Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Sci Rep ; 12(1): 17966, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2087314

ABSTRACT

The gold-standard method to evaluate a functional antiviral immune response is to titer neutralizing antibodies (NAbs) against a viral pathogen. This is historically performed using an in vitro assay of virus-mediated infection, which requires BSL-3 facilities. As these are insufficient in Latin American countries, including Mexico, scant information is obtained locally about viral pathogens NAb, using a functional assay. An alternative solution to using a BSL-3 assay with live virus is to use a BSL-2-safe assay with a non-replicative pseudovirus. Pseudoviral particles can be engineered to display a selected pathogen's entry protein on their surface, and to deliver a reporter gene into target cells upon transduction. Here we comprehensively describe the first development of a BSL-2 safe NAbs-measuring functional assay in Mexico, based on the production of pseudotyped lentiviral particles. As proof-of-concept, the assay is based on Nanoluc luciferase-mediated luminescence measurements from target cells transduced with SARS-CoV-2 Spike-pseudotyped lentiviral particles. We applied the optimized assay in a BSL-2 facility to measure NAbs in 65 serum samples, which evidenced the assay with 100% sensitivity, 86.6% specificity and 96% accuracy. Overall, this is the first report of a BSL-2 safe pseudovirus-based functional assay developed in Mexico to measure NAbs, and a cornerstone methodology necessary to measure NAbs with a functional assay in limited resources settings.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Humans , SARS-CoV-2 , Neutralization Tests/methods , Spike Glycoprotein, Coronavirus/metabolism , Antibodies, Viral , Mexico , Luciferases/genetics , Antiviral Agents
2.
J Infect Chemother ; 28(12): 1704-1706, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2007850

ABSTRACT

Vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have shown high efficacy in preventing the onset of disease. However, the immune response to infection immediately after the first vaccination remains unknown. We examined the anti-SARS-CoV-2-binding-antibody titers and neutralizing activity in patients who developed coronavirus disease 2019 after the first vaccination. The amount of anti-SARS-CoV-2-binding antibodies and neutralizing activity drastically increased from the first to the second collection. Our results may provide important data on the course of immune response following vaccination.


Subject(s)
COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Neutralization Tests/methods , SARS-CoV-2 , Vaccination
3.
Methods Enzymol ; 675: 351-381, 2022.
Article in English | MEDLINE | ID: covidwho-2007357

ABSTRACT

After more than two years, COVID-19 still represents a global health burden of unprecedented extent and assessing the degree of immunity of individuals against SARS-CoV-2 remains a challenge. Virus neutralization assays represent the gold standard for assessing antibody-mediated protection against SARS-CoV-2 in sera from recovered and/or vaccinated individuals. Neutralizing antibodies block the interaction of viral spike protein with human angiotensin-converting enzyme 2 (ACE2) receptor in vitro and prevent viral entry into host cells. Classical viral neutralization assays using full replication-competent viruses are restricted to specific biosafety level 3-certified laboratories, limiting their utility for routine and large-scale applications. We developed therefore a cell-fusion-based assay building on the interaction between viral spike and ACE2 receptor expressed on two different cell lines, substantially reducing biosafety risks associated with classical viral neutralization assays. This chapter describes this simple, sensitive, safe and cost-effective approach for rapid and high-throughput evaluation of SARS-CoV-2 neutralizing antibodies relying on high-affinity NanoLuc® luciferase complementation technology (HiBiT). When applied to a variety of standards and patient samples, this method yields highly reproducible results in 96-well, as well as in 384-well format. The use of novel NanoLuc® substrates with increased signal stability like Nano-Glo® Endurazine™ furthermore allows for high flexibility in assay set-up and full automatization of all reading processes. Lastly, the assay is suitable to evaluate the neutralizing capacity of sera against the existing spike variants, and potentially variants that will emerge in the future.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , Cell Fusion , Humans , Luciferases , Neutralization Tests/methods , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
4.
Viruses ; 14(6)2022 06 18.
Article in English | MEDLINE | ID: covidwho-1964108

ABSTRACT

The global spread of SARS-CoV-2 and its variants poses a serious threat to human health worldwide. Recently, the emergence of Omicron has presented a new challenge to the prevention and control of the COVID-19 pandemic. A convenient and reliable in vitro neutralization assay is an important method for validating the efficiency of antibodies, vaccines, and other potential drugs. Here, we established an effective assay based on a pseudovirus carrying a full-length spike (S) protein of SARS-CoV-2 variants in the HIV-1 backbone, with a luciferase reporter gene inserted into the non-replicate pseudovirus genome. The key parameters for packaging the pseudovirus were optimized, including the ratio of the S protein expression plasmids to the HIV backbone plasmids and the collection time for the Alpha, Beta, Gamma, Kappa, and Omicron pseudovirus particles. The pseudovirus neutralization assay was validated using several approved or developed monoclonal antibodies, underscoring that Omicron can escape some neutralizing antibodies, such as REGN10987 and REGN10933, while S309 and ADG-2 still function with reduced neutralization capability. The neutralizing capacity of convalescent plasma from COVID-19 convalescent patients in Wuhan was tested against these pseudoviruses, revealing the immune evasion of Omicron. Our work established a practical pseudovirus-based neutralization assay for SARS-CoV-2 variants, which can be conducted safely under biosafety level-2 (BSL-2) conditions, and this assay will be a promising tool for studying and characterizing vaccines and therapeutic candidates against Omicron-included SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive , Neutralization Tests/methods , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
5.
PLoS One ; 17(7): e0272298, 2022.
Article in English | MEDLINE | ID: covidwho-1963049

ABSTRACT

Virus neutralization assays provide a means to quantitate functional antibody responses that block virus infection. These assays are instrumental in defining vaccine and therapeutic antibody potency, immune evasion by viral variants, and post-infection immunity. Here we describe the development, optimization and evaluation of a live virus microneutralization assay specific for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this assay, SARS-CoV-2 clinical isolates are pre-incubated with serial diluted antibody and added to Vero E6 cells. Replicating virus is quantitated by enzyme-linked immunosorbent assay (ELISA) targeting the SARS-CoV-2 nucleocapsid protein and the standardized 50% virus inhibition titer calculated. We evaluated critical test parameters that include virus titration, assay linearity, number of cells, viral dose, incubation period post-inoculation, and normalization methods. Virus titration at 96 hours was determined optimal to account for different growth kinetics of clinical isolates. Nucleocapsid protein levels directly correlated with virus inoculum, with the strongest correlation at 24 hours post-inoculation. Variance was minimized by infecting a cell monolayer, rather than a cell suspension. Neutralization titers modestly decreased with increasing numbers of Vero E6 cells and virus amount. Application of two different normalization models effectively reduced the intermediate precision coefficient of variance to <16.5%. The SARS-CoV-2 microneutralization assay described and evaluated here is based on the influenza virus microneutralization assay described by WHO, and are proposed as a standard assay for comparing neutralization investigations.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Humans , Neutralization Tests/methods , Nucleocapsid Proteins , Spike Glycoprotein, Coronavirus
6.
Viruses ; 14(7)2022 Jul 18.
Article in English | MEDLINE | ID: covidwho-1939023

ABSTRACT

We aimed to review the existing literature on the different types of neutralization assays and international standards for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We comprehensively summarized the serological assays for detecting neutralizing antibodies against SARS-CoV-2 and demonstrated the importance of an international standard for calibrating the measurement of neutralizing antibodies. Following the coronavirus disease outbreak in December 2019, there was an urgent demand to detect neutralizing antibodies in patients or vaccinated people to monitor disease outcomes and determine vaccine efficacy. Therefore, many approaches were developed to detect neutralizing antibodies against SARS-CoV-2, such as microneutralization assay, SARS-CoV-2 pseudotype virus assay, enzyme-linked immunosorbent assay (ELISA), and rapid lateral flow assay. Given the many types of serological assays for quantifying the neutralizing antibody titer, the comparison of different assay results is a challenge. In 2020, the World Health Organization proposed the first international standard as a common unit to define neutralizing antibody titer and antibody responses against SARS-CoV-2. These standards are useful for comparing the results of different assays and laboratories.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay , Humans , Neutralization Tests/methods , Spike Glycoprotein, Coronavirus
7.
PLoS One ; 17(2): e0262149, 2022.
Article in English | MEDLINE | ID: covidwho-1910485

ABSTRACT

There is an urgent need for better diagnostic and analytical methods for vaccine research and infection control in virology. This has been highlighted by recently emerging viral epidemics and pandemics (Zika, SARS-CoV-2), and recurring viral outbreaks like the yellow fever outbreaks in Angola and the Democratic Republic of Congo (2016) and in Brazil (2016-2018). Current assays to determine neutralising activity against viral infections in sera are costly in time and equipment and suffer from high variability. Therefore, both basic infection research and diagnostic population screenings would benefit from improved methods to determine virus-neutralising activity in patient samples. Here we describe a robust, objective, and scalable Fluorescence Reduction Neutralisation Test (FluoRNT) for yellow fever virus, relying on flow cytometric detection of cells infected with a fluorescent Venus reporter containing variant of the yellow fever vaccine strain 17D (YF-17D-Venus). It accurately measures neutralising antibody titres in human serum samples within as little as 24 h. Samples from 32 vaccinees immunised with YF-17D were tested for neutralising activity by both a conventional focus reduction neutralisation test (FRNT) and FluoRNT. Both types of tests proved to be equally reliable for the detection of neutralising activity, however, FluoRNT is significantly more precise and reproducible with a greater dynamic range than conventional FRNT. The FluoRNT assay protocol is substantially faster, easier to control, and cheaper in per-assay costs. FluoRNT additionally reduces handling time minimising exposure of personnel to patient samples. FluoRNT thus brings a range of desirable features that can accelerate and standardise the measurement of neutralising anti-yellow fever virus antibodies. It could be used in applications ranging from vaccine testing to large cohort studies in systems virology and vaccinology. We also anticipate the potential to translate the methodology and analysis of FluoRNT to other flaviviruses such as West Nile, Dengue and Zika or to RNA viruses more generally.


Subject(s)
Antibodies, Neutralizing/immunology , Yellow Fever/immunology , Yellow fever virus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , Chlorocebus aethiops , Fluorescence , Humans , Neutralization Tests/economics , Neutralization Tests/methods , Vero Cells , Yellow Fever/blood , Yellow Fever/virology
8.
J Clin Microbiol ; 60(7): e0037622, 2022 07 20.
Article in English | MEDLINE | ID: covidwho-1874498

ABSTRACT

Measuring SARS-CoV-2 neutralizing antibodies after vaccination or natural infection remains a priority in the ongoing COVID-19 pandemic to determine immunity, especially against newly emerging variants. The gold standard for assessing antibody-mediated immunity against SARS-CoV-2 are cell-based live virus neutralization assays. These assays usually take several days, thereby limiting test capacities and the availability of rapid results. In this study, therefore, we developed a faster live virus assay, which detects neutralizing antibodies through the early measurement of antibody-mediated intracellular virus reduction by SARS-CoV-2 qRT-PCR. In our assay, Vero E6 cells are infected with virus isolates preincubated with patient sera and controls. After 24 h, the intracellular viral load is determined by qRT-PCR using a standard curve to calculate percent neutralization. Utilizing COVID-19 convalescent-phase sera, we show that our novel assay generates results with high sensitivity and specificity as we detected antiviral activity for all tested convalescent-phase sera, but no antiviral activity in prepandemic sera. The assay showed a strong correlation with a conventional virus neutralization assay (rS = 0.8910), a receptor-binding domain ELISA (rS = 0.8485), and a surrogate neutralization assay (rS = 0.8373), proving that quantifying intracellular viral RNA can be used to measure seroneutralization. Our assay can be adapted easily to new variants, as demonstrated by our cross-neutralization experiments. This characteristic is key for rapidly determining immunity against newly emerging variants. Taken together, the novel assay presented here reduces turnaround time significantly while making use of a highly standardized and sensitive SARS-CoV-2 qRT-PCR method as a readout.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/diagnosis , Humans , Neutralization Tests/methods , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
10.
Methods Mol Biol ; 2452: 361-378, 2022.
Article in English | MEDLINE | ID: covidwho-1844276

ABSTRACT

SARS-CoV-2 has emerged as a significant cause of morbidity and mortality worldwide. Virus neutralization assays are critical for the development and evaluation of vaccines and immunotherapeutics, as well as for conducting basic research into the immune response, spread, and pathogenesis of this disease. However, neutralization assays traditionally require the use of infectious virus which must be carefully handled in a BSL-3 setting, thus complicating the assay and restricting its use to labs with access to BSL-3 facilities. Pseudovirus-based assays are an alternative to the use of infectious virus. SARS-CoV-2 pseudovirus contains only the spike structural protein, and infection results in a single round of replication, thus allowing for the assay to be run safely under BSL-2 conditions. In this chapter, we describe protocols and considerations for the production and titration of lentivirus-based SARS-CoV-2 pseudovirus, as well as for running and analysis of FACS-based pseudovirus neutralization assays.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Humans , Neutralization Tests/methods , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
11.
PLoS One ; 16(4): e0250780, 2021.
Article in English | MEDLINE | ID: covidwho-1833531

ABSTRACT

The spike protein receptor-binding domain (RBD) of SARS-CoV-2 is the molecular target for many vaccines and antibody-based prophylactics aimed at bringing COVID-19 under control. Such a narrow molecular focus raises the specter of viral immune evasion as a potential failure mode for these biomedical interventions. With the emergence of new strains of SARS-CoV-2 with altered transmissibility and immune evasion potential, a critical question is this: how easily can the virus escape neutralizing antibodies (nAbs) targeting the spike RBD? To answer this question, we combined an analysis of the RBD structure-function with an evolutionary modeling framework. Our structure-function analysis revealed that epitopes for RBD-targeting nAbs overlap one another substantially and can be evaded by escape mutants with ACE2 affinities comparable to the wild type, that are observed in sequence surveillance data and infect cells in vitro. This suggests that the fitness cost of nAb-evading mutations is low. We then used evolutionary modeling to predict the frequency of immune escape before and after the widespread presence of nAbs due to vaccines, passive immunization or natural immunity. Our modeling suggests that SARS-CoV-2 mutants with one or two mildly deleterious mutations are expected to exist in high numbers due to neutral genetic variation, and consequently resistance to vaccines or other prophylactics that rely on one or two antibodies for protection can develop quickly -and repeatedly- under positive selection. Predicted resistance timelines are comparable to those of the decay kinetics of nAbs raised against vaccinal or natural antigens, raising a second potential mechanism for loss of immunity in the population. Strategies for viral elimination should therefore be diversified across molecular targets and therapeutic modalities.


Subject(s)
COVID-19/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites/genetics , COVID-19/metabolism , Epitopes/immunology , Evolution, Molecular , Humans , Immune Evasion/immunology , Models, Molecular , Neutralization Tests/methods , Peptidyl-Dipeptidase A/metabolism , Protein Binding/genetics , Protein Domains/genetics , Receptors, Virus/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship
12.
J Clin Virol ; 152: 105169, 2022 07.
Article in English | MEDLINE | ID: covidwho-1804471

ABSTRACT

The virus neutralization test (VNT) is the reference for the assessment of the functional ability of neutralizing antibodies (NAb) to block SARS-CoV-2 entry into cells. New competitive immunoassays measuring antibodies preventing interaction between the spike protein and its cellular receptor are proposed as surrogate VNT (sVNT). We tested three commercial sVNT (a qualitative immunochromatographic test and two quantitative immunoassays named YHLO and TECO) together with a conventional anti-spike IgG assay (bioMérieux) in comparison with an in-house plaque reduction neutralization test (PRNT50) using the original 19A strain and different variants of concern (VOC), on a panel of 306 sera from naturally-infected or vaccinated patients. The qualitative test was rapidly discarded because of poor sensitivity and specificity. Areas under the curve of YHLO and TECO assays were, respectively, 85.83 and 84.07 (p-value >0.05) using a positivity threshold of 20 for PRNT50, and 95.63 and 90.35 (p-value =0.02) using a threshold of 80. However, the performances of YHLO and bioMérieux were very close for both thresholds, demonstrating the absence of added value of sVNT compared to a conventional assay for the evaluation of the presence of NAb in seropositive subjects. In addition, the PRNT50 assay showed a reduction of NAb titers towards different VOC in comparison to the 19A strain that could not be appreciated by the commercial tests. Despite the good correlation between the anti-spike antibody titer and the titer of NAb by PRNT50, our results highlight the difficulty to distinguish true NAb among the anti-RBD antibodies with commercial user-friendly immunoassays.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/diagnosis , Humans , Neutralization Tests/methods
13.
J Immunol Methods ; 504: 113258, 2022 05.
Article in English | MEDLINE | ID: covidwho-1739956

ABSTRACT

A quantitative, high throughput, fully automated diagnostic method for the detection of neutralizing anti-SARS-CoV-2 antibodies was developed on the Phadia system based on the interaction of SARS-CoV-2 S1 protein and the human ACE-2 receptor. This method was compared to the current state of the art plaque reduction neutralization test (PRNT) and a high correlation between the two methods was observed. Using a large cohort of blood samples from convalescent patients and controls the method displays very high sensitivity and specificity (99,8% and 99.99%, respectively). Neutralizing antibody titers of mRNA-1273 and BNT162b2-vaccinated persons can also be quantified with this method as well. This fully automated method provides the possibility to determine anti-SARS-CoV-2 neutralizing antibody concentrations in just 2  h.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/diagnosis , Humans , Neutralization Tests/methods
14.
Proc Natl Acad Sci U S A ; 119(11): e2122954119, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1721790

ABSTRACT

SignificanceSARS-CoV-2 continues to evolve through emerging variants, more frequently observed with higher transmissibility. Despite the wide application of vaccines and antibodies, the selection pressure on the Spike protein may lead to further evolution of variants that include mutations that can evade immune response. To catch up with the virus's evolution, we introduced a deep learning approach to redesign the complementarity-determining regions (CDRs) to target multiple virus variants and obtained an antibody that broadly neutralizes SARS-CoV-2 variants.


Subject(s)
Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/pharmacology , COVID-19 Vaccines/immunology , Complementarity Determining Regions , Deep Learning , Epitopes/immunology , Humans , Immunotherapy/methods , Neutralization Tests/methods , Protein Domains , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
15.
Vaccine ; 40(13): 1958-1967, 2022 03 18.
Article in English | MEDLINE | ID: covidwho-1683655

ABSTRACT

SARS-CoV-2, the cause of the COVID-19 pandemic, has provoked a global crisis and death of millions of people. Several serological assays to determine the quality of the immune response against SARS-CoV-2 and the efficacy of vaccines have been developed, among them the gold standard conventional virus neutralization assays. However, these tests are time consuming, require biosafety level 3 (BSL3), and are low throughput and expensive. This has motivated the development of alternative methods, including molecular inhibition assays. Herein, we present a safe cell-based ELISA-virus neutralization test (cbE-VNT) as a surrogate for the conventional viral neutralization assays that detects the inhibition of SARS-CoV-2 RBD binding to ACE2-bearing cells independently of species. Our test shows a very good correlation with the conventional and molecular neutralization assays and achieves 100% specificity and 95% sensitivity. cbE-VNT is cost-effective, fast and enables a large-scale serological evaluation that can be performed in a BSL2 laboratory, allowing its use in pre-clinical and clinical investigations.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Humans , Neutralization Tests/methods , Pandemics/prevention & control , Spike Glycoprotein, Coronavirus
16.
Viruses ; 14(2)2022 02 03.
Article in English | MEDLINE | ID: covidwho-1674819

ABSTRACT

Anti-SARS-CoV-2-specific serological responses are a topic of ongoing evaluation studies. In the study presented here, the anti-SARS-CoV-2 surrogate neutralization assays by TECOmedical and DiaPROPH -Med were assessed in a head-to-head comparison with serum samples of individuals after vaccination as well as after previous infection with SARS-CoV-2. In case of discordant results, a cell culture-based neutralization assay was applied as a reference standard. The TECOmedical assay showed sensitivity and specificity of 100% and 61.3%, respectively, the DiaPROPH-Med assay 95.0% and 48.4%, respectively. As a side finding of the study, differences in the likelihood of expressing neutralizing antibodies could be shown for different exposition types. So, 60 of 81 (74.07%) of the samples with only one vaccination showed an expression of neutralizing antibodies in contrast to 85.71% (60 of 70 samples) of the samples with two vaccinations and 100% (40 of 40) of the samples from previously infected individuals. In conclusion, the both assays showed results similar to previous assessments. While the measured diagnostic accuracy of both assays requires further technical improvement of this diagnostic approach, as the calculated specificity values of 61.3% and 48.4%, respectively, appear acceptable for diagnostic use only in populations with a high percentage of positive subjects, but not at expectedly low positivity rates.


Subject(s)
Antibodies, Viral/blood , COVID-19/epidemiology , Neutralization Tests/methods , Neutralization Tests/standards , SARS-CoV-2/immunology , Vaccination/statistics & numerical data , Antibodies, Neutralizing/blood , COVID-19/immunology , Humans , Longitudinal Studies , Reference Standards , Sensitivity and Specificity
17.
mSphere ; 7(1): e0088321, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1673356

ABSTRACT

Considering the urgent demand for faster methods to quantify neutralizing antibody titers in patients with coronavirus (CoV) disease 2019 (COVID-19), developing an analytical model or method to replace the conventional virus neutralization test (NT) is essential. Moreover, a "COVID-19 immunity passport" is currently being proposed as a certification for people who travel internationally. Therefore, an enzyme-linked immunosorbent assay (ELISA) was designed to detect severe acute respiratory syndrome CoV 2 (SARS-CoV-2)-neutralizing antibodies in serum, which is based on the binding affinity of SARS-CoV-2 viral spike protein 1 (S1) and the viral spike protein receptor-binding domain (RBD) to antibodies. The RBD is considered the major binding region of neutralizing antibodies. Furthermore, S1 covers the RBD and several other regions, which are also important for neutralizing antibody binding. In this study, we assessed 144 clinical specimens, including those from patients with PCR-confirmed SARS-CoV-2 infections and healthy donors, using both the NT and ELISA. The ELISA results analyzed by spline regression and the two-variable generalized additive model precisely reflected the NT value, and the correlation between predicted and actual NT values was as high as 0.917. Therefore, our method serves as a surrogate to quantify neutralizing antibody titer. The analytic method and platform used in this study present a new perspective for serological testing of SARS-CoV-2 infection and have clinical potential to assess vaccine efficacy. IMPORTANCE Herein, we present a new approach for serological testing for SARS-CoV-2 antibodies using innovative laboratory methods that demonstrate a combination of biology and mathematics. The traditional virus neutralization test is the gold standard method; however, it is time-consuming and poses a risk to medical personnel. Thus, there is a demand for methods that rapidly quantify neutralizing antibody titers in patients with COVID-19 or examine vaccine efficacy at a biosafety level 2 containment facility. Therefore, we used a two-variable generalized additive model to analyze the results of the enzyme-linked immunosorbent assay and found the method to serve as a surrogate to quantify neutralizing antibody titers. This methodology has potential for clinical use in assessing vaccine efficacy.


Subject(s)
Antibodies, Neutralizing/blood , COVID-19/immunology , Enzyme-Linked Immunosorbent Assay , Models, Immunological , Models, Statistical , Neutralization Tests/methods , SARS-CoV-2/immunology , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , Case-Control Studies , Humans , Regression Analysis
18.
Front Immunol ; 12: 808932, 2021.
Article in English | MEDLINE | ID: covidwho-1662585

ABSTRACT

Spike-specific antibodies are central to effective COVID19 immunity. Research efforts have focused on antibodies that neutralize the ACE2-Spike interaction but not on non-neutralizing antibodies. Antibody-dependent phagocytosis is an immune mechanism enhanced by opsonization, where typically, more bound antibodies trigger a stronger phagocyte response. Here, we show that Spike-specific antibodies, dependent on concentration, can either enhance or reduce Spike-bead phagocytosis by monocytes independently of the antibody neutralization potential. Surprisingly, we find that both convalescent patient plasma and patient-derived monoclonal antibodies lead to maximum opsonization already at low levels of bound antibodies and is reduced as antibody binding to Spike protein increases. Moreover, we show that this Spike-dependent modulation of opsonization correlate with the outcome in an experimental SARS-CoV-2 infection model. These results suggest that the levels of anti-Spike antibodies could influence monocyte-mediated immune functions and propose that non-neutralizing antibodies could confer protection to SARS-CoV-2 infection by mediating phagocytosis.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Phagocytosis/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal/immunology , Cell Line , HEK293 Cells , Humans , Neutralization Tests/methods
19.
Nat Commun ; 13(1): 462, 2022 01 24.
Article in English | MEDLINE | ID: covidwho-1650125

ABSTRACT

As a result of the SARS-CoV-2 pandemic numerous scientific groups have generated antibodies against a single target: the CoV-2 spike antigen. This has provided an unprecedented opportunity to compare the efficacy of different methods and the specificities and qualities of the antibodies generated by those methods. Generally, the most potent neutralizing antibodies have been generated from convalescent patients and immunized animals, with non-immune phage libraries usually yielding significantly less potent antibodies. Here, we show that it is possible to generate ultra-potent (IC50 < 2 ng/ml) human neutralizing antibodies directly from a unique semisynthetic naïve antibody library format with affinities, developability properties and neutralization activities comparable to the best from hyperimmune sources. This demonstrates that appropriately designed and constructed naïve antibody libraries can effectively compete with immunization to directly provide therapeutic antibodies against a viral pathogen, without the need for immune sources or downstream optimization.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antibody Affinity/immunology , COVID-19/epidemiology , COVID-19/virology , Chlorocebus aethiops , Humans , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Neutralization Tests/methods , Pandemics , Peptide Library , Protein Binding , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Single-Chain Antibodies/immunology , Single-Chain Antibodies/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
20.
Nat Commun ; 13(1): 405, 2022 01 20.
Article in English | MEDLINE | ID: covidwho-1631967

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the pandemic of the coronavirus induced disease 2019 (COVID-19) with evolving variants of concern. It remains urgent to identify novel approaches against broad strains of SARS-CoV-2, which infect host cells via the entry receptor angiotensin-converting enzyme 2 (ACE2). Herein, we report an increase in circulating extracellular vesicles (EVs) that express ACE2 (evACE2) in plasma of COVID-19 patients, which levels are associated with severe pathogenesis. Importantly, evACE2 isolated from human plasma or cells neutralizes SARS-CoV-2 infection by competing with cellular ACE2. Compared to vesicle-free recombinant human ACE2 (rhACE2), evACE2 shows a 135-fold higher potency in blocking the binding of the viral spike protein RBD, and a 60- to 80-fold higher efficacy in preventing infections by both pseudotyped and authentic SARS-CoV-2. Consistently, evACE2 protects the hACE2 transgenic mice from SARS-CoV-2-induced lung injury and mortality. Furthermore, evACE2 inhibits the infection of SARS-CoV-2 variants (α, ß, and δ) with equal or higher potency than for the wildtype strain, supporting a broad-spectrum antiviral mechanism of evACE2 for therapeutic development to block the infection of existing and future coronaviruses that use the ACE2 receptor.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , COVID-19/immunology , Extracellular Vesicles/immunology , SARS-CoV-2/immunology , A549 Cells , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/blood , COVID-19/epidemiology , Chlorocebus aethiops , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , HEK293 Cells , HeLa Cells , Humans , Mice, Transgenic , Neutralization Tests/methods , Pandemics/prevention & control , Protein Binding , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Survival Analysis , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL