Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Dis Markers ; 2021: 6304189, 2021.
Article in English | MEDLINE | ID: covidwho-1553755

ABSTRACT

Background: Early identification of patients with severe coronavirus disease (COVID-19) at an increased risk of progression may promote more individualized treatment schemes and optimize the use of medical resources. This study is aimed at investigating the utility of the C-reactive protein to albumin (CRP/Alb) ratio for early risk stratification of patients. Methods: We retrospectively reviewed 557 patients with COVID-19 with confirmed outcomes (discharged or deceased) admitted to the West Court of Union Hospital, Wuhan, China, between January 29, 2020 and April 8, 2020. Patients with severe COVID-19 (n = 465) were divided into stable (n = 409) and progressive (n = 56) groups according to whether they progressed to critical illness or death during hospitalization. To predict disease progression, the CRP/Alb ratio was evaluated on admission. Results: The levels of new biomarkers, including neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, CRP/Alb ratio, and systemic immune-inflammation index, were higher in patients with progressive disease than in those with stable disease. Correlation analysis showed that the CRP/Alb ratio had the strongest positive correlation with the sequential organ failure assessment score and length of hospital stay in survivors. Multivariate logistic regression analysis showed that percutaneous oxygen saturation (SpO2), D-dimer levels, and the CRP/Alb ratio were risk factors for disease progression. To predict clinical progression, the areas under the receiver operating characteristic curves of Alb, CRP, CRP/Alb ratio, SpO2, and D-dimer were 0.769, 0.838, 0.866, 0.107, and 0.748, respectively. Moreover, patients with a high CRP/Alb ratio (≥1.843) had a markedly higher rate of clinical deterioration (log - rank p < 0.001). A higher CRP/Alb ratio (≥1.843) was also closely associated with higher rates of hospital mortality, ICU admission, invasive mechanical ventilation, and a longer hospital stay. Conclusion: The CRP/Alb ratio can predict the risk of progression to critical disease or death early, providing a promising prognostic biomarker for risk stratification and clinical management of patients with severe COVID-19.


Subject(s)
C-Reactive Protein/metabolism , COVID-19/diagnosis , Coronary Disease/diagnosis , Hypertension/diagnosis , Pulmonary Disease, Chronic Obstructive/diagnosis , SARS-CoV-2/pathogenicity , Serum Albumin, Human/metabolism , Aged , Area Under Curve , Biomarkers/blood , Blood Platelets/pathology , Blood Platelets/virology , COVID-19/epidemiology , COVID-19/mortality , COVID-19/virology , China/epidemiology , Comorbidity , Coronary Disease/epidemiology , Coronary Disease/mortality , Coronary Disease/virology , Disease Progression , Early Diagnosis , Female , Fibrin Fibrinogen Degradation Products/metabolism , Humans , Hypertension/epidemiology , Hypertension/mortality , Hypertension/virology , Length of Stay/statistics & numerical data , Lymphocytes/pathology , Lymphocytes/virology , Male , Middle Aged , Neutrophils/pathology , Neutrophils/virology , Prognosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/mortality , Pulmonary Disease, Chronic Obstructive/virology , ROC Curve , Retrospective Studies , SARS-CoV-2/growth & development , Severity of Illness Index , Survival Analysis
2.
Shock ; 56(3): 345-351, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1410907

ABSTRACT

ABSTRACT: Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been spread around the world and is currently affecting global public health. Clinical evidence indicates that the elevated number of peripheral neutrophils and higher ratio of neutrophils-to-lymphocytes are correlated with severe outcomes in COVID-19 patients, suggesting the possible immunopathological role of neutrophils during SARS-CoV-2 infection. As an abundant innate immune cell type, neutrophils are well known for their contributions to antimicrobial defense. However, their dysfunction is also associated with different inflammatory signatures during the pathogenesis of infection. Herein, in this mini-review, we summarize the recent progress on the potential role of neutrophils during COVID-19-associated inflammatory responses. In particular, we highlight the interactions between neutrophils and viruses as well as the relationship of neutrophils with cytokine storm and thrombosis in COVID-19 patients. Lastly, we discuss the importance of neutrophils as potential therapeutic targets for COVID-19.


Subject(s)
COVID-19/immunology , COVID-19/virology , Neutrophils/virology , SARS-CoV-2 , Animals , Cytokine Release Syndrome , Cytokines/immunology , Humans , Immune System , Immunity, Innate , Inflammation , Intercellular Adhesion Molecule-1/immunology , Lymphocytes/immunology , Mice , Neutrophils/metabolism , Pathogen-Associated Molecular Pattern Molecules/immunology , Thrombosis
3.
PLoS Pathog ; 17(9): e1009850, 2021 09.
Article in English | MEDLINE | ID: covidwho-1394562

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) is caused by the betacoronavirus Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus that can mediate asymptomatic or fatal infections characterized by pneumonia, acute respiratory distress syndrome (ARDS), and multi-organ failure. Several studies have highlighted the importance of B and T lymphocytes, given that neutralizing antibodies and T cell responses are required for an effective immunity. In addition, other reports have described myeloid cells such as macrophages and monocytes play a major role in the immunity against SARS-CoV-2 as well as dysregulated pro-inflammatory signature that characterizes severe COVID-19. During COVID-19, neutrophils have been defined as a heterogeneous group of cells, functionally linked to severe inflammation and thrombosis triggered by degranulation and NETosis, but also to suppressive phenotypes. The physiological role of suppressive neutrophils during COVID-19 and their implications in severe disease have been poorly studied and is not well understood. Here, we discuss the current evidence regarding the role of neutrophils with suppressive properties such as granulocytic myeloid-derived suppressor cells (G-MDSCs) and their possible role in suppressing CD4+ and CD8+ T lymphocytes expansion and giving rise to lymphopenia in severe COVID-19 infection.


Subject(s)
COVID-19/immunology , Lymphopenia/complications , Neutrophils/immunology , SARS-CoV-2/physiology , Animals , COVID-19/blood , COVID-19/complications , Humans , Lymphopenia/blood , Lymphopenia/immunology , Neutrophils/virology , SARS-CoV-2/immunology , Severity of Illness Index
4.
J Med Virol ; 93(9): 5438-5445, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1363683

ABSTRACT

Adequate maternal selenium level is essential for immune response and healthy pregnancy. This study aimed to shed light on the selenium status of pregnant women with COVID-19 and the effects of potential deficiency in serum selenium levels. Totally 141 pregnant women, 71 of them were COVID-19 patients, in different trimesters were included in the study. Maternal serum selenium levels, demographic and clinical parameters were determined. Serum selenium levels of pregnant women in the second (p: .0003) and third (p: .001) trimesters with COVID-19 were significantly lower than in the healthy group. Maternal selenium level was found to be negatively correlated with gestational week (p < .0001, r: -.541), D-dimer (p: .0002, r: -.363) and interleukin-6 (IL-6) level (p: .02, r: -.243). In the second trimester, serum selenium level positively correlated with white blood cell (p: .002, r: .424), neutrophil (p: .006, r: .39), lymphocyte (p: .004, r: .410) count and hemoglobin (p: .02, r: .323), hematocrit (p: .008, r: .38) status. In the third trimester, it was found that maternal selenium level positively correlated with monocyte (p: .04, r: .353) and negatively correlated with C-reactive protein level (p: .03, r: -.384). Serum selenium level was gradually decreased during the pregnancy period, however, this natural decrease was enhanced together with COVID-19 infection. The reason might be increased selenium needs depended on the immune response against infection. The decrease in maternal selenium level was found to be related to IL-6 and D-dimer levels, which indicate selenium's role in disease progression.


Subject(s)
COVID-19/blood , COVID-19/immunology , Pregnancy Trimesters/blood , SARS-CoV-2/pathogenicity , Selenium/blood , Adult , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19/virology , Case-Control Studies , Female , Fibrin Fibrinogen Degradation Products/metabolism , Hematocrit , Hemoglobins/metabolism , Humans , Interleukin-6/blood , Lymphocytes/immunology , Lymphocytes/virology , Monocytes/immunology , Monocytes/virology , Neutrophils/immunology , Neutrophils/virology , Pregnancy , Pregnancy Trimesters/immunology , Severity of Illness Index
5.
Int J Mol Sci ; 22(16)2021 Aug 17.
Article in English | MEDLINE | ID: covidwho-1360774

ABSTRACT

Neutrophil extracellular traps (NETs), built from mitochondrial or nuclear DNA, proteinases, and histones, entrap and eliminate pathogens in the course of bacterial or viral infections. Neutrophils' activation and the formation of NETs have been described as major risk factors for acute lung injury, multi-organ damage, and mortality in COVID-19 disease. NETs-related lung injury involves both epithelial and endothelial cells, as well as the alveolar-capillary barrier. The markers for NETs formation, such as circulating DNA, neutrophil elastase (NE) activity, or myeloperoxidase-DNA complexes, were found in lung specimens of COVID-19 victims, as well as in sera and tracheal aspirates obtained from COVID-19 patients. DNA threads form large conglomerates causing local obstruction of the small bronchi and together with NE are responsible for overproduction of mucin by epithelial cells. Various components of NETs are involved in the pathogenesis of cytokine storm in SARS-CoV-2 pulmonary disease. NETs are responsible for the interplay between inflammation and thrombosis in the affected lungs. The immunothrombosis, stimulated by NETs, has a poor prognostic significance. Better understanding of the role of NETs in the course of COVID-19 can help to develop novel approaches to the therapeutic interventions in this condition.


Subject(s)
COVID-19/immunology , Extracellular Traps/virology , Lung/immunology , Neutrophils/immunology , SARS-CoV-2/immunology , COVID-19/pathology , COVID-19/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , Endothelial Cells/pathology , Epithelial Cells/pathology , Extracellular Traps/immunology , Histones/immunology , Humans , Leukocyte Elastase/deficiency , Leukocyte Elastase/immunology , Lung/pathology , Lung/virology , Neutrophil Activation , Neutrophils/virology , Peroxidase/immunology
6.
Mol Syst Biol ; 17(9): e10426, 2021 09.
Article in English | MEDLINE | ID: covidwho-1355289

ABSTRACT

Although 15-20% of COVID-19 patients experience hyper-inflammation induced by massive cytokine production, cellular triggers of this process and strategies to target them remain poorly understood. Here, we show that the N-terminal domain (NTD) of the SARS-CoV-2 spike protein substantially induces multiple inflammatory molecules in myeloid cells and human PBMCs. Using a combination of phenotypic screening with machine learning-based modeling, we identified and experimentally validated several protein kinases, including JAK1, EPHA7, IRAK1, MAPK12, and MAP3K8, as essential downstream mediators of NTD-induced cytokine production, implicating the role of multiple signaling pathways in cytokine release. Further, we found several FDA-approved drugs, including ponatinib, and cobimetinib as potent inhibitors of the NTD-mediated cytokine release. Treatment with ponatinib outperforms other drugs, including dexamethasone and baricitinib, inhibiting all cytokines in response to the NTD from SARS-CoV-2 and emerging variants. Finally, ponatinib treatment inhibits lipopolysaccharide-mediated cytokine release in myeloid cells in vitro and lung inflammation mouse model. Together, we propose that agents targeting multiple kinases required for SARS-CoV-2-mediated cytokine release, such as ponatinib, may represent an attractive therapeutic option for treating moderate to severe COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Cytokines/metabolism , Host-Pathogen Interactions/physiology , Animals , Azetidines/pharmacology , Host-Pathogen Interactions/drug effects , Humans , Imidazoles/pharmacology , Interleukin-1 Receptor-Associated Kinases/metabolism , Janus Kinase 1/metabolism , Lipopolysaccharides/toxicity , Machine Learning , Male , Mice , Mice, Inbred C57BL , Neutrophils/virology , Protein Kinase Inhibitors/pharmacology , Purines/pharmacology , Pyrazoles/pharmacology , Pyridazines/pharmacology , RAW 264.7 Cells , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Sulfonamides/pharmacology
7.
Dis Markers ; 2021: 5566826, 2021.
Article in English | MEDLINE | ID: covidwho-1341351

ABSTRACT

An excess formation of neutrophil extracellular traps (NETs), previously shown to be strongly associated with cytokine storm and acute respiratory distress syndrome (ARDS) with prevalent endothelial dysfunction and thrombosis, has been postulated to be a central factor influencing the pathophysiology and clinical presentation of severe COVID-19. A growing number of serological and morphological evidence has added to this assumption, also in regard to potential treatment options. In this study, we used immunohistochemistry and histochemistry to trace NETs and their molecular markers in autopsy lung tissue from seven COVID-19 patients. Quantification of key immunomorphological features enabled comparison with non-COVID-19 diffuse alveolar damage. Our results strengthen and extend recent findings, confirming that NETs are abundantly present in seriously damaged COVID-19 lung tissue, especially in association with microthrombi of the alveolar capillaries. In addition, we provide evidence that low-density neutrophils (LDNs), which are especially prone to NETosis, contribute substantially to COVID-19-associated lung damage in general and vascular blockages in particular.


Subject(s)
COVID-19/pathology , Extracellular Traps , Lung Injury/pathology , Neutrophils/pathology , Aged , Aged, 80 and over , Antigens, CD/metabolism , Autopsy , Cell Adhesion Molecules/metabolism , Extracellular Traps/virology , Female , GPI-Linked Proteins/metabolism , Humans , Immunohistochemistry , Lung/pathology , Lung/virology , Lung Injury/virology , Male , Neutrophils/metabolism , Neutrophils/virology , Peroxidase/metabolism
8.
Cells ; 10(8)2021 07 29.
Article in English | MEDLINE | ID: covidwho-1339532

ABSTRACT

Neutrophils act as the first line of defense during infection and inflammation. Once activated, they are able to fulfil numerous tasks to fight inflammatory insults while keeping a balanced immune response. Besides well-known functions, such as phagocytosis and degranulation, neutrophils are also able to release "neutrophil extracellular traps" (NETs). In response to most stimuli, the neutrophils release decondensed chromatin in a NADPH oxidase-dependent manner decorated with histones and granule proteins, such as neutrophil elastase, myeloperoxidase, and cathelicidins. Although primarily supposed to prevent microbial dissemination and fight infections, there is increasing evidence that an overwhelming NET response correlates with poor outcome in many diseases. Lung-related diseases especially, such as bacterial pneumonia, cystic fibrosis, chronic obstructive pulmonary disease, aspergillosis, influenza, and COVID-19, are often affected by massive NET formation. Highly vascularized areas as in the lung are susceptible to immunothrombotic events promoted by chromatin fibers. Keeping this fragile equilibrium seems to be the key for an appropriate immune response. Therapies targeting dysregulated NET formation might positively influence many disease progressions. This review highlights recent findings on the pathophysiological influence of NET formation in different bacterial, viral, and non-infectious lung diseases and summarizes medical treatment strategies.


Subject(s)
Extracellular Traps/immunology , Neutrophils/immunology , Pneumonia/immunology , COVID-19/immunology , Disease Progression , Humans , Neutrophils/microbiology , Neutrophils/virology , Pneumonia/microbiology , Pneumonia/pathology , Pneumonia/virology
10.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Article in English | MEDLINE | ID: covidwho-1285962

ABSTRACT

IgA is the second most abundant antibody present in circulation and is enriched at mucosal surfaces. As such, IgA plays a key role in protection against a variety of mucosal pathogens including viruses. In addition to neutralizing viruses directly, IgA can also stimulate Fc-dependent effector functions via engagement of Fc alpha receptors (Fc-αRI) expressed on the surface of certain immune effector cells. Neutrophils are the most abundant leukocyte, express Fc-αRI, and are often the first to respond to sites of injury and infection. Here, we describe a function for IgA-virus immune complexes (ICs) during viral infections. We show that IgA-virus ICs potentiate NETosis-the programmed cell-death pathway through which neutrophils release neutrophil extracellular traps (NETs). Mechanistically, IgA-virus ICs potentiated a suicidal NETosis pathway via engagement of Fc-αRI on neutrophils through a toll-like receptor-independent, NADPH oxidase complex-dependent pathway. NETs also were capable of trapping and inactivating viruses, consistent with an antiviral function.


Subject(s)
Extracellular Traps/immunology , Immunoglobulin A/immunology , Neutrophils/immunology , Virus Diseases/immunology , Antigen-Antibody Complex/immunology , Antigens, CD/metabolism , Extracellular Traps/virology , Humans , Influenzavirus A/immunology , NADPH Oxidases/metabolism , Neutrophils/pathology , Neutrophils/virology , Receptors, Fc/metabolism , SARS-CoV-2/immunology , Signal Transduction , Virion
11.
J Exp Med ; 218(8)2021 08 02.
Article in English | MEDLINE | ID: covidwho-1269483

ABSTRACT

Our understanding of protective versus pathological immune responses to SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is limited by inadequate profiling of patients at the extremes of the disease severity spectrum. Here, we performed multi-omic single-cell immune profiling of 64 COVID-19 patients across the full range of disease severity, from outpatients with mild disease to fatal cases. Our transcriptomic, epigenomic, and proteomic analyses revealed widespread dysfunction of peripheral innate immunity in severe and fatal COVID-19, including prominent hyperactivation signatures in neutrophils and NK cells. We also identified chromatin accessibility changes at NF-κB binding sites within cytokine gene loci as a potential mechanism for the striking lack of pro-inflammatory cytokine production observed in monocytes in severe and fatal COVID-19. We further demonstrated that emergency myelopoiesis is a prominent feature of fatal COVID-19. Collectively, our results reveal disease severity-associated immune phenotypes in COVID-19 and identify pathogenesis-associated pathways that are potential targets for therapeutic intervention.


Subject(s)
COVID-19/blood , COVID-19/immunology , Immunity, Innate/physiology , Adult , Aged , COVID-19/genetics , COVID-19/mortality , Case-Control Studies , Cytokines/genetics , Epigenesis, Genetic , Female , Hematopoiesis , Humans , Killer Cells, Natural/pathology , Killer Cells, Natural/virology , Male , Middle Aged , Monocytes/pathology , Monocytes/virology , NF-kappa B/metabolism , Neutrophils/pathology , Neutrophils/virology , Proteomics , Severity of Illness Index , Single-Cell Analysis
12.
J Med Virol ; 93(9): 5438-5445, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1230212

ABSTRACT

Adequate maternal selenium level is essential for immune response and healthy pregnancy. This study aimed to shed light on the selenium status of pregnant women with COVID-19 and the effects of potential deficiency in serum selenium levels. Totally 141 pregnant women, 71 of them were COVID-19 patients, in different trimesters were included in the study. Maternal serum selenium levels, demographic and clinical parameters were determined. Serum selenium levels of pregnant women in the second (p: .0003) and third (p: .001) trimesters with COVID-19 were significantly lower than in the healthy group. Maternal selenium level was found to be negatively correlated with gestational week (p < .0001, r: -.541), D-dimer (p: .0002, r: -.363) and interleukin-6 (IL-6) level (p: .02, r: -.243). In the second trimester, serum selenium level positively correlated with white blood cell (p: .002, r: .424), neutrophil (p: .006, r: .39), lymphocyte (p: .004, r: .410) count and hemoglobin (p: .02, r: .323), hematocrit (p: .008, r: .38) status. In the third trimester, it was found that maternal selenium level positively correlated with monocyte (p: .04, r: .353) and negatively correlated with C-reactive protein level (p: .03, r: -.384). Serum selenium level was gradually decreased during the pregnancy period, however, this natural decrease was enhanced together with COVID-19 infection. The reason might be increased selenium needs depended on the immune response against infection. The decrease in maternal selenium level was found to be related to IL-6 and D-dimer levels, which indicate selenium's role in disease progression.


Subject(s)
COVID-19/blood , COVID-19/immunology , Pregnancy Trimesters/blood , SARS-CoV-2/pathogenicity , Selenium/blood , Adult , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19/virology , Case-Control Studies , Female , Fibrin Fibrinogen Degradation Products/metabolism , Hematocrit , Hemoglobins/metabolism , Humans , Interleukin-6/blood , Lymphocytes/immunology , Lymphocytes/virology , Monocytes/immunology , Monocytes/virology , Neutrophils/immunology , Neutrophils/virology , Pregnancy , Pregnancy Trimesters/immunology , Severity of Illness Index
13.
J Med Virol ; 93(9): 5405-5408, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1208994

ABSTRACT

The new type of coronavirus could cause severe acute respiratory syndrome and injuries in other systems as well. Multiple organ damage can occur rapidly in patients infected with coronavirus disease 2019 (COVID-19). Previous studies have shown that many laboratory biomarkers were not within the normal ranges in COVID-19 patients. We aimed to summarize laboratory parameters and the tumor markers in COVID-19 patients. This is a retrospective cohort study conducted on 53 women between the ages of 19-85 years infected with COVID-19 at a training and research hospital between May 2020 and August 2020. Of the 53 women, 16 (30.2%) had leukopenia. The mean C-reactive protein level was 18.42 ± 59.33 mg/L. The mean procalcitonin level was 0.1 ± 0.21 µg/L. The liver function tests were within normal limits. The mean creatinine level was 0.58 ± 0.37 mg/dl. Elevated levels of α-fetoprotein (AFP) in 1 patient, elevated levels of carcinoembryonic antigen (CEA) in 2 patients, elevated levels of cancer antigen 125 (CA125) in 4 patients, elevated levels of CA19-9 in 2 patients, and elevated levels of CA15-3 in 2 patients were detected. One of 4 patients who were taken to the intensive care unit had elevated levels of AFP. In addition, 2 of 4 patients who were taken to the intensive care unit had elevated levels of CA125 and CA15-3. Except for AFP, levels of all tumor markers of the patient who died were high. We found that COVID-19 had no effect on tumor markers (CA125, CA19-9, CA15-3, AFP, and CEA).


Subject(s)
CA-125 Antigen/blood , CA-19-9 Antigen/blood , COVID-19/blood , Carcinoembryonic Antigen/blood , Leukopenia/blood , Mucin-1/blood , Pandemics , alpha-Fetoproteins/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/blood , C-Reactive Protein/metabolism , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Female , Ferritins/blood , Fibrin Fibrinogen Degradation Products/metabolism , Humans , Leukopenia/diagnosis , Leukopenia/virology , Lymphocytes/virology , Middle Aged , Neutrophils/virology , Procalcitonin/blood , Retrospective Studies , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , Troponin/blood , Turkey/epidemiology
14.
Curr Med Sci ; 41(2): 312-317, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1193160

ABSTRACT

We here aimed to investigate the impact of gender on the clinical characteristics and laboratory results of patients with coronavirus disease 2019 (COVID-19) and provide clues to the pathological mechanisms underlying COVID-19. A retrospective study was performed. Clinical characteristics, severity of lung infection, laboratory results, and prognoses of patients of different gender were analyzed. A total of 242 patients were finally included. The median age was 58 years (IQR: 40-68), including 54 (22.3%) hospital staffs. Ninety-four (38.8%) were male and 148 (61.1%) were female. The proportion of patients with diabetes was significantly higher in the male group than in the female group (P=0.034). Male patients had a significantly larger proportion of severe lung infection, higher leukocyte count, neutrophil count, neutrophil-to-lymphocyte ratio, C-reactive protein, and procalcitonin than female. Furthermore, male patients had worse liver, cardiac, and coagulation function than their female counterparts. Male patients with COVID-19 showed more severe inflammation reaction and coagulation dysfunction than female patients. In conclusion, gender is associated with host response to SARS-CoV-2 infection.


Subject(s)
COVID-19/epidemiology , Lung/pathology , SARS-CoV-2/pathogenicity , Sex Characteristics , Adult , Aged , C-Reactive Protein/metabolism , COVID-19/diagnosis , COVID-19/therapy , COVID-19/virology , Hospitalization , Humans , Leukocyte Count , Lung/virology , Lymphocytes/metabolism , Lymphocytes/virology , Male , Middle Aged , Neutrophils/metabolism , Neutrophils/virology , Prognosis
15.
Front Immunol ; 12: 656350, 2021.
Article in English | MEDLINE | ID: covidwho-1191682

ABSTRACT

The new SARS-CoV-2 virus differs from the pandemic Influenza A virus H1N1 subtype (H1N1pmd09) how it induces a pro-inflammatory response in infected patients. This study aims to evaluate the involvement of SNPs and tissue expression of IL-17A and the neutrophils recruitment in post-mortem lung samples from patients who died of severe forms of COVID-19 comparing to those who died by H1N1pdm09. Twenty lung samples from patients SARS-CoV-2 infected (COVID-19 group) and 10 lung samples from adults who died from a severe respiratory H1N1pdm09 infection (H1N1 group) were tested. The tissue expression of IL-8/IL-17A was identified by immunohistochemistry, and hematoxylin and eosin (H&E) stain slides were used for neutrophil scoring. DNA was extracted from paraffin blocks, and genotyping was done in real time-PCR for two IL17A target polymorphisms. Tissue expression increasing of IL-8/IL-17A and a higher number of neutrophils were identified in samples from the H1N1 group compared to the COVID-19 group. The distribution of genotype frequencies in the IL17A gene was not statistically significant between groups. However, the G allele (GG and GA) of rs3819025 was correlated with higher tissue expression of IL-17A in the COVID-19 group. SARS-CoV-2 virus evokes an exacerbated response of the host's immune system but differs from that observed in the H1N1pdm09 infection since the IL-8/IL-17A tissue expression, and lung neutrophilic recruitment may be decreased. In SNP rs3819025 (G/A), the G allele may be considered a risk allele in the patients who died for COVID-19.


Subject(s)
COVID-19 , Gene Expression Regulation/immunology , Interleukin-17 , Interleukin-8 , Lung/immunology , Neutrophils/immunology , Polymorphism, Single Nucleotide , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , COVID-19/genetics , COVID-19/immunology , COVID-19/pathology , Female , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/genetics , Influenza, Human/immunology , Interleukin-17/genetics , Interleukin-17/immunology , Interleukin-8/genetics , Interleukin-8/immunology , Lung/pathology , Lung/virology , Male , Middle Aged , Neutrophils/pathology , Neutrophils/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology
16.
Iran J Immunol ; 18(1): 54-64, 2021 03.
Article in English | MEDLINE | ID: covidwho-1160833

ABSTRACT

BACKGROUND: SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is recognized for the first time in Wuhan, China. The cytokine storm is a known factor causing major clinical symptoms leading to death in COVID-19 patients. OBJECTIVE: To investigate and compare the serum levels of different cytokines in COVID-19 patients with different clinical severity. METHODS: Concentrations of serum cytokines, including IL-1ß, IL-2, IL-4, IL-6, IL-8, IL-10, TNF-α, IFN-γ, and GM-CSF, were measured in 61 COVID-19 patients and 31 normal controls with ELISA. We investigated the correlation between the levels of these cytokines and clinical severity, CRP level, neutrophil and lymphocyte count in patients with COVID-19. RESULTS: Our data indicated that the levels of IL-1ß, IL-2, IL-4, IL-6, IL-8, TNF-α, IFN-γ, and GM-CSF, but not IL-10 were significantly increased in COVID-19 patients compared to normal controls. Statistical analysis showed that the level of IL-1ß, IL-2, IL-4, IL-6, IL-8, TNF-α, IFN-γ, and GM-CSF were higher in severe COVID-19 than those of mild cases. The concentrations of all mentioned cytokines were negatively associated with the absolute count of lymphocytes, and positively correlated with the CRP level and the absolute count of neutrophils. CONCLUSION: The current study suggests that high levels of various cytokines correlate with the disease severity and immunopathogenesis of COVID-19.


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome/immunology , Cytokines/blood , SARS-CoV-2/immunology , Aged , Biomarkers/blood , C-Reactive Protein/analysis , COVID-19/blood , COVID-19/diagnosis , COVID-19/virology , Case-Control Studies , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/virology , Female , Host-Pathogen Interactions , Humans , Iran , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphocytes/virology , Male , Middle Aged , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/virology , SARS-CoV-2/pathogenicity , Severity of Illness Index
17.
Platelets ; 32(3): 325-330, 2021 Apr 03.
Article in English | MEDLINE | ID: covidwho-1092288

ABSTRACT

Platelets play an essential role in maintaining vascular integrity after injury. In addition, platelets contribute to the immune response to pathogens. For instance, they express receptors that mediate binding of viruses, and toll-like receptors that activate the cell in response to pathogen-associated molecular patterns. Platelets can be beneficial and/or detrimental during viral infections. They reduce blood-borne viruses by engulfing the free virus and presenting the virus to neutrophils. However, platelets can also enhance inflammation and tissue injury during viral infections. Here, we discuss the roles of platelets in viral infection.


Subject(s)
Blood Platelets/immunology , COVID-19/immunology , Host-Pathogen Interactions/immunology , Neutrophils/immunology , Receptors, Virus/immunology , Viral Proteins/immunology , Viruses/immunology , Animals , Blood Platelets/pathology , Blood Platelets/virology , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Cell Communication/genetics , Cell Communication/immunology , Dendritic Cells/immunology , Dendritic Cells/pathology , Dendritic Cells/virology , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Humans , Immunity, Innate , Lymphocytes/immunology , Lymphocytes/pathology , Lymphocytes/virology , Neutrophils/pathology , Neutrophils/virology , Platelet Activation/immunology , Protein Binding , Receptors, Virus/genetics , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Viral Proteins/genetics , Viruses/pathogenicity
18.
Stem Cell Rev Rep ; 17(1): 241-252, 2021 02.
Article in English | MEDLINE | ID: covidwho-1082595

ABSTRACT

The global SARS-CoV-2 pandemic starting in 2019 has already reached more than 2.3 million deaths. Despite the scientific community's efforts to investigate the COVID-19 disease, a drug for effectively treating or curing patients yet needs to be discovered. Hematopoietic stem cells (HSC) differentiating into immune cells for defense express COVID-19 entry receptors, and COVID-19 infection hinders their differentiation. The importance of purinergic signaling in HSC differentiation and innate immunity has been recognized. The metabotropic P2Y14 receptor subtype, activated by UDP-glucose, controls HSC differentiation and mobilization. Thereon, the exacerbated activation of blood immune cells amplifies the inflammatory state observed in COVID-19 patients, specially through the continuous release of reactive oxygen species and extracellular neutrophil traps (NETs). Further, the P2Y14 subtype, robustly inhibits the infiltration of neutrophils into various epithelial tissues, including lungs and kidneys. Here we discuss findings suggesting that antagonism of the P2Y14 receptor could prevent the progression of COVID-19-induced systemic inflammation, which often leads to severe illness and death cases. Considering the modulation of neutrophil recruitment of extreme relevance for respiratory distress and lung failure prevention, we propose that P2Y14 receptor inhibition by its selective antagonist PPTN could limit neutrophil recruitment and NETosis, hence limiting excessive formation of oxygen reactive species and proteolytic activation of the kallikrein-kinin system and subsequent bradykinin storm in the alveolar septa of COVID-19 patients.


Subject(s)
COVID-19/therapy , Hematopoietic Stem Cell Transplantation , Inflammation/therapy , Receptors, Purinergic P2/genetics , Respiratory Distress Syndrome/therapy , Bradykinin/metabolism , COVID-19/complications , COVID-19/pathology , COVID-19/virology , Chemotaxis/drug effects , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/virology , Humans , Inflammation/pathology , Inflammation/virology , Lung/pathology , Lung/virology , Neutrophils/metabolism , Neutrophils/pathology , Neutrophils/virology , Pandemics , Receptors, Purinergic P2/drug effects , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , SARS-CoV-2/pathogenicity
20.
Mol Cell Biochem ; 476(4): 1891-1895, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1044487

ABSTRACT

Corona virus disease-19 (covid-19) is caused by a coronavirus that is also known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and is generally characterized by fever, respiratory inflammation, and multi-organ failure in susceptible hosts. One of the first things during inflammation is the response by acute phase proteins coupled with coagulation. The angiotensinogen (a substrate for hypertension) is one such acute phase protein and goes on to explain an association of covid-19 with that of angiotensin-converting enzyme-2 (ACE2, a metallopeptidase). Therefore, it is advisable to administer, and test the efficacy of specific blocker(s) of angiotensinogen such as siRNAs or antibodies to covid-19 subjects. Covid-19 activates neutrophils, macrophages, but decreases T-helper cells activity. The metalloproteinases promote the activation of these inflammatory immune cells, therefore; we surmise that doxycycline (a metalloproteinase inhibitor, and a safer antibiotic) would benefit the covid-19 subjects. Along these lines, an anti-acid has also been suggested for mitigation of the covid-19 complications. Interestingly, there are three primary vegetables (celery, carrot, and long-squash) which are alkaline in their pH-range as compared to many others. Hence, treatment with fresh juice (without any preservative) from these vegies or the antioxidants derived from purple carrot and cabbage together with appropriate anti-coagulants may also help prevent or lessen the detrimental effects of the covid-19 pathological outcomes. These suggested remedies might be included in the list of putative interventions that are currently being investigated towards mitigating the multi-organ damage by Covid-19 during the ongoing pandemic.


Subject(s)
COVID-19/drug therapy , Heart Failure/drug therapy , Inflammation/drug therapy , RNA, Small Interfering/therapeutic use , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensinogen/antagonists & inhibitors , Angiotensinogen/genetics , COVID-19/genetics , COVID-19/physiopathology , COVID-19/virology , Heart/drug effects , Heart/physiopathology , Heart/virology , Heart Failure/complications , Heart Failure/physiopathology , Heart Failure/virology , Humans , Inflammation/complications , Inflammation/genetics , Inflammation/virology , Neutrophils/virology , Pandemics , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...