Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Environ Sci Pollut Res Int ; 28(30): 40371-40377, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-2113586

ABSTRACT

Entry receptor for SARS-CoV-2 is expressed in nasal epithelial cells, and nasal delivery pathway can be a key feature of transmission. Here, a possibility of interaction of SARS-CoV-2 with air pollution particulate matter (PM) was considered. It was shown in our recent studies that water-suspended plastic and wood smoke aerosol PM and carbon-containing nanoparticles from burning organics can interact with the plasma membrane of brain nerve terminals presumably due to their lipid components. COVID-19 patients have neurological symptoms, viral particles were found in the brain, SARS-CoV-2 enters the cells via fusion of lipid viral envelope with the plasma membranes of infected cells, and so viral envelop can contain lipid components of the host neuronal membranes. Therefore, interaction of SARS-CoV-2 envelope with PM is possible in water surrounding. After drying, PM can serve as a carrier for transmission of SARS-CoV-2 immobilized at their surface. Moreover, PM and SARS-CoV-2 per se can enter human organism during nasal inhalation, and they both use the same nose-to-brain delivery pathways moving along axons directly to the brain, influencing the nervous system and exocytosis/endocytosis in nerve cells. Thus, PM can aggravate neurological symptoms of SARS-CoV-2 and vice versa, due to their identical nose-to-brain delivery mechanism and possible interference of neuronal effects. In addition, different types of PM because of their ability to interact with the plasma membranes of nerve cells can facilitate unspecific SARS-CoV-2 entrance to the cells, and can influence envelope features of SARS-CoV-2. Detailed studies are required to analyze interaction of SARS-CoV-2 with PM.


Subject(s)
Air Pollution , COVID-19 , Humans , Nervous System , Particulate Matter , SARS-CoV-2
2.
J Mol Endocrinol ; 69(3): R125-R150, 2022 10 01.
Article in English | MEDLINE | ID: covidwho-1963089

ABSTRACT

Coronavirus disease 2019 (COVID-19) is well known for its respiratory complications; however, it can also cause extrapulmonary manifestations, including cardiovascular, thrombotic, renal, gastrointestinal, neurologic, and endocrinological symptoms. Endocrinological complications of COVID-19 are rare but can considerably impact the outcome of the patients. Moreover, preexisting endocrinologic disorders can affect the severity of COVID-19. Thyroid, pancreas, adrenal, neuroendocrine, gonadal, and parathyroid glands are the main endocrinologic organs that can be targeted by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Endocrinological complications of COVID-19 are rare but can significantly deteriorate the patients' prognosis. Understanding the interaction between COVID-19 and the endocrine system can provide a potential treatment option to improve the outcome of COVID-19. In this article, we aim to review the short-term and long-term organ-based endocrinological complications of COVID-19, the pathophysiology, the influence of each complication on COVID-19 prognosis, and potential therapeutic interventions based on current published data. Moreover, current clinical trials of potential endocrinological interventions to develop therapeutic strategies for COVID-19 have been discussed.


Subject(s)
COVID-19 , Endocrine Glands , COVID-19/complications , Humans , Nervous System , SARS-CoV-2
3.
4.
Indian J Pathol Microbiol ; (65 Suppl 1): S122-S124, 2022 05.
Article in English | MEDLINE | ID: covidwho-1928751

Subject(s)
Lighting , Nervous System , Humans
5.
Transl Psychiatry ; 12(1): 232, 2022 06 06.
Article in English | MEDLINE | ID: covidwho-1878520

ABSTRACT

During the Coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is universally susceptible to all types of populations. In addition to the elderly and children becoming the groups of great concern, pregnant women carrying new lives need to be even more alert to SARS-CoV-2 infection. Studies have shown that pregnant women infected with SARS-CoV-2 can lead to brain damage and post-birth psychiatric disorders in offspring. It has been widely recognized that SARS-CoV-2 can affect the development of the fetal nervous system directly or indirectly. Pregnant women are recommended to mitigate the effects of COVID-19 on the fetus through vaccination, nutritional supplements, and psychological support. This review summarizes the possible mechanisms of the nervous system effects of SARS-CoV-2 infection on their offspring during the pregnancy and analyzes the available prophylactic and treatment strategies to improve the prognosis of fetal-related neuropsychiatric diseases after birth.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Aged , Child , Female , Humans , Infectious Disease Transmission, Vertical , Nervous System , Pandemics , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/prevention & control , SARS-CoV-2
6.
Microb Pathog ; 168: 105608, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1867493

ABSTRACT

The recent pandemic, Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has devastated humanity and is continuing to threaten us. Due to the high transmissibility of this pathogen, researchers are still trying to cope with the treatment and prevention of this disease. Few of them were successful in finding cure for COVID-19 by including repurposed drugs in the treatment. In such pandemic situations, when it is nearly impossible to design and implement a new drug target, previously designed antiviral drugs could help against novel viruses, referred to as drug repurposing/redirecting/repositioning or re-profiling. This review describes the current landscape of the repurposing of antiviral drugs for COVID-19 and the impact of these drugs on our nervous system. In some cases, specific antiviral therapy has been notably associated with neurological toxicity, characterized by peripheral neuropathy, neurocognitive and neuropsychiatric effects within the central nervous system (CNS).


Subject(s)
COVID-19 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Drug Repositioning , Humans , Nervous System , SARS-CoV-2
7.
Immunity ; 55(4): 592-605, 2022 04 12.
Article in English | MEDLINE | ID: covidwho-1783432

ABSTRACT

Nonresolving inflammation contributes to many diseases, including COVID-19 in its fatal and long forms. Our understanding of inflammation is rapidly evolving. Like the immune system of which it is a part, inflammation can now be seen as an interactive component of a homeostatic network with the endocrine and nervous systems. This review samples emerging insights regarding inflammatory memory, inflammatory aging, inflammatory cell death, inflammatory DNA, inflammation-regulating cells and metabolites, approaches to resolving or modulating inflammation, and inflammatory inequity.


Subject(s)
COVID-19 , Homeostasis , Humans , Immune System/metabolism , Inflammation , Nervous System/metabolism
8.
Neuroendocrinology ; 112(11): 1046-1057, 2022.
Article in English | MEDLINE | ID: covidwho-1752953

ABSTRACT

The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has precipitated a global health crisis of unprecedented proportions. Due to its severe impact, multiple COVID-19 vaccines are being developed, approved, and manufactured rapidly. However, some serious adverse events (AEs) were reported after the application of them, significantly increasing concerns about the safety and efficacy of the vaccines and doubts about the necessity of vaccination. Particularly, previous vaccination campaigns have shown us that partial vaccination can induce neurologic AEs. Herein, we discuss in depth the involvement of the nervous system during SARS-CoV-2 infection or after vaccination. On the one hand, COVID-19 could pose an enormous threat to human neurological health through direct infection and indirect neurotoxicity effects. On the other hand, our review indicated that only a few serious neurological AEs following vaccination occurred and among which headache was the most common. Moreover, some neurological AEs do not seem to be related to vaccination. Of course, the causal relationships between several vaccines and AEs are considered plausible, and it is not doubtful that these AEs should be taken seriously by clinicians in assessing the potential risks and benefits of vaccinations in special populations. Nevertheless, in the case of the rapid spread of COVID-19, the potential side effects of vaccination on the nervous system should be compared with adverse COVID-19 outcomes rather than being considered alone. Thus, it is obviously a wise option to be vaccinated instead of suffering from serious adverse symptoms of virus infection.


Subject(s)
AIDS Vaccines , COVID-19 , Influenza Vaccines , Papillomavirus Vaccines , Respiratory Syncytial Virus Vaccines , SAIDS Vaccines , Humans , COVID-19/prevention & control , Diphtheria-Tetanus-Pertussis Vaccine , COVID-19 Vaccines/adverse effects , BCG Vaccine , Diphtheria-Tetanus Vaccine , Measles-Mumps-Rubella Vaccine , SARS-CoV-2 , Nervous System
9.
Adv Sci (Weinh) ; 9(7): e2104192, 2022 03.
Article in English | MEDLINE | ID: covidwho-1589262

ABSTRACT

Coronavirus disease 2019 (COVID-19) patients with impact on skin and hair loss are reported. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is detected in the skin of some patients; however, the detailed pathological features of skin tissues from patients infected with SARS-CoV-2 at a molecular level are limited. Especially, the ability of SARS-CoV-2 to infect skin cells and impact their function is not well understood. A proteome map of COVID-19 skin is established here and the susceptibility of human-induced pluripotent stem cell (hiPSC)-derived skin organoids with hair follicles and nervous system is investigated, to SARS-CoV-2 infection. It is shown that KRT17+ hair follicles can be infected by SARS-CoV-2 and are associated with the impaired development of hair follicles and epidermis. Different types of nervous system cells are also found to be infected, which can lead to neuron death. Findings from the present work provide evidence for the association between COVID-19 and hair loss. hiPSC-derived skin organoids are also presented as an experimental model which can be used to investigate the susceptibility of skin cells to SARS-CoV-2 infection and can help identify various pathological mechanisms and drug screening strategies.


Subject(s)
COVID-19/physiopathology , Induced Pluripotent Stem Cells/cytology , Models, Biological , Organoids/cytology , Skin/cytology , COVID-19/virology , Hair Follicle/virology , Humans , Nervous System/virology , Proteomics , SARS-CoV-2/isolation & purification
10.
Int J Dev Biol ; 65(7-8-9): 457-464, 2021.
Article in English | MEDLINE | ID: covidwho-1571997

ABSTRACT

The Spanish Society for Developmental Biology (SEBD) organized its 17th meeting in November 2020 (herein referred to as SEBD2020). This meeting, originally programmed to take place in the city of Bilbao, was forced onto an online format due to the SARS-CoV2, COVID-19 pandemic. Although, we missed the live personal interactions and missed out on the Bilbao social scene, we were able to meet online to present our work and discuss our latest results. An overview of the activities that took place around the meeting, the different scientific sessions and the speakers involved are presented here. The pros and cons of virtual meetings are discussed.


Subject(s)
Developmental Biology/methods , Developmental Biology/trends , Animals , Cell Biology/trends , Developmental Biology/education , Humans , Internet , Models, Animal , Nervous System , Peer Review , Publications , Publishing , Regeneration , Schools , Societies, Medical , Spain
11.
Clin Imaging ; 82: 13-14, 2022 02.
Article in English | MEDLINE | ID: covidwho-1517103
16.
Trends Mol Med ; 27(9): 895-906, 2021 09.
Article in English | MEDLINE | ID: covidwho-1366638

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause chronic and acute disease. Postacute sequelae of SARS-CoV-2 infection (PASC) include injury to the lungs, heart, kidneys, and brain that may produce a variety of symptoms. PASC also includes a post-coronavirus disease 2019 (COVID-19) syndrome ('long COVID') with features that can follow other acute infectious diseases and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Here we summarize what is known about the pathogenesis of ME/CFS and of 'acute' COVID-19, and we speculate that the pathogenesis of post-COVID-19 syndrome in some people may be similar to that of ME/CFS. We propose molecular mechanisms that might explain the fatigue and related symptoms in both illnesses, and we suggest a research agenda for both ME/CFS and post-COVID-19 syndrome.


Subject(s)
COVID-19/complications , Fatigue Syndrome, Chronic/etiology , COVID-19/etiology , COVID-19/physiopathology , Energy Metabolism , Fatigue Syndrome, Chronic/physiopathology , Gastrointestinal Microbiome , Humans , Nervous System/physiopathology
17.
Rev Neurosci ; 33(3): 257-268, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1357449

ABSTRACT

The COVID-19 pandemic has affected millions of people worldwide. While coronaviruses typically have low rates of neurotropic effects, the massive transmission of SARS-CoV-2 suggests that a substantial population will suffer from potential SARS-CoV-2-related neurological disorders. The rapid and recent emergence of SARS-CoV-2 means little research exists on its potential neurological effects. Here we analyze the effects of similar viruses to provide insight into the potential effects of SARS-CoV-2 on the nervous system and beyond. Seven coronavirus strains (HCoV-OC43, HCoV-HKU1, HCoV-229E, HCoV-NL63, SARS-CoV, MERS-CoV, SARS-CoV-2) can infect humans. Many of these strains cause neurological effects, such as headaches, dizziness, strokes, seizures, and critical illness polyneuropathy/myopathy. Certain studies have also linked coronaviruses with multiple sclerosis and extensive central nervous system injuries. Reviewing these studies provides insight into the anticipated effects for patients with SARS-CoV-2. This review will first describe the effects of other coronaviruses that have caused severe disease (SARS-CoV, MERS-CoV) on the nervous system, as well as their proposed origins, non-neurological effects, and neurological infection mechanisms. It will then discuss what is known about SARS-CoV-2 in these areas with reference to the aforementioned viruses, with the goal of providing a holistic picture of SARS-CoV-2.


Subject(s)
COVID-19 , Coronavirus OC43, Human , Humans , Nervous System , Pandemics , SARS-CoV-2
19.
Neurocrit Care ; 35(2): 283-290, 2021 10.
Article in English | MEDLINE | ID: covidwho-1286191

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has affected mortality and morbidity across all ages, including children. It is now known that neurological manifestations of COVID-19, ranging from headaches to stroke, may involve the central and/or peripheral nervous system at any age. Neurologic involvement is also noted in the multisystem inflammatory syndrome in children, a pediatric condition that occurs weeks after infection with the causative virus of COVID-19, severe acute respiratory syndrome coronavirus 2. Knowledge about mechanisms of neurologic disease is scarce but rapidly growing. COVID-19 neurologic manifestations may have particularly adverse impacts on the developing brain. Emerging data suggest a cohort of patients with COVID-19 will have longitudinal illness affecting their cognitive, physical, and emotional health, but little is known about the long-term impact on affected children and their families. Pediatric collaboratives have begun to provide important initial information on neuroimaging manifestations and the incidence of ischemic stroke in children with COVID 19. The Global Consortium Study of Neurologic Dysfunction in COVID-19-Pediatrics, a multinational collaborative, is working to improve understanding of the epidemiology, mechanisms of neurological manifestations, and the long-term implications of COVID-19 in children and their families.


Subject(s)
COVID-19 , Nervous System Diseases , Pediatrics , COVID-19/complications , Child , Humans , Nervous System , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
20.
Mol Neurobiol ; 58(9): 4535-4563, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1252224

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a devastating viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The incidence and mortality of COVID-19 patients have been increasing at an alarming rate. The mortality is much higher in older individuals, especially the ones suffering from respiratory distress, cardiac abnormalities, renal diseases, diabetes, and hypertension. Existing evidence demonstrated that SARS-CoV-2 makes its entry into human cells through angiotensin-converting enzyme 2 (ACE-2) followed by the uptake of virions through cathepsin L or transmembrane protease serine 2 (TMPRSS2). SARS-CoV-2-mediated abnormalities in particular cardiovascular and neurological ones and the damaged coagulation systems require extensive research to develop better therapeutic modalities. As SARS-CoV-2 uses its S-protein to enter into the host cells of several organs, the S-protein of the virus is considered as the ideal target to develop a potential vaccine. In this review, we have attempted to highlight the landmark discoveries that lead to the development of various vaccines that are currently under different stages of clinical progression. Besides, a brief account of various drug candidates that are being tested to mitigate the burden of COVID-19 was also covered. Further, in a dedicated section, the impact of SARS-CoV-2 infection on neuronal inflammation and neuronal disorders was discussed. In summary, it is expected that the content covered in this article help to understand the pathophysiology of COVID-19 and the impact on neuronal complications induced by SARS-CoV-2 infection while providing an update on the vaccine development.


Subject(s)
COVID-19 Vaccines , COVID-19/complications , Inflammation/etiology , Neurodevelopmental Disorders/etiology , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/physiology , Animals , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/physiopathology , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Vaccines/adverse effects , Cell Line , Comorbidity , Cytokine Release Syndrome/etiology , Female , Hormesis , Humans , Immunization, Passive , Infectious Disease Transmission, Vertical , Mice , Models, Neurological , Murine hepatitis virus/pathogenicity , Nervous System/virology , Nervous System Diseases/epidemiology , Nervous System Diseases/etiology , Organ Specificity , Organoids , Pregnancy , Pregnancy Complications, Infectious/virology , Receptors, Virus/physiology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Serine Endopeptidases/physiology , Spike Glycoprotein, Coronavirus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL