Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Mol Sci ; 23(4)2022 Feb 21.
Article in English | MEDLINE | ID: covidwho-1705083

ABSTRACT

We theoretically investigated the adsorption of two common anti-COVID drugs, favipiravir and chloroquine, on fluorinated C60 fullerene, decorated with metal ions Cr3+, Fe2+, Fe3+, Ni2+. We focused on the effect of fluoridation on the interaction of fullerene with metal ions and drugs in an aqueous solution. We considered three model systems, C60, C60F2 and C60F48, and represented pristine, low-fluorinated and high-fluorinated fullerenes, respectively. Adsorption energies, deformation of fullerene and drug molecules, frontier molecular orbitals and vibrational spectra were investigated in detail. We found that different drugs and different ions interacted differently with fluorinated fullerenes. Cr3+ and Fe2+ ions lead to the defluorination of low-fluorinated fullerenes. Favipiravir also leads to their defluorination with the formation of HF molecules. Therefore, fluorinated fullerenes are not suitable for the delivery of favipiravir and similar drugs molecules. In contrast, we found that fluorine enhances the adsorption of Ni2+ and Fe3+ ions on fullerene and their activity to chloroquine. Ni2+-decorated fluorinated fullerenes were found to be stable and suitable carriers for the loading of chloroquine. Clear shifts of infrared, ultraviolet and visible spectra can provide control over the loading of chloroquine on Ni2+-doped fluorinated fullerenes.


Subject(s)
Amides/chemistry , Antiviral Agents/chemistry , Chloroquine/chemistry , Fullerenes/chemistry , Metals/chemistry , Pyrazines/chemistry , COVID-19 , Density Functional Theory , Drug Carriers/chemistry , Drug Delivery Systems , Halogenation , Models, Molecular , Nickel/chemistry
2.
Adv Sci (Weinh) ; 9(11): e2103982, 2022 04.
Article in English | MEDLINE | ID: covidwho-1680237

ABSTRACT

Currently, the incidence of acute liver injury (ALI) is increasing year by year, and infection with coronavirus disease 2019 (COVID-19) can also induce ALI, but there are still no targeted therapeutic drugs. ZnO-NiO particles is mainly used to clean up reactive oxygen species (ROS) in industrial wastewater, and it is insoluble in water. Its excellent properties are discovered and improved by adding shuttle-based bonds to make it more water-soluble. ZnO-NiO@COOH particles are synthetically applied to treat ALI. The p-n junction in ZnO-NiO@COOH increases the surface area and active sites, thereby creating large numbers of oxygen vacancies, which can quickly adsorb ROS. The content in tissues and serum levels of L-glutathione (GSH) and the GSH/oxidized GSH ratio are measured to assess the capacity of ZnO-NiO@COOH particles to absorb ROS. The ZnO-NiO@COOH particles significantly reduce the expression levels of inflammatory factors (i.e., IL-1, IL-6, and TNF-α), macrophage infiltration, and granulocyte activation. ZnO-NiO@COOH rapidly adsorb ROS in a short period of time to block the generation of inflammatory storms and gain time for the follow-up treatment of ALI, which has important clinical significance.


Subject(s)
COVID-19 , Zinc Oxide , Glutathione , Humans , Liver , Nickel/chemistry , Reactive Oxygen Species/metabolism , Water , Zinc Oxide/chemistry
3.
Chembiochem ; 23(2): e202100514, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1653182

ABSTRACT

In addition to a membrane anchor, the transmembrane domain (TMD) of single-pass transmembrane proteins (SPTMPs) recently has shown essential roles in the cross-membrane activity or receptor assembly/clustering. However, these small TMD peptides are generally hydrophobic and dynamic, difficult to be expressed and purified. Here, we have integrated the power of TrpLE fusion protein and a sequence-specific nickel-assisted cleavage (SNAC)-tag to produce small TMD peptides in a highly efficient way under mild conditions, which uses Ni2+ as the cleavage reagent, avoiding the usage of toxic cyanogen bromide (CNBr). Furthermore, this method simplifies the downstream protein purification and reconstitution. Two representative TMDs, including the Spike-TMD from severe acute respiratory syndrome coronavirus 2 (SARS2), were successfully produced with high-quality nuclear magnetic resonance (NMR) spectra. Therefore, our study provides a more efficient and practical approach for general structural characterization of the small TM proteins.


Subject(s)
Nickel/chemistry , Peptides/metabolism , Recombinant Fusion Proteins/metabolism , COVID-19/pathology , COVID-19/virology , Catalysis , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nuclear Magnetic Resonance, Biomolecular , Peptides/chemistry , Peptides/isolation & purification , Proteolysis , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
4.
Anal Biochem ; 631: 114360, 2021 10 15.
Article in English | MEDLINE | ID: covidwho-1474246

ABSTRACT

To monitor the levels of protecting antibodies raised in the population in response to infection and/or to immunization with SARS-CoV-2, we need a technique that allows high throughput and low-cost quantitative analysis of human IgG antibodies reactive against viral antigens. Here we describe an ultra-fast, high throughput and inexpensive assay to detect SARS-CoV-2 seroconversion in humans. The assay is based on Ni2+ magnetic particles coated with His tagged SARS-CoV-2 antigens. A simple and inexpensive 96 well plate magnetic extraction/homogenization process is described which allows the simultaneous analysis of 96 samples and delivers results in 7 min with high accuracy.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Immunoglobulin G/blood , SARS-CoV-2/isolation & purification , Antibodies, Viral/immunology , Antigens, Viral/blood , Antigens, Viral/immunology , COVID-19/blood , COVID-19/immunology , COVID-19 Serological Testing/economics , Enzyme-Linked Immunosorbent Assay/economics , Enzyme-Linked Immunosorbent Assay/methods , Humans , Immunoglobulin G/immunology , Magnets/chemistry , Nickel/chemistry , SARS-CoV-2/immunology , Sensitivity and Specificity , Seroconversion , Time Factors
5.
Angew Chem Int Ed Engl ; 60(3): 1605-1609, 2021 01 18.
Article in English | MEDLINE | ID: covidwho-1064320

ABSTRACT

A nickel-catalyzed asymmetric reductive hydroarylation of vinyl amides to produce enantioenriched α-arylbenzamides is reported. The use of a chiral bisimidazoline (BIm) ligand, in combination with diethoxymethylsilane and aryl halides, enables the regioselective introduction of aryl groups to the internal position of the olefin, forging a new stereogenic center α to the N atom. The use of neutral reagents and mild reaction conditions provides simple access to pharmacologically relevant motifs present in anticancer, SARS-CoV PLpro inhibitors, and KCNQ channel openers.


Subject(s)
Benzamides/chemical synthesis , Nickel/chemistry , Alkenes/chemistry , Catalysis , Imidazolines/chemistry , Molecular Conformation , Organosilicon Compounds/chemistry , Stereoisomerism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL