Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Mol Biol (Mosk) ; 57(1): 3-9, 2023.
Article in Russian | MEDLINE | ID: covidwho-2290756

ABSTRACT

The study of the role of cytokines in various pathological conditions of the body is a topical area in modern biomedicine. Understanding the physiological roles played by cytokines will aid in finding applications for them as pharmacological agents in clinical practice. Interleukin 11 (IL-11) was discovered in 1990 in fibrocyte-like bone marrow stromal cells, but there has been increased interest in this cytokine in recent years. IL-11 has been shown to correct inflammatory pathways in the epithelial tissues of the respiratory system, where the main events occur during SARS-CoV-2 infection. Further research in this direction will probably support the use of this cytokine in clinical practice. The cytokine plays a significant role in the central nervous system; local expression by nerve cells has been shown. Studies show the involvement of IL-11 in the mechanisms of development of a number of pathologies of the nervous system, and therefore it seems relevant to generalize and analyze the experimental data obtained in this direction. This review summarizes information that shows the involvement of IL-11 in the mechanisms of development of brain pathologies. In the near future this cytokine will likely find clinical application for the correction of mechanisms that are involved in the formation of pathological conditions of the nervous system.


Subject(s)
COVID-19 , Interleukin-11 , Humans , Antigens, CD/metabolism , COVID-19/genetics , Cytokine Receptor gp130 , Cytokines/pharmacology , Interleukin-11/genetics , Nervous System/metabolism , SARS-CoV-2/metabolism
2.
Zhonghua Er Ke Za Zhi ; 61(2): 100-103, 2023 Feb 02.
Article in Chinese | MEDLINE | ID: covidwho-2264671
3.
Neurol Neurochir Pol ; 57(1): 3-7, 2023.
Article in English | MEDLINE | ID: covidwho-2267397
5.
Environ Sci Pollut Res Int ; 28(30): 40371-40377, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-2113586

ABSTRACT

Entry receptor for SARS-CoV-2 is expressed in nasal epithelial cells, and nasal delivery pathway can be a key feature of transmission. Here, a possibility of interaction of SARS-CoV-2 with air pollution particulate matter (PM) was considered. It was shown in our recent studies that water-suspended plastic and wood smoke aerosol PM and carbon-containing nanoparticles from burning organics can interact with the plasma membrane of brain nerve terminals presumably due to their lipid components. COVID-19 patients have neurological symptoms, viral particles were found in the brain, SARS-CoV-2 enters the cells via fusion of lipid viral envelope with the plasma membranes of infected cells, and so viral envelop can contain lipid components of the host neuronal membranes. Therefore, interaction of SARS-CoV-2 envelope with PM is possible in water surrounding. After drying, PM can serve as a carrier for transmission of SARS-CoV-2 immobilized at their surface. Moreover, PM and SARS-CoV-2 per se can enter human organism during nasal inhalation, and they both use the same nose-to-brain delivery pathways moving along axons directly to the brain, influencing the nervous system and exocytosis/endocytosis in nerve cells. Thus, PM can aggravate neurological symptoms of SARS-CoV-2 and vice versa, due to their identical nose-to-brain delivery mechanism and possible interference of neuronal effects. In addition, different types of PM because of their ability to interact with the plasma membranes of nerve cells can facilitate unspecific SARS-CoV-2 entrance to the cells, and can influence envelope features of SARS-CoV-2. Detailed studies are required to analyze interaction of SARS-CoV-2 with PM.


Subject(s)
Air Pollution , COVID-19 , Humans , Nervous System , Particulate Matter , SARS-CoV-2
6.
J Mol Endocrinol ; 69(3): R125-R150, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-1963089

ABSTRACT

Coronavirus disease 2019 (COVID-19) is well known for its respiratory complications; however, it can also cause extrapulmonary manifestations, including cardiovascular, thrombotic, renal, gastrointestinal, neurologic, and endocrinological symptoms. Endocrinological complications of COVID-19 are rare but can considerably impact the outcome of the patients. Moreover, preexisting endocrinologic disorders can affect the severity of COVID-19. Thyroid, pancreas, adrenal, neuroendocrine, gonadal, and parathyroid glands are the main endocrinologic organs that can be targeted by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Endocrinological complications of COVID-19 are rare but can significantly deteriorate the patients' prognosis. Understanding the interaction between COVID-19 and the endocrine system can provide a potential treatment option to improve the outcome of COVID-19. In this article, we aim to review the short-term and long-term organ-based endocrinological complications of COVID-19, the pathophysiology, the influence of each complication on COVID-19 prognosis, and potential therapeutic interventions based on current published data. Moreover, current clinical trials of potential endocrinological interventions to develop therapeutic strategies for COVID-19 have been discussed.


Subject(s)
COVID-19 , Endocrine Glands , COVID-19/complications , Humans , Nervous System , SARS-CoV-2
7.
8.
Indian J Pathol Microbiol ; (65 Suppl 1): S122-S124, 2022 05.
Article in English | MEDLINE | ID: covidwho-1928751

Subject(s)
Lighting , Nervous System , Humans
9.
Transl Psychiatry ; 12(1): 232, 2022 06 06.
Article in English | MEDLINE | ID: covidwho-1878520

ABSTRACT

During the Coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is universally susceptible to all types of populations. In addition to the elderly and children becoming the groups of great concern, pregnant women carrying new lives need to be even more alert to SARS-CoV-2 infection. Studies have shown that pregnant women infected with SARS-CoV-2 can lead to brain damage and post-birth psychiatric disorders in offspring. It has been widely recognized that SARS-CoV-2 can affect the development of the fetal nervous system directly or indirectly. Pregnant women are recommended to mitigate the effects of COVID-19 on the fetus through vaccination, nutritional supplements, and psychological support. This review summarizes the possible mechanisms of the nervous system effects of SARS-CoV-2 infection on their offspring during the pregnancy and analyzes the available prophylactic and treatment strategies to improve the prognosis of fetal-related neuropsychiatric diseases after birth.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Aged , Child , Female , Humans , Infectious Disease Transmission, Vertical , Nervous System , Pandemics , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/prevention & control , SARS-CoV-2
10.
Microb Pathog ; 168: 105608, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1867493

ABSTRACT

The recent pandemic, Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has devastated humanity and is continuing to threaten us. Due to the high transmissibility of this pathogen, researchers are still trying to cope with the treatment and prevention of this disease. Few of them were successful in finding cure for COVID-19 by including repurposed drugs in the treatment. In such pandemic situations, when it is nearly impossible to design and implement a new drug target, previously designed antiviral drugs could help against novel viruses, referred to as drug repurposing/redirecting/repositioning or re-profiling. This review describes the current landscape of the repurposing of antiviral drugs for COVID-19 and the impact of these drugs on our nervous system. In some cases, specific antiviral therapy has been notably associated with neurological toxicity, characterized by peripheral neuropathy, neurocognitive and neuropsychiatric effects within the central nervous system (CNS).


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Repositioning , Humans , Nervous System , SARS-CoV-2
11.
Immunity ; 55(4): 592-605, 2022 04 12.
Article in English | MEDLINE | ID: covidwho-1783432

ABSTRACT

Nonresolving inflammation contributes to many diseases, including COVID-19 in its fatal and long forms. Our understanding of inflammation is rapidly evolving. Like the immune system of which it is a part, inflammation can now be seen as an interactive component of a homeostatic network with the endocrine and nervous systems. This review samples emerging insights regarding inflammatory memory, inflammatory aging, inflammatory cell death, inflammatory DNA, inflammation-regulating cells and metabolites, approaches to resolving or modulating inflammation, and inflammatory inequity.


Subject(s)
COVID-19 , Homeostasis , Humans , Immune System/metabolism , Inflammation , Nervous System/metabolism
12.
Neuroendocrinology ; 112(11): 1046-1057, 2022.
Article in English | MEDLINE | ID: covidwho-1752953

ABSTRACT

The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has precipitated a global health crisis of unprecedented proportions. Due to its severe impact, multiple COVID-19 vaccines are being developed, approved, and manufactured rapidly. However, some serious adverse events (AEs) were reported after the application of them, significantly increasing concerns about the safety and efficacy of the vaccines and doubts about the necessity of vaccination. Particularly, previous vaccination campaigns have shown us that partial vaccination can induce neurologic AEs. Herein, we discuss in depth the involvement of the nervous system during SARS-CoV-2 infection or after vaccination. On the one hand, COVID-19 could pose an enormous threat to human neurological health through direct infection and indirect neurotoxicity effects. On the other hand, our review indicated that only a few serious neurological AEs following vaccination occurred and among which headache was the most common. Moreover, some neurological AEs do not seem to be related to vaccination. Of course, the causal relationships between several vaccines and AEs are considered plausible, and it is not doubtful that these AEs should be taken seriously by clinicians in assessing the potential risks and benefits of vaccinations in special populations. Nevertheless, in the case of the rapid spread of COVID-19, the potential side effects of vaccination on the nervous system should be compared with adverse COVID-19 outcomes rather than being considered alone. Thus, it is obviously a wise option to be vaccinated instead of suffering from serious adverse symptoms of virus infection.


Subject(s)
AIDS Vaccines , COVID-19 , Influenza Vaccines , Papillomavirus Vaccines , Respiratory Syncytial Virus Vaccines , SAIDS Vaccines , Humans , COVID-19/prevention & control , Diphtheria-Tetanus-Pertussis Vaccine , COVID-19 Vaccines/adverse effects , BCG Vaccine , Diphtheria-Tetanus Vaccine , Measles-Mumps-Rubella Vaccine , SARS-CoV-2 , Nervous System
13.
Adv Sci (Weinh) ; 9(7): e2104192, 2022 03.
Article in English | MEDLINE | ID: covidwho-1589262

ABSTRACT

Coronavirus disease 2019 (COVID-19) patients with impact on skin and hair loss are reported. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is detected in the skin of some patients; however, the detailed pathological features of skin tissues from patients infected with SARS-CoV-2 at a molecular level are limited. Especially, the ability of SARS-CoV-2 to infect skin cells and impact their function is not well understood. A proteome map of COVID-19 skin is established here and the susceptibility of human-induced pluripotent stem cell (hiPSC)-derived skin organoids with hair follicles and nervous system is investigated, to SARS-CoV-2 infection. It is shown that KRT17+ hair follicles can be infected by SARS-CoV-2 and are associated with the impaired development of hair follicles and epidermis. Different types of nervous system cells are also found to be infected, which can lead to neuron death. Findings from the present work provide evidence for the association between COVID-19 and hair loss. hiPSC-derived skin organoids are also presented as an experimental model which can be used to investigate the susceptibility of skin cells to SARS-CoV-2 infection and can help identify various pathological mechanisms and drug screening strategies.


Subject(s)
COVID-19/physiopathology , Induced Pluripotent Stem Cells/cytology , Models, Biological , Organoids/cytology , Skin/cytology , COVID-19/virology , Hair Follicle/virology , Humans , Nervous System/virology , Proteomics , SARS-CoV-2/isolation & purification
14.
Int J Dev Biol ; 65(7-8-9): 457-464, 2021.
Article in English | MEDLINE | ID: covidwho-1571997

ABSTRACT

The Spanish Society for Developmental Biology (SEBD) organized its 17th meeting in November 2020 (herein referred to as SEBD2020). This meeting, originally programmed to take place in the city of Bilbao, was forced onto an online format due to the SARS-CoV2, COVID-19 pandemic. Although, we missed the live personal interactions and missed out on the Bilbao social scene, we were able to meet online to present our work and discuss our latest results. An overview of the activities that took place around the meeting, the different scientific sessions and the speakers involved are presented here. The pros and cons of virtual meetings are discussed.


Subject(s)
Developmental Biology/methods , Developmental Biology/trends , Animals , Cell Biology/trends , Developmental Biology/education , Humans , Internet , Models, Animal , Nervous System , Peer Review , Publications , Publishing , Regeneration , Schools , Societies, Medical , Spain
15.
Clin Imaging ; 82: 13-14, 2022 02.
Article in English | MEDLINE | ID: covidwho-1517103
20.
Trends Mol Med ; 27(9): 895-906, 2021 09.
Article in English | MEDLINE | ID: covidwho-1366638

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause chronic and acute disease. Postacute sequelae of SARS-CoV-2 infection (PASC) include injury to the lungs, heart, kidneys, and brain that may produce a variety of symptoms. PASC also includes a post-coronavirus disease 2019 (COVID-19) syndrome ('long COVID') with features that can follow other acute infectious diseases and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Here we summarize what is known about the pathogenesis of ME/CFS and of 'acute' COVID-19, and we speculate that the pathogenesis of post-COVID-19 syndrome in some people may be similar to that of ME/CFS. We propose molecular mechanisms that might explain the fatigue and related symptoms in both illnesses, and we suggest a research agenda for both ME/CFS and post-COVID-19 syndrome.


Subject(s)
COVID-19/complications , Fatigue Syndrome, Chronic/etiology , COVID-19/etiology , COVID-19/physiopathology , Energy Metabolism , Fatigue Syndrome, Chronic/physiopathology , Gastrointestinal Microbiome , Humans , Nervous System/physiopathology , Post-Acute COVID-19 Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL