Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Neurol Neuroimmunol Neuroinflamm ; 9(1)2022 01.
Article in English | MEDLINE | ID: covidwho-1596607

ABSTRACT

BACKGROUND AND OBJECTIVES: To investigate whether children receiving immunosuppressive therapies for neuroimmunologic disorders had (1) increased susceptibility to SARS-CoV2 infection or to develop more severe forms of COVID-19; (2) increased relapses or autoimmune complications if infected; and (3) changes in health care delivery during the pandemic. METHODS: Patients with and without immunosuppressive treatment were recruited to participate in a retrospective survey evaluating the period from March 14, 2020, to March 30, 2021. Demographics, clinical features, type of immunosuppressive treatment, suspected or confirmed COVID-19 in the patients or cohabitants, and changes in care delivery were recorded. RESULTS: One hundred fifty-three children were included: 84 (55%) female, median age 13 years (interquartile range [8-16] years), 79 (52%) on immunosuppressive treatment. COVID-19 was suspected or confirmed in 17 (11%) (all mild), with a frequency similar in patients with and without immunosuppressive treatment (11/79 [14%] vs 6/74 [8%], p = 0.3085). The frequency of neurologic relapses was similar in patients with (18%) and without (21%) COVID-19. Factors associated with COVID-19 included having cohabitants with COVID-19 (p < 0.001) and lower blood levels of vitamin D (p = 0.039). Return to face-to-face schooling or mask type did not influence the risk of infection, although 43(28%) children had contact with a classmate with COVID-19. Clinic visits changed from face to face to remote for 120 (79%) patients; 110 (92%) were satisfied with the change. DISCUSSION: In this cohort of children with neuroimmunologic disorders, the frequency of COVID-19 was low and not affected by immunosuppressive therapies. The main risk factors for developing COVID-19 were having cohabitants with COVID-19 and low vitamin D levels.


Subject(s)
COVID-19/complications , COVID-19/immunology , Immunocompromised Host , Immunosuppressive Agents/adverse effects , Nervous System Diseases/complications , Nervous System Diseases/immunology , SARS-CoV-2/immunology , Adolescent , COVID-19/prevention & control , COVID-19/virology , Child , Delivery of Health Care/organization & administration , Delivery of Health Care/statistics & numerical data , Female , Humans , Immunosuppressive Agents/therapeutic use , Male , Masks/statistics & numerical data , Masks/virology , Nervous System Diseases/virology , Pandemics , Recurrence , Retrospective Studies , Vitamin D/blood
2.
Sci Rep ; 11(1): 20864, 2021 10 21.
Article in English | MEDLINE | ID: covidwho-1479817

ABSTRACT

Following SARS-CoV-2 infection, some COVID-19 patients experience severe host driven adverse events. To treat these complications, their underlying etiology and drug treatments must be identified. Thus, a novel AI methodology MOATAI-VIR, which predicts disease-protein-pathway relationships and repurposed FDA-approved drugs to treat COVID-19's clinical manifestations was developed. SARS-CoV-2 interacting human proteins and GWAS identified respiratory failure genes provide the input from which the mode-of-action (MOA) proteins/pathways of the resulting disease comorbidities are predicted. These comorbidities are then mapped to their clinical manifestations. To assess each manifestation's molecular basis, their prioritized shared proteins were subject to global pathway analysis. Next, the molecular features associated with hallmark COVID-19 phenotypes, e.g. unusual neurological symptoms, cytokine storms, and blood clots were explored. In practice, 24/26 of the major clinical manifestations are successfully predicted. Three major uncharacterized manifestation categories including neoplasms are also found. The prevalence of neoplasms suggests that SARS-CoV-2 might be an oncovirus due to shared molecular mechanisms between oncogenesis and viral replication. Then, repurposed FDA-approved drugs that might treat COVID-19's clinical manifestations are predicted by virtual ligand screening of the most frequent comorbid protein targets. These drugs might help treat both COVID-19's severe adverse events and lesser ones such as loss of taste/smell.


Subject(s)
COVID-19/complications , COVID-19/diagnosis , COVID-19/drug therapy , Computational Biology/methods , Neoplasms/complications , Nervous System Diseases/complications , Thrombosis/complications , Virus Replication , Benchmarking , Comorbidity , Computer Simulation , Cytokine Release Syndrome , Drug Discovery , Humans , Machine Learning , Molecular Medicine , Phenotype , SARS-CoV-2 , Treatment Outcome
3.
J Clin Apher ; 36(6): 849-863, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1479409

ABSTRACT

INTRODUCTION: Therapeutic plasma exchange (TPE) for neuroimmunological disorders has played an increasingly important role within the Southeast Asian (SEA) region. The South East Asian Therapeutic Plasma exchange Consortium (SEATPEC) was formed in 2018 to promote education and research on TPE within the region. The advent of the Covid-19 pandemic has produced challenges for the development and expansion of this service. METHODOLOGY: A qualitative and semi-quantitative questionnaire-based survey was conducted by SEATPEC member countries from January to June 2020 (Phase 1) and then from July 2020 to January 2021 in (Phase 2) to assess the impact of Covid-19 on regional TPE. OBJECTIVES: The study's main objectives were to explore the challenges experienced and adaptations/adjustments taken by SEATPEC countries in order to continue safe and efficient TPE during the Covid-19 pandemic. RESULTS: The pandemic was found to disrupt the delivery of TPE services in all SEATPEC countries. Contributing factors were multifactorial due to overstretched medical services, staff shortages, quarantines and redeployments, fear of acquiring Covid-19, movement restriction orders, and patient's psychological fear of attending hospitals/testing for Covid-19. All SEATPEC countries practiced careful stratification of cases for TPE (electives vs emergencies, Covid-19 vs non-Covid-19 cases). SEATPEC countries had to modify TPE treatment protocols to include careful preprocedure screening of patient's for Covid-19, use of personal protective equipment (PPE) and post-TPE sanitization of machines and TPE suites. CONCLUSION: Based on the responses of the survey, SEATPEC countries produced a consensus statement with five recommendations for safe and effective TPE within the region.


Subject(s)
COVID-19 , Plasma Exchange , Asia, Southeastern/epidemiology , COVID-19/complications , COVID-19/epidemiology , COVID-19/therapy , Consensus , Humans , Nervous System Diseases/complications , Nervous System Diseases/therapy , Neurologists , Pandemics , Plasma Exchange/methods , Plasma Exchange/statistics & numerical data , SARS-CoV-2 , Surveys and Questionnaires
4.
Dtsch Med Wochenschr ; 146(13-14): 918-923, 2021 Jul.
Article in German | MEDLINE | ID: covidwho-1307359

ABSTRACT

Neurological complications, direct affection of neuronal structures in the course of infections with SARS-CoV-2 and long-term effects ("long COVID") are evident. This article aims to summarize and evaluate the current literature on this topic.


Subject(s)
COVID-19/complications , Nervous System Diseases/complications , Neurology , SARS-CoV-2 , Humans , Nervous System Diseases/etiology
5.
Neurol India ; 69(2): 260-271, 2021.
Article in English | MEDLINE | ID: covidwho-1290494

ABSTRACT

BACKGROUND: A variety of neuroimaging abnormalities in COVID-19 have been described. OBJECTIVES: In this article, we reviewed the varied neuroimaging patterns in patients with COVID-19-associated neurological complications. METHODS: We searched PubMed, Google Scholar, Scopus and preprint databases (medRxiv and bioRxiv). The search terms we used were "COVID -19 and encephalitis, encephalopathy, neuroimaging or neuroradiology" and "SARS-CoV-2 and encephalitis, encephalopathy, neuroimaging or neuroradiology". RESULTS: Neuroimaging abnormalities are common in old age and patients with comorbidities. Neuroimaging abnormalities are largely vascular in origin. COVID-19-associated coagulopathy results in large vessel occlusion and cerebral venous thrombosis. COVID-19-associated intracerebral hemorrhage resembles anticoagulant associated intracerebral hemorrhage. On neuroimaging, hypoxic-ischemic damage along with hyperimmune reaction against the SARS-COV-2 virus manifests as small vessel disease. Small vessel disease appears as diffuse leukoencephalopathy and widespread microbleeds, and subcortical white matter hyperintensities. Occasionally, gray matter hyperintensity, similar to those observed seen in autoimmune encephalitis, has been noted. In many cases, white matter lesions similar to that in acute disseminated encephalomyelitis have been described. Acute disseminated encephalomyelitis in COVID-19 seems to be a parainfectious event and autoimmune in origin. Many cases of acute necrotizing encephalitis resulting in extensive damage to thalamus and brain stem have been described; cytokine storm has been considered a pathogenic mechanism behind this. None of the neuroimaging abnormalities can provide a clue to the possible pathogenic mechanism. CONCLUSIONS: Periventricular white-matter MR hyperintensity, microbleeds, arterial and venous infarcts, and hemorrhages are apparently distinctive neuroimaging abnormalities in patients with COVID-19.


Subject(s)
COVID-19/complications , COVID-19/diagnostic imaging , Nervous System Diseases/complications , Nervous System Diseases/diagnostic imaging , Neuroimaging , SARS-CoV-2/pathogenicity , Cytokine Release Syndrome , Humans , Leukoencephalitis, Acute Hemorrhagic
6.
Cell Mol Neurobiol ; 42(1): 99-107, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1265525

ABSTRACT

Mitochondrial DNA (mtDNA) heteroplasmy is the dynamically determined co-expression of wild type (WT) inherited polymorphisms and collective time-dependent somatic mutations within individual mtDNA genomes. The temporal expression and distribution of cell-specific and tissue-specific mtDNA heteroplasmy in healthy individuals may be functionally associated with intracellular mitochondrial signaling pathways and nuclear DNA gene expression. The maintenance of endogenously regulated tissue-specific copy numbers of heteroplasmic mtDNA may represent a sensitive biomarker of homeostasis of mitochondrial dynamics, metabolic integrity, and immune competence. Myeloid cells, monocytes, macrophages, and antigen-presenting dendritic cells undergo programmed changes in mitochondrial metabolism according to innate and adaptive immunological processes. In the central nervous system (CNS), the polarization of activated microglial cells is dependent on strategically programmed changes in mitochondrial function. Therefore, variations in heteroplasmic mtDNA copy numbers may have functional consequences in metabolically competent mitochondria in innate and adaptive immune processes involving the CNS. Recently, altered mitochondrial function has been demonstrated in the progression of coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Accordingly, our review is organized to present convergent lines of empirical evidence that potentially link expression of mtDNA heteroplasmy by functionally interactive CNS cell types to the extent and severity of acute and chronic post-COVID-19 neurological disorders.


Subject(s)
COVID-19/genetics , COVID-19/immunology , DNA, Mitochondrial/genetics , Heteroplasmy/genetics , Nervous System Diseases/genetics , Nervous System Diseases/immunology , Animals , COVID-19/complications , COVID-19/metabolism , Humans , Immunity , Mitochondria/metabolism , Nervous System Diseases/complications , Nervous System Diseases/metabolism
7.
Front Immunol ; 12: 665300, 2021.
Article in English | MEDLINE | ID: covidwho-1226978

ABSTRACT

The irruption of SARS-CoV-2 during 2020 has been of pandemic proportions due to its rapid spread and virulence. COVID-19 patients experience respiratory, digestive and neurological symptoms. Distinctive symptom as anosmia, suggests a potential neurotropism of this virus. Amongst the several pathways of entry to the nervous system, we propose an alternative pathway from the infection of the gut, involving Toll-like receptor 4 (TLR4), zonulin, protease-activated receptor 2 (PAR2) and zonulin brain receptor. Possible use of zonulin antagonists could be investigated to attenuate neurological manifestations caused by SARS-CoV-19 infection.


Subject(s)
COVID-19/complications , Haptoglobins/metabolism , Nervous System Diseases/complications , Protein Precursors/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/virology , Brain/metabolism , Brain/virology , COVID-19/metabolism , COVID-19/virology , Complement System Proteins/metabolism , Gastrointestinal Diseases/complications , Gastrointestinal Diseases/metabolism , Gastrointestinal Diseases/virology , Humans , Nervous System Diseases/metabolism , Nervous System Diseases/virology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Toll-Like Receptor 4/metabolism
8.
Front Immunol ; 12: 653786, 2021.
Article in English | MEDLINE | ID: covidwho-1226977

ABSTRACT

Introduction: Although acute transverse myelitis (ATM) is a rare neurological condition (1.34-4.6 cases per million/year) COVID-19-associated ATM cases have occurred during the pandemic. Case-finding methods: We report a patient from Panama with SARS-CoV-2 infection complicated by ATM and present a comprehensive clinical review of 43 patients with COVID-19-associated ATM from 21 countries published from March 2020 to January 2021. In addition, 3 cases of ATM were reported as serious adverse events during the clinical trials of the COVID-19 vaccine ChAdOx1 nCoV-19 (AZD1222). Results: All patients had typical features of ATM with acute onset of paralysis, sensory level and sphincter deficits due to spinal cord lesions demonstrated by imaging. There were 23 males (53%) and 20 females (47%) ranging from ages 21- to 73- years-old (mean age, 49 years), with two peaks at 29 and 58 years, excluding 3 pediatric cases. The main clinical manifestations were quadriplegia (58%) and paraplegia (42%). MRI reports were available in 40 patients; localized ATM lesions affected ≤3 cord segments (12 cases, 30%) at cervical (5 cases) and thoracic cord levels (7 cases); 28 cases (70%) had longitudinally-extensive ATM (LEATM) involving ≥4 spinal cord segments (cervicothoracic in 18 cases and thoracolumbar-sacral in 10 patients). Acute disseminated encephalomyelitis (ADEM) occurred in 8 patients, mainly women (67%) ranging from 27- to 64-years-old. Three ATM patients also had blindness from myeloneuritis optica (MNO) and two more also had acute motor axonal neuropathy (AMAN). Conclusions: We found ATM to be an unexpectedly frequent neurological complication of COVID-19. Most cases (68%) had a latency of 10 days to 6 weeks that may indicate post-infectious neurological complications mediated by the host's response to the virus. In 32% a brief latency (15 hours to 5 days) suggested a direct neurotropic effect of SARS-CoV-2. The occurrence of 3 reported ATM adverse effects among 11,636 participants in the AZD1222 vaccine trials is extremely high considering a worldwide incidence of 0.5/million COVID-19-associated ATM cases found in this report. The pathogenesis of ATM remains unknown, but it is conceivable that SARS-CoV-2 antigens -perhaps also present in the AZD1222 COVID-19 vaccine or its chimpanzee adenovirus adjuvant- may induce immune mechanisms leading to the myelitis.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19/complications , Myelitis, Transverse/complications , SARS-CoV-2/pathogenicity , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Myelitis, Transverse/diagnosis , Myelitis, Transverse/pathology , Myelitis, Transverse/physiopathology , Nervous System Diseases/complications , Nervous System Diseases/diagnosis , Nervous System Diseases/pathology , Nervous System Diseases/physiopathology , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Spinal Cord/physiopathology , Viral Tropism , Young Adult
9.
Expert Opin Ther Targets ; 25(6): 491-508, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1185546

ABSTRACT

Introduction: The COVID-19 pandemic remains aglobal challenge. While there are mRNA agents on the horizon as apotential prevention, adefinitive drug therapy is an unmet medical need. The hyperinflammatory response, known as the 'cytokine storm', is chiefly responsible for complications and deaths. The binding of spike-glycoprotein of SARS-CoV-2 to TLR4 receptors has been documented in several studies and has been found to play arole in hyperinflammation; hence, there is an interest in TLR4 as apotential drug target.Areas covered: This review discusses the neurological and respiratory complications of SARS-CoV-2 infection and progresses to examine the role of the 'cytokine storm' and the involvement of TLR4 receptors in these complications. The possibility of using TLR4 modulators to curb the complications are considered and finally, ashort perspective on future potential drug treatments is offered. Various databases were searched including Pub-Med, Google Scholar, and Medline. The search mainly included research articles, meta-analysis, retrospective studies, reports, and systematic reviews.Expert opinion: TLR4 modulators are being investigated in clinical trials for COVID-19. Challenges in terms of structural diversity of the agents, their natural origin, and efficacy demand extensive research.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Lung Diseases/complications , Nervous System Diseases/complications , Toll-Like Receptor 4/drug effects , Animals , Antiviral Agents/pharmacology , COVID-19/complications , Humans , Retrospective Studies , SARS-CoV-2/isolation & purification
10.
Horm Mol Biol Clin Investig ; 42(1): 69-75, 2021 Feb 23.
Article in English | MEDLINE | ID: covidwho-1094095

ABSTRACT

COVID-19 caused by SARS CoV2 (The novel corona virus) has already taken lives of many people across the globe even more than anyone could have imagined. This outbreak occurred in China and since then it is expanding its devastating effects by leaps and bounds. Initially it appeared to be an outbreak of pneumonia but soon it was found to be much more than that and the infectivity was found to be very high. This is the reason that it has taken whole globe in its trap and become a pandemic in such a short span of time. Death is occurring because it is a new virus and human body has no specific antibodies for it. Presently there is no approved vaccine so everyone is susceptible but people with co-morbidities appear to be in more risk and the best way for protection is social distancing and increasing one's natural immunity by taking healthy diet and exercise. When a person is infected the clinical presentation ranges from asymptomatic to severe ARDS, sudden onset of anosmia, headache, cough may be the initial symptoms. This review is focused on immunopathology and effect of COVID-19 on neurological disorders and also the neurological manifestations and the treatment.


Subject(s)
COVID-19/complications , COVID-19/epidemiology , Nervous System Diseases , Pandemics , COVID-19/immunology , COVID-19/therapy , Comorbidity , Humans , Immune System/physiology , Nervous System Diseases/complications , Nervous System Diseases/epidemiology , Nervous System Diseases/immunology , Nervous System Diseases/therapy , Neuroimmunomodulation/physiology , SARS-CoV-2/immunology , SARS-CoV-2/physiology
11.
Rev Neurosci ; 32(6): 671-691, 2021 08 26.
Article in English | MEDLINE | ID: covidwho-1082035

ABSTRACT

The sudden and storming onset of coronavirus 2 infection (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) was associated by severe acute respiratory syndrome. Recently, corona virus disease 19 (COVID-19) has appeared as a pandemic throughout the world. The mutational nature of the virus, along with the different means of entering and spreading throughout the body has involved different organs. Thus, patients are faced with a wide range of symptoms and signs. Neurological symptoms, such as anosmia, agnosia, stroke, paralysis, cranial nerve deficits, encephalopathy, meningitis, delirium and seizures, are reported as common complications affecting the course of the disease and its treatment. In this review, special attention was paid to reports that addressed the acute or chronic neurological manifestations in COVID-19 patients who may present acute respiratory syndrome or not. Moreover, we discussed the central (CNS) and peripheral nervous system (PNS) complications in SARS-Cov2-infected patients, and also the pathophysiology of neurological abnormalities in COVID-19.


Subject(s)
Brain/virology , COVID-19/complications , Nervous System Diseases/complications , SARS-CoV-2/pathogenicity , Stroke/complications , Brain/physiopathology , Humans , RNA, Viral , Seizures/complications , Seizures/etiology , Stroke/physiopathology
12.
Rev Neurosci ; 32(4): 427-442, 2021 06 25.
Article in English | MEDLINE | ID: covidwho-1069660

ABSTRACT

As the coronavirus disease 2019 (COVID-19) pandemic continues to be a multidimensional threat to humanity, more evidence of neurological involvement associated with it has emerged. Neuroimmune interaction may prove to be important not only in the pathogenesis of neurological manifestations but also to prevent systemic hyperinflammation. In this review, we summarize reports of COVID-19 cases with neurological involvement, followed by discussion of possible routes of entry, immune responses against coronavirus infection in the central nervous system and mechanisms of nerve degeneration due to viral infection and immune responses. Possible mechanisms for neuroprotection and virus-associated neurological consequences are also discussed.


Subject(s)
COVID-19/complications , Central Nervous System/virology , Nervous System Diseases/complications , SARS-CoV-2/pathogenicity , COVID-19/immunology , Central Nervous System/immunology , Humans , Immunity/immunology , Nervous System Diseases/immunology , Neuroprotection/immunology , SARS-CoV-2/immunology
13.
Radiology ; 297(3): E324-E334, 2020 12.
Article in English | MEDLINE | ID: covidwho-1042719

ABSTRACT

Background Neurologic complications in coronavirus disease 2019 (COVID-19) have been described, but the understanding of their pathophysiologic causes and neuroanatomical correlates remains limited. Purpose To report on the frequency and type of neuroradiological findings in COVID-19. Materials and Methods In this retrospective study, all consecutive adult hospitalized patients with polymerase chain reaction positivity for severe acute respiratory syndrome coronavirus 2 and who underwent neuroimaging at Karolinska University Hospital between March 2 and May 24, 2020, were included. All examinations were systematically re-evaluated by 12 readers. Summary descriptive statistics were calculated. Results A total of 185 patients with COVID-19 (62 years ± 14 [standard deviation]; 138 men) underwent neuroimaging. In total, 222 brain CT, 47 brain MRI, and seven spinal MRI examinations were performed. Intra-axial susceptibility abnormalities were the most common finding (29 of 39; 74%, 95% CI: 58, 87) in patients who underwent brain MRI, often with an ovoid shape suggestive of microvascular pathology and with a predilection for the corpus callosum (23 of 39; 59%; 95% CI: 42, 74) and juxtacortical areas (14 of 39; 36%; 95% CI: 21, 53). Ischemic and macrohemorrhagic manifestations were also observed, but vascular imaging did not demonstrate overt abnormalities. Dynamic susceptibility contrast perfusion MRI in 19 patients did not reveal consistent asymmetries between hemispheres or regions. Many patients (18 of 41; 44%; 95% CI: 28, 60) had leukoencephalopathy and one patient had a cytotoxic lesion of the corpus callosum. Other findings included olfactory bulb signal abnormalities (seven of 37; 19%), prominent optic nerve subarachnoid spaces (20 of 36; 56%), and enhancement of the parenchyma (three of 20; 15%), leptomeninges (three of 20; 15%), cranial nerves (two of 20; 10%), and spinal nerves (two of four; 50%). At MRI follow-up, regression of leukoencephalopathy and progressive leptomeningeal enhancement was observed in one patient each, respectively, which is suggestive of dynamic processes. Conclusion Patients with coronavirus disease 2019 had a wide spectrum of vascular and inflammatory involvement of both the central and peripheral nervous system. © RSNA, 2020 Online supplemental material is available for this article.


Subject(s)
Coronavirus Infections/complications , Magnetic Resonance Imaging/methods , Nervous System Diseases/complications , Nervous System Diseases/diagnostic imaging , Neuroimaging/methods , Pneumonia, Viral/complications , Tomography, X-Ray Computed/methods , Betacoronavirus , Brain/diagnostic imaging , COVID-19 , Cohort Studies , Humans , Pandemics , Retrospective Studies , SARS-CoV-2 , Spine/diagnostic imaging
14.
BMJ Open ; 11(1): e045780, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1027131

ABSTRACT

OBJECTIVES: Describing perceived limitations in everyday life, psychological burden and approval to easing of measures during the COVID-19 phases in elderly people with neurological disorders. DESIGN: Observational, prospective study SETTING: This is a monocentric study conducted at a university hospital in Germany. PARTICIPANTS: Overall, 452 elderly people participated in the NeuroGerAdh study (DRKS00016774) and were interviewed by telephone between 18 March and 30 August 2020. RESULTS: Overall, 307 (67.9%) patients had relevant limitations in daily life due to the measures. These limitations significantly decreased during the pandemic phases. At the beginning of the pandemic, people complained about restricted social contacts and mobility, which were the most common reasons for perceived limitations in daily life. Later, since June 2020, wearing a mouth-nose mask had become the main reason for perceived limitations. In the elastic net regularisation, model higher perceived limitations in daily life were among others associated with younger age and earlier pandemic phases. Higher psychological burden was mainly associated with early pandemic phase, younger age and depression.The perceived psychological burden decreased as the pandemic phases passed, even though the reasons for psychological burden (anxiety or fear of infection, insecurity and concerns) did not remarkably change during the phases. From 16 June 2020, the patients were asked whether they approve the easing of measures. Sixty-seven of 136 patients (49.3%) approved and 55 (40.4%) did not. The common reasons for disapproval were fear of increased risk of infection and irresponsible behaviour of other people. CONCLUSION: While limitations in daily life decreased during the study period, anxiety remains a common psychological burden in elderly sick people, and this needs special attention. Accordingly, most people do not approve easing of measures. Special strategies are needed to cope with changing measures during the COVID-19 pandemic.


Subject(s)
Anxiety Disorders/complications , Anxiety Disorders/psychology , COVID-19/psychology , Nervous System Diseases/complications , Nervous System Diseases/psychology , Adaptation, Psychological , Aged , Female , Geriatric Assessment/methods , Geriatric Assessment/statistics & numerical data , Germany , Humans , Interviews as Topic , Longitudinal Studies , Male , Masks , Pandemics , Prospective Studies , SARS-CoV-2 , Stress, Psychological/complications , Stress, Psychological/psychology
15.
Eur J Pharmacol ; 889: 173629, 2020 Dec 15.
Article in English | MEDLINE | ID: covidwho-1023556

ABSTRACT

The absence of a specific treatment for SARS-CoV-2 infection led to an intense global effort in order to find new therapeutic interventions and improve patient outcomes. One important feature of COVID-19 pathophysiology is the activation of immune cells, with consequent massive production and release of inflammatory mediators that may cause impairment of several organ functions, including the brain. In addition to its classical role as a neurotransmitter, serotonin (5-hydroxytryptamine, 5-HT) has immunomodulatory properties, downregulating the inflammatory response by central and peripheral mechanisms. In this review, we describe the roles of 5-HT in the regulation of systemic inflammation and the potential benefits of the use of specific serotonin reuptake inhibitors as a coadjutant therapy to attenuate neurological complications of COVID-19.


Subject(s)
COVID-19/drug therapy , Inflammation/drug therapy , Nervous System Diseases/drug therapy , Neuroprotective Agents/therapeutic use , Serotonin Uptake Inhibitors/therapeutic use , Animals , COVID-19/complications , Humans , Inflammation/complications , Nervous System Diseases/complications , Neuroprotective Agents/pharmacology , Pandemics , SARS-CoV-2 , Serotonin Uptake Inhibitors/pharmacology
16.
Cells ; 9(11)2020 10 27.
Article in English | MEDLINE | ID: covidwho-972335

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel human coronavirus that has sparked a global pandemic of the coronavirus disease of 2019 (COVID-19). The virus invades human cells through the angiotensin-converting enzyme 2 (ACE2) receptor-driven pathway, primarily targeting the human respiratory tract. However, emerging reports of neurological manifestations demonstrate the neuroinvasive potential of SARS-CoV-2. This review highlights the possible routes by which SARS-CoV-2 may invade the central nervous system (CNS) and provides insight into recent case reports of COVID-19-associated neurological disorders, namely ischaemic stroke, encephalitis, encephalopathy, epilepsy, neurodegenerative diseases, and inflammatory-mediated neurological disorders. We hypothesize that SARS-CoV-2 neuroinvasion, neuroinflammation, and blood-brain barrier (BBB) dysfunction may be implicated in the development of the observed disorders; however, further research is critical to understand the detailed mechanisms and pathway of infectivity behind CNS pathogenesis.


Subject(s)
Betacoronavirus/metabolism , Blood-Brain Barrier/physiopathology , Blood-Brain Barrier/virology , Coronavirus Infections/complications , Nervous System Diseases/complications , Pneumonia, Viral/complications , Virus Internalization , Angiotensin-Converting Enzyme 2 , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokines/metabolism , Humans , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2
17.
Ideggyogy Sz ; 73(11-12): 427-430, 2020 Nov 30.
Article in Hungarian | MEDLINE | ID: covidwho-953180

ABSTRACT

The clinical signs of SARS-CoV-2 infection has become more recognisable in recent times. In addition to common symptoms such as fever, cough, dyspnea, pneumonia and ageusia, less common complications can be identified, including many neurological manifestations. In this paper, we discuss three Covid-19 associated neurological disorders (Case 1: Covid-19 encephalitis, Case 2: Covid-19 organic headache, Case 3: SARS-CoV-2-infection and ischaemic stroke). We emphasize in our multiple case study that during the present pandemic, it is especially important for neurologists to be aware of the nervous system complications of the virus infection, thus saving unnecessary examinations and reducing the frequency of patients' contact with health care personnel.


Subject(s)
Brain Ischemia/virology , COVID-19 , Coronavirus Infections/diagnosis , Headache/virology , Pneumonia, Viral/diagnosis , Stroke/virology , Brain Ischemia/complications , Coronavirus , Coronavirus Infections/complications , Encephalitis , Headache/complications , Humans , Nervous System Diseases/complications , Nervous System Diseases/virology , Pneumonia, Viral/complications , Stroke/complications
18.
Eur Rev Med Pharmacol Sci ; 24(19): 10267-10278, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-890962

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) uses Angiotensin- converting enzyme 2 (ACE2) receptors to infect host cells which may lead to coronavirus disease (COVID-19). Given the presence of ACE2 receptors in the brain and the critical role of the renin-angiotensin system (RAS) in brain functions, special attention to brain microcirculation and neuronal inflammation is warranted during COVID-19 treatment. Neurological complications reported among COVID-19 patients range from mild dizziness, headache, hypogeusia, hyposmia to severe like encephalopathy, stroke, Guillain-Barre Syndrome (GBS), CNS demyelination, infarcts, microhemorrhages and nerve root enhancement. The pathophysiology of these complications is likely via direct viral infection of the CNS and PNS tissue or through indirect effects including post- viral autoimmune response, neurological consequences of sepsis, hyperpyrexia, hypoxia and hypercoagulability among critically ill COVID-19 patients. Further, decreased deformability of red blood cells (RBC) may be contributing to inflammatory conditions and hypoxia in COVID-19 patients. Haptoglobin, hemopexin, heme oxygenase-1 and acetaminophen may be used to maintain the integrity of the RBC membrane.


Subject(s)
Brain/physiopathology , COVID-19/physiopathology , Erythrocytes/pathology , Hemolysis , Nervous System Diseases/physiopathology , Brain/blood supply , COVID-19/complications , Erythrocytes/drug effects , Hemolysis/drug effects , Humans , Models, Neurological , Molecular Targeted Therapy/methods , Nervous System Diseases/complications , Nervous System Diseases/drug therapy , Pandemics , SARS-CoV-2
19.
Indian J Med Res ; 152(1 & 2): 41-47, 2020.
Article in English | MEDLINE | ID: covidwho-732738

ABSTRACT

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been predominantly a respiratory manifestation. Currently, with evolving literature, neurological signs are being increasingly recognized. Studies have reported that SARS-CoV-2 affects all aspects of the nervous system including the central nervous system (CNS), peripheral nervous system (PNS) and the muscular system as well. Not all patients have reverse transcription-polymerase chain reaction positive for the virus in the cerebrospinal fluid, and diagnosing the association of the virus with the myriad of neurological manifestations can be a challenge. It is important that clinicians have a high-index of suspicion for COVID-19 in patients presenting with new-onset neurological symptoms. This will lead to early diagnosis and specific management. Further studies are desired to unravel the varied neurological manifestations, treatment, outcome and long-term sequel in COVID-19 patients.


Subject(s)
Central Nervous System/pathology , Coronavirus Infections/epidemiology , Nervous System Diseases/epidemiology , Peripheral Nervous System/pathology , Pneumonia, Viral/epidemiology , Betacoronavirus/pathogenicity , COVID-19 , Central Nervous System/virology , Coronavirus Infections/complications , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , Muscle, Skeletal/pathology , Muscle, Skeletal/virology , Nervous System Diseases/complications , Nervous System Diseases/pathology , Nervous System Diseases/virology , Pandemics , Peripheral Nervous System/virology , Pneumonia, Viral/complications , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL