Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 234
Filter
Add filters

Document Type
Year range
1.
Expert Rev Anticancer Ther ; 21(12): 1371-1383, 2021 12.
Article in English | MEDLINE | ID: covidwho-1526146

ABSTRACT

INTRODUCTION: For the clinical treatment of cancer patients, coronavirus (SARS-CoV-2) can cause serious immune-related problems. Cancer patients, who experience immunosuppression due to the pathogenesis and severity of disease, may become more aggressive due to multiple factors such as age, comorbidities, and immunosuppression. In this pandemic era, COVID-19 causes lymphopenia, cancer cell awakening, inflammatory diseases, and a cytokine storm that worsens disease-related morbidity and prognosis. AREAS COVERED: We discuss all the risk factors of COVID-19 associated with cancer patients and propose new strategies to use antiviral and anticancer drugs for therapeutic purposes. We bring new drugs, cancers and COVID-19 treatment strategies together to address the immune system challenges faced by oncologists. EXPERT OPINION: The chronic inflammatory microenvironment caused by COVID-19 awakens dormant cancer cells through inflammation and autoimmune activation. Drug-related strategies to ensure that clinical treatment can reduce the susceptibility of cancer patients to COVID-19, and possible counter-measures to minimize the harm caused by the COVID-19 have been outlined. The response to the pandemic and recovery has been elaborated, which can provide information for long-term cancer treatment and speed up the optimization process.


Subject(s)
COVID-19/complications , Inflammation/drug therapy , Neoplasms/drug therapy , Antineoplastic Agents/administration & dosage , Antiviral Agents/administration & dosage , COVID-19/drug therapy , COVID-19/immunology , Humans , Inflammation/immunology , Inflammation/virology , Neoplasms/immunology , Neoplasms/virology , Prognosis , Risk Factors , Severity of Illness Index
2.
Eur Rev Med Pharmacol Sci ; 25(21): 6797-6812, 2021 11.
Article in English | MEDLINE | ID: covidwho-1524867

ABSTRACT

Cytokines in cardiac tissue plays a key role in progression of cardiometabolic diseases and cardiotoxicity induced by several anticancer drugs. Interleukin-1ß is one on the most studied regulator of cancer progression, survival and resistance to anticancer treatments. Recent findings indicate that interleukin1-ß exacerbates myocardial damages in cancer patients treated with chemotherapies and immune check-point inhibitors. Interleukin1-ß blocking agent canakinumab reduces major adverse cardiovascular events and cardiovascular death in recent cardiovascular trials. We focalized on the main biological functions of interleukin1-ß in cancer and cardiovascular diseases, summarizing the main clinical evidence available to date in literature. Especially in the era of SARS-CoV-2 infection, associated to coagulopathies, myocarditis and heart failure, cancer patients have an increased risk of cardiovascular complications compared to general population, therefore, the pharmacological inhibition of interleukin1-ß should be discussed and considered.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/adverse effects , COVID-19/complications , Cardiotoxicity/prevention & control , Interleukin-1beta/metabolism , Neoplasms/drug therapy , Anthracyclines/adverse effects , Anthracyclines/therapeutic use , Antibodies, Monoclonal, Humanized/immunology , Antineoplastic Agents/therapeutic use , COVID-19/virology , Cardiotoxicity/etiology , Cardiovascular Diseases/prevention & control , Humans , Interleukin-1beta/immunology , Neoplasms/complications , SARS-CoV-2/isolation & purification
3.
Mech Ageing Dev ; 199: 111551, 2021 10.
Article in English | MEDLINE | ID: covidwho-1492370

ABSTRACT

Polyphenols are chemopreventive through the induction of nuclear factor erythroid 2 related factor 2 (Nrf2)-mediated proteins and anti-inflammatory pathways. These pathways, encoding cytoprotective vitagenes, include heat shock proteins, such as heat shock protein 70 (Hsp70) and heme oxygenase-1 (HO-1), as well as glutathione redox system to protect against cancer initiation and progression. Phytochemicals exhibit biphasic dose responses on cancer cells, activating at low dose, signaling pathways resulting in upregulation of vitagenes, as in the case of the Nrf2 pathway upregulated by hydroxytyrosol (HT) or curcumin and NAD/NADH-sirtuin-1 activated by resveratrol. Here, the importance of vitagenes in redox stress response and autophagy mechanisms, as well as the potential use of dietary antioxidants in the prevention and treatment of multiple types of cancer are discussed. We also discuss the possible relationship between SARS-CoV-2, inflammation and cancer, exploiting innovative therapeutic approaches with HT-rich aqueous olive pulp extract (Hidrox®), a natural polyphenolic formulation, as well as the rationale of Vitamin D supplementation. Finally, we describe innovative approaches with organoids technology to study human carcinogenesis in preclinical models from basic cancer research to clinical practice, suggesting patient-derived organoids as an innovative tool to test drug toxicity and drive personalized therapy.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Drug Development , NF-E2-Related Factor 2/metabolism , Organoids/drug effects , Oxidative Stress/drug effects , Polyphenols/pharmacology , Vitamin D/pharmacology , Animals , Antineoplastic Agents, Phytogenic/pharmacology , COVID-19/drug therapy , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Humans , NF-E2-Related Factor 2/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Organoids/metabolism , Oxidation-Reduction , Oxidative Stress/genetics
4.
Cancer Discov ; 11(10): 2430-2435, 2021 10.
Article in English | MEDLINE | ID: covidwho-1472319

ABSTRACT

We had previously reported short-term efficacy, immunogenicity, and safety of the BNT162b2 vaccine among cancer patients with solid tumors. We aimed to evaluate these outcomes at six months postvaccination. The study cohort comprised patients who were on treatment during vaccination and throughout six months postvaccination. Serologic tests were performed after second vaccination and six months afterward. An age-matched cohort of health care workers served as controls. Documentation of COVID-19 infection, blood tests, and imaging studies during the study period was reviewed. Participants included 154 patients and 135 controls. Six months postvaccination, 122 (79%) patients were seropositive compared with 114 (84%) controls (P = 0.32). Serology titer dramatically decreased in a similar manner in both cohorts. No COVID-19 cases were documented in controls, and one case occurred in patient cohort. All previously reported adverse effects resolved. Taken together, the pattern of immunogenicity, efficacy, and safety of BNT162b2 in patients with cancer with solid tumors at six months postvaccination resembles that of the general population. SIGNIFICANCE: Evidence regarding efficacy and safety of COVID-19 vaccines in patients with cancer indicate a favorable short-term profile. Immunomodulation due to anticancer treatments may affect immunity and immunogenicity of patients with cancer to the BNT162b2 vaccine over time. Our study sheds light on these long-term outcomes and portrays a trend that resembles the general population.This article is highlighted in the In This Issue feature, p. 2355.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/pharmacology , Neoplasms , Adult , Aged , Aged, 80 and over , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Health Personnel , Humans , Male , Middle Aged , Neoplasms/drug therapy , Neutropenia/chemically induced , Thrombocytopenia/chemically induced , Time-to-Treatment , Vaccination
5.
Acta Oncol ; 60(11): 1459-1465, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1467204

ABSTRACT

INTRODUCTION: Cancer patients are considered to have a higher risk of dying and developing severe Coronavirus Disease 2019 (COVID-19). To date, there are few studies including co-morbidities and sociodemographic factors when investigating the outcome of COVID-19 in a cohort of cancer patients. In this study, we analyzed cancer patients that have been hospitalized due to COVID-19 during the first wave of the pandemic in Sweden to investigate the impact of COVID-19 on mortality and morbidity. PATIENTS AND METHODS: We retrospectively collected data on all patients with cancer that were hospitalized due to COVID-19-related symptoms at Uppsala University Hospital and Karolinska University Hospital between 1 March and 31 August 2020. The primary endpoint was COVID-19-related death and the secondary endpoint was to describe COVID-19 severity, defined as symptom severity (grades 0-4) and length of stay (LOS) at the university hospitals. RESULTS: In total, 193 patients were included among which 31% died due to COVID-19 and 8% died of other causes. In a multivariable analysis, older age >70 (OR 3.6; 95% CI [1.8-7.3], p < 0.001) and male gender (OR 2.8 [1.4-5.8], p = 0.005) were factors associated with higher likelihood of COVID-19-related death. Several comorbidities ≥2 (OR 5.4 [2.0-14.3], p = 0.001) was independently associated with COVID-19 severity. Treatment with chemotherapy within 90 days prior to COVID-19 diagnosis were not associated with COVID-19-related death or severity. CONCLUSION: Factors associated with higher likelihood of COVID-19-related death were older age and male gender. More severe COVID-19 symptoms were seen in patients with multiple comorbidities. We did not see any associations between COVID-19-related death or severity and recent treatment including chemotherapy. In summary, this supports a thorough assessment regarding potential risks with COVID-19 infection in patients with cancer, with a combination of individual risk factors in addition to cancer treatments.


Subject(s)
COVID-19 , Neoplasms , Aged , COVID-19 Testing , Cohort Studies , Humans , Male , Morbidity , Neoplasms/drug therapy , Neoplasms/epidemiology , Retrospective Studies , SARS-CoV-2 , Sweden/epidemiology
7.
Sci Rep ; 11(1): 19839, 2021 10 06.
Article in English | MEDLINE | ID: covidwho-1454816

ABSTRACT

Computational drug repositioning aims at ranking and selecting existing drugs for novel diseases or novel use in old diseases. In silico drug screening has the potential for speeding up considerably the shortlisting of promising candidates in response to outbreaks of diseases such as COVID-19 for which no satisfactory cure has yet been found. We describe DrugMerge as a methodology for preclinical computational drug repositioning based on merging multiple drug rankings obtained with an ensemble of disease active subnetworks. DrugMerge uses differential transcriptomic data on drugs and diseases in the context of a large gene co-expression network. Experiments with four benchmark diseases demonstrate that our method detects in first position drugs in clinical use for the specified disease, in all four cases. Application of DrugMerge to COVID-19 found rankings with many drugs currently in clinical trials for COVID-19 in top positions, thus showing that DrugMerge can mimic human expert judgment.


Subject(s)
Antineoplastic Agents/pharmacology , COVID-19/drug therapy , Drug Repositioning/methods , Neoplasms/drug therapy , Antiviral Agents , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Computational Biology/methods , Databases, Genetic , Databases, Pharmaceutical , Gene Regulatory Networks , Humans , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/virology , SARS-CoV-2/isolation & purification
9.
Molecules ; 26(19)2021 Sep 27.
Article in English | MEDLINE | ID: covidwho-1438677

ABSTRACT

The large number of emerging antibody-drug conjugates (ADCs) for cancer therapy has resulted in a significant market 'boom', garnering worldwide attention. Despite ADCs presenting huge challenges to researchers, particularly regarding the identification of a suitable combination of antibody, linker, and payload, as of September 2021, 11 ADCs have been granted FDA approval, with eight of these approved since 2017 alone. Optimism for this therapeutic approach is clear, despite the COVID-19 pandemic, 2020 was a landmark year for deals and partnerships in the ADC arena, suggesting that there remains significant interest from Big Pharma. Herein we review the enthusiasm for ADCs by focusing on the features of those approved by the FDA, and offer some thoughts as to where the field is headed.


Subject(s)
Antineoplastic Agents/therapeutic use , Immunoconjugates/therapeutic use , Neoplasms/drug therapy , Animals , Drug Approval , Humans , United States , United States Food and Drug Administration
10.
ESMO Open ; 6(5): 100272, 2021 10.
Article in English | MEDLINE | ID: covidwho-1427880

ABSTRACT

BACKGROUND: Very few cancer patients were enrolled in coronavirus disease-2019 vaccine studies. In order to address this gap of knowledge, real-world studies are mandatory. The aim of this study was to assess both humoral and cellular response after a messenger RNA vaccination schedule. PATIENTS AND METHODS: Eighty-eight consecutive cancer patients treated with programmed cell death protein 1/programmed death-ligand 1 inhibitors were enrolled from the beginning of the vaccination campaign for frail patients. Blood samples for humoral and cell-mediated immune response evaluation were obtained before vaccination (T0), before the second administration (T1) and 21 days after the second dose (T2). The primary endpoint was the evaluation of the percentage of participants showing a significant increase in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells, measured by an enzyme-linked immunospot assay, after the second dose of BNT162b2 vaccine. The proportion of patients who reached the primary endpoint is computed together with its exact binomial 95% confidence interval. RESULTS: In SARS-CoV-2-naïve subjects, spike-specific T-cell response was almost undetectable at T0 [median 0.0 interferon-γ (IFN-γ) spot forming units (SFU)/million peripheral blood mononuclear cell (PBMC) interquartile range (IQR) 0-7.5] and significantly increased at T1 and T2 (median 15.0 IFN-γ SFU/million PBMC, 25th-75th 0-40 versus 90 IFN-γ SFU/million PBMC, 25th-75th 32.5-224, respectively) (P < 0.001). Focusing on naïve and experienced SARS-CoV-2 subjects, no differences were reported both in terms of CD4- and CD8-specific T-cell response, suggesting that BNT162b2 is able to elicit both adaptive responses after complete vaccination schedule, regardless of previous SARS-CoV-2 exposure. The level of SARS-CoV-2 neutralizing antibodies was low at T1 in SARS-CoV-2-naïve subjects [median 1 : 5 (IQR 1 : 5-1 : 20)] but reached a significantly higher median of 1 : 80 (25th-75th 1 : 20-1 : 160) at T2 (P < 0.0001). Moreover, no COVID-19 cases were documented throughout the period of study. CONCLUSIONS: Our data have demonstrated that the administration of a full course of BNT162b2 vaccine elicited a sustained immune response against SARS-CoV-2 regardless of the type of cancer and/or the type of immune checkpoint inhibitors.


Subject(s)
COVID-19 , Neoplasms , Antibodies, Viral , COVID-19 Vaccines , Cohort Studies , Humans , Immune Checkpoint Inhibitors , Leukocytes, Mononuclear , Longitudinal Studies , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor , SARS-CoV-2
11.
Nutrients ; 13(8)2021 Jul 27.
Article in English | MEDLINE | ID: covidwho-1430928

ABSTRACT

Gut microbiota has emerged as a major metabolically active organ with critical functions in both health and disease. The trillions of microorganisms hosted by the gastrointestinal tract are involved in numerous physiological and metabolic processes including modulation of appetite and regulation of energy in the host spanning from periphery to the brain. Indeed, bacteria and their metabolic byproducts are working in concert with the host chemosensory signaling pathways to affect both short- and long-term ingestive behavior. Sensing of nutrients and taste by specialized G protein-coupled receptor cells is important in transmitting food-related signals, optimizing nutrition as well as in prevention and treatment of several diseases, notably obesity, diabetes and associated metabolic disorders. Further, bacteria metabolites interact with specialized receptors cells expressed by gut epithelium leading to taste and appetite response changes to nutrients. This review describes recent advances on the role of gut bacteria in taste perception and functions. It further discusses how intestinal dysbiosis characteristic of several pathological conditions may alter and modulate taste preference and food consumption via changes in taste receptor expression.


Subject(s)
Bacterial Physiological Phenomena , Gastrointestinal Microbiome/physiology , Intestines/microbiology , Taste Perception , Animals , Antineoplastic Agents/therapeutic use , Bariatric Surgery , COVID-19/physiopathology , Diet , Dysbiosis/physiopathology , Feeding Behavior , Hormones/metabolism , Humans , Inflammatory Bowel Diseases/physiopathology , Neoplasms/drug therapy , Neoplasms/physiopathology , Receptors, G-Protein-Coupled/metabolism , Taste , Taste Buds/physiology , Toll-Like Receptors/metabolism
12.
Molecules ; 26(18)2021 Sep 16.
Article in English | MEDLINE | ID: covidwho-1410350

ABSTRACT

Drug repositioning is a successful approach in medicinal research. It significantly simplifies the long-term process of clinical drug evaluation, since the drug being tested has already been approved for another condition. One example of drug repositioning involves cardiac glycosides (CGs), which have, for a long time, been used in heart medicine. Moreover, it has been known for decades that CGs also have great potential in cancer treatment and, thus, many clinical trials now evaluate their anticancer potential. Interestingly, heart failure and cancer are not the only conditions for which CGs could be effectively used. In recent years, the antiviral potential of CGs has been extensively studied, and with the ongoing SARS-CoV-2 pandemic, this interest in CGs has increased even more. Therefore, here, we present CGs as potent and promising antiviral compounds, which can interfere with almost any steps of the viral life cycle, except for the viral attachment to a host cell. In this review article, we summarize the reported data on this hot topic and discuss the mechanisms of antiviral action of CGs, with reference to the particular viral life cycle phase they interfere with.


Subject(s)
Antiviral Agents/therapeutic use , Cardiac Glycosides/therapeutic use , Antiviral Agents/pharmacology , COVID-19 , Cardiac Glycosides/metabolism , Digitoxin , Digoxin , Drug Repositioning/methods , Heart Failure/drug therapy , Heart Failure/virology , Humans , Neoplasms/drug therapy , Ouabain , Pandemics , SARS-CoV-2 , Sodium-Potassium-Exchanging ATPase , Virus Internalization/drug effects , Virus Replication/drug effects
14.
Front Immunol ; 12: 706186, 2021.
Article in English | MEDLINE | ID: covidwho-1394759

ABSTRACT

Background: Sargramostim [recombinant human granulocyte-macrophage colony-stimulating factor (rhu GM-CSF)] was approved by US FDA in 1991 to accelerate bone marrow recovery in diverse settings of bone marrow failure and is designated on the list of FDA Essential Medicines, Medical Countermeasures, and Critical Inputs. Other important biological activities including accelerating tissue repair and modulating host immunity to infection and cancer via the innate and adaptive immune systems are reported in pre-clinical models but incompletely studied in humans. Objective: Assess safety and efficacy of sargramostim in cancer and other diverse experimental and clinical settings. Methods and Results: We systematically reviewed PubMed, Cochrane and TRIP databases for clinical data on sargramostim in cancer. In a variety of settings, sargramostim after exposure to bone marrow-suppressing agents accelerated hematologic recovery resulting in fewer infections, less therapy-related toxicity and sometimes improved survival. As an immune modulator, sargramostim also enhanced anti-cancer responses in solid cancers when combined with conventional therapies, for example with immune checkpoint inhibitors and monoclonal antibodies. Conclusions: Sargramostim accelerates hematologic recovery in diverse clinical settings and enhances anti-cancer responses with a favorable safety profile. Uses other than in hematologic recovery are less-well studied; more data are needed on immune-enhancing benefits. We envision significantly expanded use of sargramostim in varied immune settings. Sargramostim has the potential to reverse the immune suppression associated with sepsis, trauma, acute respiratory distress syndrome (ARDS) and COVID-19. Further, sargramostim therapy has been promising in the adjuvant setting with vaccines and for anti-microbial-resistant infections and treating autoimmune pulmonary alveolar proteinosis and gastrointestinal, peripheral arterial and neuro-inflammatory diseases. It also may be useful as an adjuvant in anti-cancer immunotherapy.


Subject(s)
COVID-19/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/therapeutic use , Immunologic Factors/therapeutic use , Immunotherapy , Neoplasms/drug therapy , COVID-19/drug therapy , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Humans , Recombinant Proteins/immunology , Recombinant Proteins/therapeutic use , SARS-CoV-2/drug effects
15.
Molecules ; 26(17)2021 Sep 06.
Article in English | MEDLINE | ID: covidwho-1390161

ABSTRACT

Phenolic acids comprise a class of phytochemical compounds that can be extracted from various plant sources and are well known for their antioxidant and anti-inflammatory properties. A few of the most common naturally occurring phenolic acids (i.e., caffeic, carnosic, ferulic, gallic, p-coumaric, rosmarinic, vanillic) have been identified as ingredients of edible botanicals (thyme, oregano, rosemary, sage, mint, etc.). Over the last decade, clinical research has focused on a number of in vitro (in human cells) and in vivo (animal) studies aimed at exploring the health protective effects of phenolic acids against the most severe human diseases. In this review paper, the authors first report on the main structural features of phenolic acids, their most important natural sources and their extraction techniques. Subsequently, the main target of this analysis is to provide an overview of the most recent clinical studies on phenolic acids that investigate their health effects against a range of severe pathologic conditions (e.g., cancer, cardiovascular diseases, hepatotoxicity, neurotoxicity, and viral infections-including coronaviruses-based ones).


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Cinnamates/pharmacology , Hydroxybenzoates/pharmacology , Plant Extracts/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/drug therapy , Cinnamates/therapeutic use , Clinical Trials as Topic , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Humans , Hydroxybenzoates/therapeutic use , Liver Diseases/diagnosis , Liver Diseases/drug therapy , Neoplasms/diagnosis , Neoplasms/drug therapy , Nervous System Diseases/diagnosis , Nervous System Diseases/drug therapy , Plant Extracts/therapeutic use , Severity of Illness Index , Treatment Outcome
16.
Int J Mol Sci ; 22(14)2021 Jul 16.
Article in English | MEDLINE | ID: covidwho-1389404

ABSTRACT

In the past few years, Bruton's tyrosine Kinase (Btk) has emerged as new target in medicinal chemistry. Since approval of ibrutinib in 2013 for treatment of different hematological cancers (as leukemias and lymphomas), two other irreversible Btk inhibitors have been launched on the market. In the attempt to overcome irreversible Btk inhibitor limitations, reversible compounds have been developed and are currently under evaluation. In recent years, many Btk inhibitors have been patented and reported in the literature. In this review, we summarized the (ir)reversible Btk inhibitors recently developed and studied clinical trials and preclinical investigations for malignancies, chronic inflammation conditions and SARS-CoV-2 infection, covering advances in the field of medicinal chemistry. Furthermore, the nanoformulations studied to increase ibrutinib bioavailability are reported.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Protein Kinase Inhibitors/administration & dosage , Adenine/administration & dosage , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase/metabolism , COVID-19/drug therapy , Chemistry, Pharmaceutical/methods , Drug Delivery Systems/methods , Hematologic Neoplasms/drug therapy , Humans , Inflammation/drug therapy , Neoplasms/drug therapy , Piperidines/administration & dosage , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/administration & dosage , SARS-CoV-2/drug effects
17.
Eur J Clin Invest ; 51(7): e13604, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1388253

ABSTRACT

BACKGROUND: There is a concern that influenza vaccination may increase the incidence of immune-related adverse events in patients receiving immune checkpoint inhibitors (ICIs). The aim of this systematic review was to summarize the available data on the safety and efficacy of influenza vaccination in cancer patients receiving ICIs. METHODS: Studies reporting safety and efficacy outcomes of influenza vaccination in cancer patients receiving ICIs were included. Only descriptive statistics were conducted to obtain a pooled rate of immune-related adverse events in vaccinated patients. RESULTS: Ten studies assessing the safety and eight assessing the efficacy of influenza vaccination in cancer patients receiving ICIs were identified, for a total of 1124 and 986 vaccinated patients, respectively. Most patients had melanoma or lung cancer and received a single agent anti-PD-1, but also other tumour types and immunotherapy combinations were represented. No severe vaccination-related toxicities were reported. The pooled incidence of any grade immune checkpoint inhibitor-related adverse events was 28.9%. In the 6 studies specifying the incidence of grade 3-4 toxicities, the pooled incidence was 7.5%. No grade 5 toxicities were reported. No pooled descriptive analysis was conducted in studies reporting efficacy outcomes due to the heterogeneity of endpoints and data reporting. Nevertheless, among the eight studies included, seven reported positive efficacy outcomes of influenza vaccination. CONCLUSION: The results of this systematic review support the safety and efficacy of influenza vaccination in cancer patients receiving ICIs. These results are particularly relevant in the context of the SARS-CoV-2 pandemic.


Subject(s)
Immune Checkpoint Inhibitors/adverse effects , Influenza Vaccines/therapeutic use , Influenza, Human/prevention & control , Neoplasms/drug therapy , COVID-19 , Case-Control Studies , Drug Interactions , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunogenicity, Vaccine , Influenza, Human/epidemiology , SARS-CoV-2
18.
Lancet Oncol ; 22(10): 1352-1353, 2021 10.
Article in English | MEDLINE | ID: covidwho-1386871
19.
Curr Oncol Rep ; 23(7): 79, 2021 05 03.
Article in English | MEDLINE | ID: covidwho-1384599

ABSTRACT

PURPOSE OF REVIEW: Immune checkpoint inhibitors (ICIs) have improved the survival of several cancers. However, they may cause a wide range of immune-related adverse events (irAEs). While most irAEs are manageable with temporary cessation of ICI and immunosuppression, cardiovascular toxicity can be associated with high rates of morbidity and mortality. As ICIs evolve to include high-risk patients with preexisting cardiovascular risk factors and disease, the risk and relevance of ICI-associated cardiotoxicity may be even higher. RECENT FINDINGS: Several cardiovascular toxicities such as myocarditis, stress cardiomyopathy, and pericardial disease have been reported in association with ICIs. Recent findings also suggest an increased risk of atherosclerosis with ICI use. ICI-associated myocarditis usually occurs early after initiation and can be fulminant. A high index of suspicion is required for timely diagnosis. Prompt treatment with high-dose corticosteroids is shown to improve outcomes. Although the overall incidence is rare, ICI cardiotoxicity, particularly myocarditis, is associated with significant morbidity and mortality, making it a major therapy-limiting adverse event. Early recognition and prompt treatment with the cessation of ICI therapy and initiation of high-dose corticosteroids are crucial to improve outcomes. Cardio-oncologists will need to play an important role not just in the management of acute cardiotoxicity but also to reduce the risk of long-term sequelae.


Subject(s)
Atherosclerosis/diagnosis , Cardiotoxicity/diagnosis , Immune Checkpoint Inhibitors/therapeutic use , Myocarditis/diagnosis , Neoplasms/drug therapy , Atherosclerosis/chemically induced , Atherosclerosis/immunology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Cardiotoxicity/etiology , Cardiotoxicity/immunology , Humans , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/immunology , Myocarditis/chemically induced , Myocarditis/immunology , Neoplasms/immunology , Pandemics , Risk Factors , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology
20.
Nutrients ; 13(4)2021 Mar 27.
Article in English | MEDLINE | ID: covidwho-1383900

ABSTRACT

Vitamin C (ascorbic acid) is a normal liver metabolite in most animals, with humans being a notable exception due to random genetic mutations that have occurred during our evolution [...].


Subject(s)
Ascorbic Acid/administration & dosage , Ascorbic Acid/pharmacology , Ascorbic Acid/pharmacokinetics , Bacterial Infections/drug therapy , COVID-19/drug therapy , COVID-19/virology , Epigenesis, Genetic , Humans , Neoplasms/drug therapy , SARS-CoV-2 , Sepsis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...