamethasone and Enoxaparin (Dexa-Enoxa) compared to patients treated with conventional therapy plus nebulization with alkaline hypertonic ibuprofenate (AHI). Results show that after 24 h of nebulization with AHI, circulating platelets shows an increase about 40% at 24 h and reach 65% at 96 h. In patients with platelets content below 200,000 by microliter the increase was 49% and 79% at 24 and 96 h respectively. In patients with platelets above 200,000 by microliter the increase was 24% and 31% at 24 and 96 h, respectively. The increase of platelets via AHI was similar in both, men and women.To evaluate whether this action of AHI was related to platelets from COVID-19 positive patients or also for healthy people, two controls were included: one of them with 10 healthy volunteers and another one with COVID-19 positive patients hospitalized and treated only with Dexa-Enoxa. Results show that, in healthy volunteers, the number of circulating platelets remains unchanged even after 7 days of treatment with AHI. In COVID-19 positive patients treated only with Dexa-Enoxa for 4 days, platelets increased only 16%.


Subject(s)
Blood Platelets/metabolism , COVID-19 , Enoxaparin/administration & dosage , Ibuprofen/administration & dosage , SARS-CoV-2/metabolism , Adult , COVID-19/blood , COVID-19/drug therapy , Female , Humans , Male , Middle Aged , Nebulizers and Vaporizers , Platelet Count
18.
Intern Emerg Med ; 16(8): 2035-2039, 2021 11.
Article in English | MEDLINE | ID: covidwho-1333113

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes CoronaVirus Disease 2019 (COVID-19), has resulted in a worldwide pandemic and currently represents a major public health crisis. It has caused outbreaks of illness through person-to-person transmission of the virus mainly via close contacts, and droplets produced by an infected person's cough or sneeze. Aerosolised inhaled therapy is the mainstay for treating obstructive airway diseases at home and in healthcare settings, but there is heightened particular concern about the potential risk for transmission of SARS-CoV-2 in the form of aerosolised respiratory droplets during the nebulised treatment of patients with COVID-19. As a consequence of this concern, the use of hand-held inhalers, especially pressurised metered dose inhalers, has risen considerably as an alternative to nebulisers, and this switch has led to inadequate supplies of inhalers in some countries. However, there is no evidence supporting an increased risk of viral transmission during nebulisation in COVID-19 patients. Furthermore, some patients may be unable to adequately use their new device and may not benefit fully from the switch to treatment via hand-held inhalers. Thus, there is no compelling reason to alter aerosol delivery devices for patients with established nebuliser-based regimens. The purpose of this paper is to discuss the current evidence and understanding of the use of aerosolised inhaled therapies during the SARS-CoV-2 pandemic and to provide some guidance on the measures to be taken to minimise the risk of transmitting infection, if any, during aerosol therapies.


Subject(s)
Aerosols/adverse effects , Anti-Inflammatory Agents/administration & dosage , Bronchodilator Agents/administration & dosage , COVID-19/prevention & control , COVID-19/transmission , Lung Diseases, Obstructive/drug therapy , Nebulizers and Vaporizers/standards , Humans , SARS-CoV-2
19.
Drug Deliv ; 28(1): 1496-1500, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1309552

ABSTRACT

COVID-19 can cause serious respiratory complications resulting in the need for invasive ventilatory support and concurrent aerosol therapy. Aerosol therapy is considered a high risk procedure for the transmission of patient derived infectious aerosol droplets. Critical-care workers are considered to be at a high risk of inhaling such infectious droplets. The objective of this work was to use noninvasive optical methods to visualize the potential release of aerosol droplets during aerosol therapy in a model of an invasively ventilated adult patient. The noninvasive Schlieren imaging technique was used to visualize the movement of air and aerosol. Three different aerosol delivery devices: (i) a pressurized metered dose inhaler (pMDI), (ii) a compressed air driven jet nebulizer (JN), and (iii) a vibrating mesh nebulizer (VMN), were used to deliver an aerosolized therapeutic at two different positions: (i) on the inspiratory limb at the wye and (ii) on the patient side of the wye, between the wye and endotracheal tube, to a simulated intubated adult patient. Irrespective of position, there was a significant release of air and aerosol from the ventilator circuit during aerosol delivery with the pMDI and the compressed air driven JN. There was no such release when aerosol therapy was delivered with a closed-circuit VMN. Selection of aerosol delivery device is a major determining factor in the release of infectious patient derived bioaerosol from an invasively mechanically ventilated patient receiving aerosol therapy.


Subject(s)
Aerosols , COVID-19 , Disease Transmission, Infectious/prevention & control , Metered Dose Inhalers , Nebulizers and Vaporizers , Respiration, Artificial/methods , Respiratory Therapy , Aerosols/administration & dosage , Aerosols/adverse effects , COVID-19/physiopathology , COVID-19/therapy , COVID-19/transmission , Combined Modality Therapy , Drug Delivery Systems/instrumentation , Drug Delivery Systems/methods , Drug Delivery Systems/standards , Humans , Occupational Exposure/prevention & control , Research Design , Respiratory Therapy/adverse effects , Respiratory Therapy/instrumentation , Respiratory Therapy/methods , Risk Management , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL