Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Neurochem ; 159(1): 61-77, 2021 10.
Article in English | MEDLINE | ID: covidwho-1282005

ABSTRACT

Neurological symptoms are frequently reported in patients suffering from COVID-19. Common CNS-related symptoms include anosmia, caused by viral interaction with either neurons or supporting cells in nasal olfactory tissues. Diffuse encephalopathy is the most common sign of CNS dysfunction, which likely results from the CNS consequences of the systemic inflammatory syndrome associated with severe COVID-19. Additionally, microvascular injuries and thromboembolic events likely contribute to the neurologic impact of acute COVID-19. These observations are supported by evidence of CNS immune activation in cerebrospinal fluid (CSF) and in autopsy tissue, along with the detection of microvascular injuries in both pathological and neuroimaging studies. The frequent occurrence of thromboembolic events in patients with COVID-19 has generated different hypotheses, among which viral interaction with perivascular cells is particularly attractive, yet unproven. A distinguishing feature of CSF findings in SARS-CoV-2 infection is that clinical signs characteristic of neurotropic viral infections (CSF pleocytosis and blood-brain barrier injury) are mild or absent. Moreover, virus detection in CSF is rare and often of uncertain significance. In this review, we provide an overview of the neurological impact that occurs in the acute phase of COVID-19, and the role of CSF biomarkers in the clinical management and research to better treat and understand the disease. In addition to aiding as diagnostic and prognostic tools during acute infection, the use of comprehensive and well-characterized CSF and blood biomarkers will be vital in understanding the potential impact on the CNS in the rapidly increasing number of individuals recovering from COVID-19.


Subject(s)
COVID-19/complications , Nervous System Diseases/etiology , Biomarkers/cerebrospinal fluid , Blood-Brain Barrier , COVID-19/cerebrospinal fluid , COVID-19/diagnosis , Humans , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/diagnosis
2.
BMC Infect Dis ; 21(1): 515, 2021 Jun 02.
Article in English | MEDLINE | ID: covidwho-1255907

ABSTRACT

BACKGROUND: SARS-CoV-2 can affect the human brain and other neurological structures. An increasing number of publications report neurological manifestations in patients with COVID-19. However, no studies have comprehensively reviewed the clinical and paraclinical characteristics of the central and peripheral nervous system's involvement in these patients. This study aimed to describe the features of the central and peripheral nervous system involvement by COVID-19 in terms of pathophysiology, clinical manifestations, neuropathology, neuroimaging, electrophysiology, and cerebrospinal fluid findings. METHODS: We conducted a comprehensive systematic review of all the original studies reporting patients with neurological involvement by COVID-19, from December 2019 to June 2020, without language restriction. We excluded studies with animal subjects, studies not related to the nervous system, and opinion articles. Data analysis combined descriptive measures, frequency measures, central tendency measures, and dispersion measures for all studies reporting neurological conditions and abnormal ancillary tests in patients with confirmed COVID-19. RESULTS: A total of 143 observational and descriptive studies reported central and peripheral nervous system involvement by COVID-19 in 10,723 patients. Fifty-one studies described pathophysiologic mechanisms of neurological involvement by COVID-19, 119 focused on clinical manifestations, 4 described neuropathology findings, 62 described neuroimaging findings, 28 electrophysiology findings, and 60 studies reported cerebrospinal fluid results. The reviewed studies reflect a significant prevalence of the nervous system's involvement in patients with COVID-19, ranging from 22.5 to 36.4% among different studies, without mortality rates explicitly associated with neurological involvement by SARS-CoV-2. We thoroughly describe the clinical and paraclinical characteristics of neurological involvement in these patients. CONCLUSIONS: Our evidence synthesis led to a categorical analysis of the central and peripheral neurological involvement by COVID-19 and provided a comprehensive explanation of the reported pathophysiological mechanisms by which SARS-CoV-2 infection may cause neurological impairment. International collaborative efforts and exhaustive neurological registries will enhance the translational knowledge of COVID-19's central and peripheral neurological involvement and generate therapeutic decision-making strategies. REGISTRATION: This review was registered in PROSPERO 2020 CRD42020193140 Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020193140.


Subject(s)
COVID-19/complications , Nervous System Diseases/virology , Peripheral Nervous System/physiopathology , Peripheral Nervous System/virology , Brain , COVID-19/cerebrospinal fluid , Electrophysiological Phenomena , Humans , Nervous System Diseases/cerebrospinal fluid , Neuroimaging
3.
Neurol Neuroimmunol Neuroinflamm ; 7(6)2020 11.
Article in English | MEDLINE | ID: covidwho-1105773

ABSTRACT

OBJECTIVE: To investigate the pathophysiologic mechanism of encephalopathy and prolonged comatose or stuporous state in severally ill patients with coronavirus disease 2019 (COVID-19). METHODS: Eight COVID-19 patients with signs of encephalopathy were tested for antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the serum and CSF using a Food and Drug Administration-approved and independently validated ELISA. Blood-brain barrier (BBB) integrity and immunoglobulin G (IgG) intrathecal synthesis were further tested using albumin and IgG indices. The CSF was also tested for autoimmune encephalitis antibodies and 14-3-3, a marker of ongoing neurodegeneration. RESULTS: All patients had anti-SARS-CoV-2 antibodies in their CSF, and 4 of 8 patients had high titers, comparable to high serum values. One patient had anti-SARS-CoV-2 IgG intrathecal synthesis, and 3 others had disruption of the blood-brain barrier. The CSF in 4 patients was positive for 14-3-3-protein suggesting ongoing neurodegeneration. In all patients, the CSF was negative for autoimmune encephalitis antibodies and SARS-CoV-2 by PCR. None of the patients, apart from persistent encephalopathic signs, had any focal neurologic signs or history or specific neurologic disease. CONCLUSIONS: High-titer anti-SARS-CoV-2 antibodies were detected in the CSF of comatose or encephalopathic patients demonstrating intrathecal IgG synthesis or BBB disruption. A disrupted BBB may facilitate the entry of cytokines and inflammatory mediators into the CNS enhancing neuroinflammation and neurodegeneration. The observations highlight the need for prospective CSF studies to determine the pathogenic role of anti-SARS-CoV-2 antibodies and identify early therapeutic interventions.


Subject(s)
Autoantibodies/cerebrospinal fluid , Betacoronavirus/isolation & purification , Blood-Brain Barrier/metabolism , Coma/cerebrospinal fluid , Coronavirus Infections/cerebrospinal fluid , Nervous System Diseases/cerebrospinal fluid , Pneumonia, Viral/cerebrospinal fluid , Stupor/cerebrospinal fluid , Aged , Aged, 80 and over , Biomarkers/cerebrospinal fluid , COVID-19 , Coma/diagnosis , Coronavirus Infections/diagnosis , Female , Humans , Male , Middle Aged , Nervous System Diseases/diagnosis , Pandemics , Pneumonia, Viral/diagnosis , SARS-CoV-2 , Stupor/diagnosis , Treatment Outcome
4.
Ann Neurol ; 89(5): 1041-1045, 2021 05.
Article in English | MEDLINE | ID: covidwho-1100843

ABSTRACT

Patients with coronavirus disease 2019 (COVID-19) can present with distinct neurological manifestations. This study shows that inflammatory neurological diseases were associated with increased levels of interleukin (IL)-2, IL-4, IL-6, IL-10, IL-12, chemokine (C-X-C motif) ligand 8 (CXCL8), and CXCL10 in the cerebrospinal fluid. Conversely, encephalopathy was associated with high serum levels of IL-6, CXCL8, and active tumor growth factor ß1. Inflammatory syndromes of the central nervous system in COVID-19 can appear early, as a parainfectious process without significant systemic involvement, or without direct evidence of severe acute respiratory syndrome coronavirus 2 neuroinvasion. At the same time, encephalopathy is mainly influenced by peripheral events, including inflammatory cytokines. ANN NEUROL 2021;89:1041-1045.


Subject(s)
COVID-19/blood , COVID-19/cerebrospinal fluid , Inflammation Mediators/blood , Inflammation Mediators/cerebrospinal fluid , Nervous System Diseases/blood , Nervous System Diseases/cerebrospinal fluid , Biomarkers/blood , Biomarkers/cerebrospinal fluid , COVID-19/epidemiology , Cytokines/blood , Cytokines/cerebrospinal fluid , Humans , Nervous System Diseases/epidemiology
5.
Brain ; 143(10): 3104-3120, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-1066271

ABSTRACT

Preliminary clinical data indicate that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with neurological and neuropsychiatric illness. Responding to this, a weekly virtual coronavirus disease 19 (COVID-19) neurology multi-disciplinary meeting was established at the National Hospital, Queen Square, in early March 2020 in order to discuss and begin to understand neurological presentations in patients with suspected COVID-19-related neurological disorders. Detailed clinical and paraclinical data were collected from cases where the diagnosis of COVID-19 was confirmed through RNA PCR, or where the diagnosis was probable/possible according to World Health Organization criteria. Of 43 patients, 29 were SARS-CoV-2 PCR positive and definite, eight probable and six possible. Five major categories emerged: (i) encephalopathies (n = 10) with delirium/psychosis and no distinct MRI or CSF abnormalities, and with 9/10 making a full or partial recovery with supportive care only; (ii) inflammatory CNS syndromes (n = 12) including encephalitis (n = 2, para- or post-infectious), acute disseminated encephalomyelitis (n = 9), with haemorrhage in five, necrosis in one, and myelitis in two, and isolated myelitis (n = 1). Of these, 10 were treated with corticosteroids, and three of these patients also received intravenous immunoglobulin; one made a full recovery, 10 of 12 made a partial recovery, and one patient died; (iii) ischaemic strokes (n = 8) associated with a pro-thrombotic state (four with pulmonary thromboembolism), one of whom died; (iv) peripheral neurological disorders (n = 8), seven with Guillain-Barré syndrome, one with brachial plexopathy, six of eight making a partial and ongoing recovery; and (v) five patients with miscellaneous central disorders who did not fit these categories. SARS-CoV-2 infection is associated with a wide spectrum of neurological syndromes affecting the whole neuraxis, including the cerebral vasculature and, in some cases, responding to immunotherapies. The high incidence of acute disseminated encephalomyelitis, particularly with haemorrhagic change, is striking. This complication was not related to the severity of the respiratory COVID-19 disease. Early recognition, investigation and management of COVID-19-related neurological disease is challenging. Further clinical, neuroradiological, biomarker and neuropathological studies are essential to determine the underlying pathobiological mechanisms that will guide treatment. Longitudinal follow-up studies will be necessary to ascertain the long-term neurological and neuropsychological consequences of this pandemic.


Subject(s)
Coronavirus Infections , Nervous System Diseases , Pandemics , Pneumonia, Viral , Adolescent , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Aged, 80 and over , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Drug Utilization/statistics & numerical data , Female , Humans , Immunoglobulins, Intravenous/therapeutic use , London/epidemiology , Magnetic Resonance Imaging , Male , Middle Aged , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/diagnostic imaging , Nervous System Diseases/drug therapy , Nervous System Diseases/epidemiology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Retrospective Studies , SARS-CoV-2 , Young Adult
6.
Immunity ; 54(1): 164-175.e6, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1065205

ABSTRACT

Patients suffering from Coronavirus disease 2019 (COVID-19) can develop neurological sequelae, such as headache and neuroinflammatory or cerebrovascular disease. These conditions-termed here as Neuro-COVID-are more frequent in patients with severe COVID-19. To understand the etiology of these neurological sequelae, we utilized single-cell sequencing and examined the immune cell profiles from the cerebrospinal fluid (CSF) of Neuro-COVID patients compared with patients with non-inflammatory and autoimmune neurological diseases or with viral encephalitis. The CSF of Neuro-COVID patients exhibited an expansion of dedifferentiated monocytes and of exhausted CD4+ T cells. Neuro-COVID CSF leukocytes featured an enriched interferon signature; however, this was less pronounced than in viral encephalitis. Repertoire analysis revealed broad clonal T cell expansion and curtailed interferon response in severe compared with mild Neuro-COVID patients. Collectively, our findings document the CSF immune compartment in Neuro-COVID patients and suggest compromised antiviral responses in this setting.


Subject(s)
COVID-19/immunology , Monocytes/immunology , Nervous System Diseases/immunology , T-Lymphocytes/immunology , COVID-19/cerebrospinal fluid , COVID-19/complications , COVID-19/pathology , Cell Differentiation , Cerebrospinal Fluid/immunology , Encephalitis, Viral/cerebrospinal fluid , Encephalitis, Viral/immunology , Gene Expression Profiling , Humans , Interferons/genetics , Interferons/immunology , Leukocytes/immunology , Lymphocyte Activation , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/etiology , Nervous System Diseases/pathology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , SARS-CoV-2/immunology , Single-Cell Analysis
7.
Int J Infect Dis ; 102: 155-162, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1060140

ABSTRACT

OBJECTIVES: To analyze the cerebrospinal fluid (CSF) of patients with SARS-CoV-2 infection and neurological manifestations to provide evidence for the understanding of mechanisms associated with central nervous system (CNS) involvement in COVID-19. METHODS: Patients (n = 58) were grouped according to their main neurological presentation: headache (n = 14); encephalopathy (n = 24); inflammatory neurological diseases, including meningoencephalitis (n = 4), acute myelitis (n = 3), meningitis (n = 2), acute disseminated encephalomyelitis (ADEM) (n = 2), encephalitis (n = 2), and neuromyelitis optica (n = 1); and Guillain-Barré syndrome (n = 6). Data regarding age, sex, cerebrovascular disease, and intracranial pressure were evaluated in combination with CSF profiles defined by cell counts, total protein and glucose levels, concentration of total Tau and neurofilament light chain (NfL) proteins, oligoclonal band patterns, and detection of SARS-CoV-2 RNA. RESULTS: CSF of patients with inflammatory neurological diseases was characterized by pleocytosis and elevated total protein and NfL levels. Patients with encephalopathy were mostly older men (mean age of 61.0 ± 17.6 years) with evidence of cerebrovascular disease. SARS-CoV-2 RNA in CSF was detected in 2 of 58 cases: a patient with refractory headache, and another patient who developed ADEM four days after onset of COVID-19 symptoms. Three patients presented intrathecal IgG synthesis, and four had identical oligoclonal bands in CSF and serum, indicating systemic inflammation. CONCLUSION: Patients with neurological manifestations associated with COVID-19 had diverse CSF profiles, even within the same clinical condition. Our findings indicate a possible contribution of viral replication on triggering CNS infiltration by immune cells and the subsequent inflammation promoting neuronal injury.


Subject(s)
COVID-19/complications , Nervous System Diseases/cerebrospinal fluid , SARS-CoV-2 , Adult , Aged , COVID-19/cerebrospinal fluid , Female , Humans , Inflammation/diagnosis , Male , Middle Aged , Nervous System Diseases/etiology
8.
Neurology ; 96(2): e294-e300, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1028474

ABSTRACT

OBJECTIVE: To explore whether hospitalized patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and neurologic symptoms have evidence of CNS infection, inflammation, and injury using CSF biomarker measurements. METHODS: We assessed CSF SARS-CoV-2 RNA along with CSF biomarkers of intrathecal inflammation (CSF white blood cell count, neopterin, ß2-microglobulin, and immunoglobulin G index), blood-brain barrier integrity (albumin ratio), and axonal injury (CSF neurofilament light chain protein [NfL]) in 6 patients with moderate to severe coronavirus disease 2019 (COVID-19) and neurologic symptoms who had undergone a diagnostic lumbar puncture. Neurologic symptoms and signs included features of encephalopathies (4 of 6), suspected meningitis (1 of 6), and dysgeusia (1 of 6). SARS-CoV-2 infection was confirmed by real-time PCR analysis of nasopharyngeal swabs. RESULTS: SARS-CoV-2 RNA was detected in the plasma of 2 patients (cycle threshold [Ct] value 35.0-37.0) and in CSF at low levels (Ct 37.2, 38.0, 39.0) in 3 patients in 1 but not in a second real-time PCR assay. CSF neopterin (median 43.0 nmol/L) and ß2-microglobulin (median 3.1 mg/L) were increased in all. Median immunoglobulin G index (0.39), albumin ratio (5.35), and CSF white blood cell count (<3 cells/µL) were normal in all, while CSF NfL was elevated in 2 patients. CONCLUSION: Our results in patients with COVID-19 and neurologic symptoms suggest an unusual pattern of marked CSF inflammation in which soluble markers were increased but white cell response and other immunologic features typical of CNS viral infections were absent. While our initial hypothesis centered on CNS SARS-CoV-2 invasion, we could not convincingly detect SARS-CoV-2 as the underlying driver of CNS inflammation. These features distinguish COVID-19 CSF from other viral CNS infections and raise fundamental questions about the CNS pathobiology of SARS-CoV-2 infection.


Subject(s)
COVID-19/cerebrospinal fluid , COVID-19/complications , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/etiology , SARS-CoV-2/isolation & purification , Adult , Aged , Aged, 80 and over , Biomarkers/cerebrospinal fluid , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/metabolism , COVID-19/diagnostic imaging , Female , Humans , Male , Middle Aged , Nervous System Diseases/diagnostic imaging
9.
J Neurol Sci ; 421: 117316, 2021 02 15.
Article in English | MEDLINE | ID: covidwho-1014639

ABSTRACT

OBJECTIVE: We sought to review the literature on cerebrospinal fluid (CSF) testing in patients with COVID-19 for evidence of viral neuroinvasion by SARS-CoV-2. METHODS: We performed a systematic review of Medline and Embase between December 1, 2019 and November 18, 2020 to identify case reports or series of patients who had COVID-19 diagnosed based on positive SARS-CoV-2 polymerase chain reaction (PCR) or serologic testing and had CSF testing due to a neurologic symptom. RESULTS: We identified 242 relevant documents which included 430 patients with COVID-19 who had acute neurological symptoms prompting CSF testing. Of those, 321 (75%) patients had symptoms that localized to the central nervous system (CNS). Of 304 patients whose CSF was tested for SARS-CoV-2 PCR, there were 17 (6%) whose test was positive, all of whom had symptoms that localized to the central nervous system (CNS). The majority (13/17, 76%) of these patients were admitted to the hospital because of neurological symptoms. Of 58 patients whose CSF was tested for SARS-CoV-2 antibody, 7 (12%) had positive antibodies with evidence of intrathecal synthesis, all of whom had symptoms that localized to the CNS. Of 132 patients who had oligoclonal bands evaluated, 3 (2%) had evidence of intrathecal antibody synthesis. Of 77 patients tested for autoimmune antibodies in the CSF, 4 (5%) had positive findings. CONCLUSION: Detection of SARS-CoV-2 in CSF via PCR or evaluation for intrathecal antibody synthesis appears to be rare. Most neurological complications associated with SARS- CoV-2 are unlikely to be related to direct viral neuroinvasion.


Subject(s)
COVID-19/cerebrospinal fluid , COVID-19/diagnosis , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/diagnosis , SARS-CoV-2/metabolism , Biomarkers/cerebrospinal fluid , COVID-19/complications , Humans , Nervous System Diseases/etiology , SARS-CoV-2/isolation & purification
10.
Int J Infect Dis ; 104: 390-397, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1014554

ABSTRACT

BACKGROUND: Limited literature exists on Cerebrospinal fluid (CSF) findings in COVID-19 patients with neurological symptoms. In this review, we conducted a descriptive analysis of CSF findings in patients with COVID-19 to understand prognosis and explore therapeutic options. METHODS: We searched PubMed, Google Scholar, and Scopus databases using the keywords "SARS-CoV-2 in cerebrospinal fluid" and "SARS-CoV-2 and CNS Complications"" for reports of CSF findings in COVID-19 related neurological manifestations. Descriptive analyses were conducted to observe the CSF protein and cell counts based on age, gender, severity, fatality of COVID-19, and whether central (CNS) or peripheral nervous system (PNS) was associated. RESULTS: A total of 113 patients were identified from 67 studies. Of these, 7 patients (6.2%) were fatal COVID-19 cases and 35 patients (31%) were considered severe COVID-19 cases. CSF protein was elevated in 100% (7/7) of the fatal cases with an average of 61.28 mg/dl and in 65.0% (52/80) in non-fatal cases with an average 56.73 mg/dl. CSF protein levels were elevated in 74.5% (38/51) patients with non-severe COVID-19 and 68.6% (24/35) in those with a severe COVID-19 infection. CSF cell count was increased in 43% of fatal cases, 25.7% severe cases, and 29.4% of non-severe cases. CONCLUSION: Our analysis showed that the most common CSF findings situation in COVID-19 infection is elevated protein with, very occasionally, mild lymphocyte predominant pleocytosis. Further studies to elucidate the pathophysiology of neurological complications in COVID-19 are recommended.


Subject(s)
COVID-19/cerebrospinal fluid , Leukocytosis/cerebrospinal fluid , Nervous System Diseases/cerebrospinal fluid , SARS-CoV-2/physiology , COVID-19/complications , COVID-19/virology , Humans , Leukocytosis/etiology , Nervous System Diseases/etiology
11.
J Neurol Sci ; 423: 117283, 2021 04 15.
Article in English | MEDLINE | ID: covidwho-988477

ABSTRACT

OBJECTIVE: We report the findings from the Spanish Society of Neurology's NeuroCOVID-19 Registry. METHODS: We performed a multicentre study of patients with neurological manifestations of COVID-19. Participating physicians reported demographic, clinical, and paraclinical data and judged the involvement of COVID-19 in causing neurological symptoms. RESULTS: A total of 233 cases were submitted, including 74 different combinations of manifestations. The most frequently reported were stroke (27%), neuromuscular symptoms (23.6%), altered mental status (23.6%), anosmia (17.6%), headache (12.9%), and seizures (11.6%). The mean age of patients was 61.1 years, with 42.1% being women; a higher proportion of women was recorded among patients with altered mental status, anosmia, and headache. The onset of symptoms differed within categories. Onset of anosmia occurred a mean (standard deviation) of 2.9 (2.5) days after the first general symptom, whereas neuromuscular symptoms appeared after 13.9 (10.1) days. Neurological symptoms were persistent in 33% of patients. General symptoms were present in 97.7% of patients, and results from general laboratory studies were abnormal in 99.4% of patients. Cerebrospinal fluid analysis findings were abnormal in 62.7% of the cases in which this test was performed (n = 51), but positive results for SARS-CoV-2 were only found in one case. CONCLUSIONS: The neurological manifestations of COVID-19 are diverse. Anosmia, myalgia, and headache occur earlier in the course of the disease. Altered mental status, neuromuscular symptoms, and stroke are associated with greater severity. COVID-19 must be incorporated into most clinical and radiological differential diagnoses. COVID-19 may cause persistent and disabling neurological symptoms.


Subject(s)
COVID-19/complications , Nervous System Diseases/etiology , SARS-CoV-2 , Adult , Aged , Anosmia/epidemiology , Anosmia/etiology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Cardiovascular Diseases/epidemiology , Causality , Comorbidity , Diabetes Mellitus/epidemiology , Female , Headache/epidemiology , Headache/etiology , Humans , Male , Mental Disorders/epidemiology , Mental Disorders/etiology , Middle Aged , Myalgia/epidemiology , Myalgia/etiology , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/diagnostic imaging , Nervous System Diseases/epidemiology , Neuroimaging , Neurologic Examination , Neuromuscular Diseases/epidemiology , Neuromuscular Diseases/etiology , Registries , SARS-CoV-2/pathogenicity , Spain/epidemiology , Stroke/epidemiology , Stroke/etiology , Treatment Outcome , Virulence
12.
Eur J Neurol ; 27(11): 2378-2380, 2020 11.
Article in English | MEDLINE | ID: covidwho-707056

ABSTRACT

Miller-Fisher syndrome (MFS) is classified as a variant of Guillain-Barré syndrome (GBS), accounting for 5%-25% of all GBS cases. Since the coronavirus disease-2019 (COVID-19) outbreak, increasing evidence has been reported of the neurological manifestations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, affecting both the central and peripheral nervous system. Here we report the clinical course, detailed cerebrospinal fluid (CSF) profile including CSF/blood antibody status, and neurochemical characteristics of a patient with a typical clinical presentation of MFS after a positive SARS-CoV-2 infection test.


Subject(s)
COVID-19/complications , Miller Fisher Syndrome/etiology , Nervous System Diseases/etiology , Biomarkers/cerebrospinal fluid , COVID-19/cerebrospinal fluid , COVID-19/diagnosis , Humans , Male , Middle Aged , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/diagnosis , Neurofilament Proteins/cerebrospinal fluid , Treatment Outcome
14.
J Neurol ; 268(3): 751-757, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-688846

ABSTRACT

BACKGROUND: Evidence of immune-mediated neurological syndromes associated with the severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection is limited. We therefore investigated clinical, serological and CSF features of coronavirus disease 2019 (COVID-19) patients with neurological manifestations. METHODS: Consecutive COVID-19 patients with neurological manifestations other than isolated anosmia and/or non-severe headache, and with no previous neurological or psychiatric disorders were prospectively included. Neurological examination was performed in all patients and lumbar puncture with CSF examination was performed when not contraindicated. Serum anti-gangliosides antibodies were tested when clinically indicated. RESULTS: Of the 349 COVID-19 admitted to our center between March 23rd and April 24th 2020, 15 patients (4.3%) had neurological manifestations and fulfilled the study inclusion/exclusion criteria. CSF examination was available in 13 patients and showed lymphocytic pleocytosis in 2 patients: 1 with anti-contactin-associated protein 2 (anti-Caspr2) antibody encephalitis and 1 with meningo-polyradiculitis. Increased serum titer of anti-GD1b antibodies was found in three patients and was associated with variable clinical presentations, including cranial neuropathy with meningo-polyradiculitis, brainstem encephalitis and delirium. CSF PCR for SARS-CoV-2 was negative in all patients. CONCLUSIONS: In SARS-Cov-2 infected patients with neurological manifestations, CSF pleocytosis is associated with para- or post-infectious encephalitis and polyradiculitis. Anti-GD1b and anti-Caspr2 autoantibodies can be identified in certain cases, raising the question of SARS-CoV-2-induced secondary autoimmunity.


Subject(s)
COVID-19/complications , Nervous System Diseases/etiology , Nervous System Diseases/immunology , Adult , Aged , Aged, 80 and over , Antibodies/cerebrospinal fluid , COVID-19/cerebrospinal fluid , Delirium/etiology , Delirium/psychology , Encephalitis/etiology , Encephalitis/psychology , Female , Gangliosides/immunology , Humans , Leukocytosis/cerebrospinal fluid , Male , Membrane Proteins/cerebrospinal fluid , Middle Aged , Nerve Tissue Proteins/cerebrospinal fluid , Nervous System Diseases/cerebrospinal fluid , Neurologic Examination , Radiculopathy/etiology , Radiculopathy/psychology , Spinal Puncture
SELECTION OF CITATIONS
SEARCH DETAIL
...