Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Sci Rep ; 11(1): 19998, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1462031

ABSTRACT

Understanding the effects of metabolism on the rational design of novel and more effective drugs is still a considerable challenge. To the best of our knowledge, there are no entirely computational strategies that make it possible to predict these effects. From this perspective, the development of such methodologies could contribute to significantly reduce the side effects of medicines, leading to the emergence of more effective and safer drugs. Thereby, in this study, our strategy is based on simulating the electron ionization mass spectrometry (EI-MS) fragmentation of the drug molecules and combined with molecular docking and ADMET models in two different situations. In the first model, the drug is docked without considering the possible metabolic effects. In the second model, each of the intermediates from the EI-MS results is docked, and metabolism occurs before the drug accesses the biological target. As a proof of concept, in this work, we investigate the main antiviral drugs used in clinical research to treat COVID-19. As a result, our strategy made it possible to assess the biological activity and toxicity of all potential by-products. We believed that our findings provide new chemical insights that can benefit the rational development of novel drugs in the future.


Subject(s)
Antiviral Agents/metabolism , COVID-19/drug therapy , Drug Discovery , SARS-CoV-2/drug effects , Adenine/adverse effects , Adenine/analogs & derivatives , Adenine/metabolism , Adenine/pharmacology , Adenosine/adverse effects , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/pharmacology , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Alanine/adverse effects , Alanine/analogs & derivatives , Alanine/metabolism , Alanine/pharmacology , Amides/adverse effects , Amides/metabolism , Amides/pharmacology , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , COVID-19/metabolism , Chloroquine/adverse effects , Chloroquine/analogs & derivatives , Chloroquine/metabolism , Chloroquine/pharmacology , Drug Design , Humans , Metabolic Networks and Pathways , Molecular Docking Simulation , Nitro Compounds/adverse effects , Nitro Compounds/metabolism , Nitro Compounds/pharmacology , Pyrazines/adverse effects , Pyrazines/metabolism , Pyrazines/pharmacology , Pyrrolidines/adverse effects , Pyrrolidines/metabolism , Pyrrolidines/pharmacology , Ribavirin/adverse effects , Ribavirin/metabolism , Ribavirin/pharmacology , SARS-CoV-2/metabolism , Thiazoles/adverse effects , Thiazoles/metabolism , Thiazoles/pharmacology
2.
SLAS Discov ; 26(6): 749-756, 2021 07.
Article in English | MEDLINE | ID: covidwho-1136206

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) represents a significant threat to human health. Despite its similarity to related coronaviruses, there are currently no specific treatments for COVID-19 infection, and therefore there is an urgent need to develop therapies for this and future coronavirus outbreaks. Formation of the cap at the 5' end of viral RNA has been shown to help coronaviruses evade host defenses. Nonstructural protein 14 (nsp14) is responsible for N7-methylation of the cap guanosine in coronaviruses. This enzyme is highly conserved among coronaviruses and is a bifunctional protein with both N7-methyltransferase and 3'-5' exonuclease activities that distinguish nsp14 from its human equivalent. Mutational analysis of SARS-CoV nsp14 highlighted its role in viral replication and translation efficiency of the viral genome. In this paper, we describe the characterization and development of a high-throughput assay for nsp14 utilizing RapidFire technology. The assay has been used to screen a library of 1771 Food and Drug Administration (FDA)-approved drugs. From this, we have validated nitazoxanide as a selective inhibitor of the methyltransferase activity of nsp14. Although modestly active, this compound could serve as a starting point for further optimization.


Subject(s)
Antiviral Agents/pharmacology , Exoribonucleases/antagonists & inhibitors , High-Throughput Screening Assays , Nitro Compounds/pharmacology , RNA Caps/antagonists & inhibitors , RNA, Viral/antagonists & inhibitors , SARS-CoV-2/drug effects , Thiazoles/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Antiviral Agents/chemistry , COVID-19/virology , Cloning, Molecular , Drug Repositioning , Enzyme Assays , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Escherichia coli/genetics , Escherichia coli/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kinetics , Mass Spectrometry/methods , Methylation , Nitro Compounds/chemistry , Prescription Drugs/chemistry , Prescription Drugs/pharmacology , RNA Caps/genetics , RNA Caps/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Thiazoles/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL