Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Viruses ; 13(7)2021 07 01.
Article in English | MEDLINE | ID: covidwho-1448932

ABSTRACT

Infection has recently started receiving greater attention as an unusual causative/inducing factor of obesity. Indeed, the biological plausibility of infectobesity includes direct roles of some viruses to reprogram host metabolism toward a more lipogenic and adipogenic status. Furthermore, the probability that humans may exchange microbiota components (virome/virobiota) points out that the altered response of IFN and other cytokines, which surfaces as a central mechanism for adipogenesis and obesity-associated immune suppression, is due to the fact that gut microbiota uphold intrinsic IFN signaling. Last but not least, the adaptation of both host immune and metabolic system under persistent viral infections play a central role in these phenomena. We hereby discuss the possible link between adenovirus and obesity-related nonalcoholic fatty liver disease (NAFLD). The mechanisms of adenovirus-36 (Ad-36) involvement in hepatic steatosis/NAFLD consist in reducing leptin gene expression and insulin sensitivity, augmenting glucose uptake, activating the lipogenic and pro-inflammatory pathways in adipose tissue, and increasing the level of macrophage chemoattractant protein-1, all of these ultimately leading to chronic inflammation and altered lipid metabolism. Moreover, by reducing leptin expression and secretion Ad-36 may have in turn an obesogenic effect through increased food intake or decreased energy expenditure via altered fat metabolism. Finally, Ad-36 is involved in upregulation of cAMP, phosphatidylinositol 3-kinase, and p38 signaling pathways, downregulation of Wnt10b expression, increased expression of CCAAT/enhancer binding protein-beta, and peroxisome proliferator-activated receptor gamma 2 with consequential lipid accumulation.


Subject(s)
Inflammation , Lipid Metabolism , Non-alcoholic Fatty Liver Disease/complications , Obesity/etiology , Obesity/virology , Adenoviridae/immunology , Adenoviridae Infections/complications , Adenoviridae Infections/immunology , Animals , Diet, High-Fat , Glucose/metabolism , Humans , Lipogenesis , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/virology , Obesity/complications , Obesity/immunology , Signal Transduction
2.
Lipids Health Dis ; 20(1): 126, 2021 Oct 03.
Article in English | MEDLINE | ID: covidwho-1448237

ABSTRACT

The coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). At present, the COVID-19 has been prevalent worldwide for more than a year and caused more than four million deaths. Liver injury was frequently observed in patients with COVID-19. Recently, a new definition of metabolic dysfunction associated fatty liver disease (MAFLD) was proposed by a panel of international experts, and the relationship between MAFLD and COVID-19 has been actively investigated. Several previous studies indicated that the patients with MAFLD had a higher prevalence of COVID-19 and a tendency to develop severe type of respiratory infection, and others indicated that liver injury would be exacerbated in the patients with MAFLD once infected with COVID-19. The mechanism underlying the relationship between MAFLD and COVID-19 infection has not been thoroughly investigated, and recent studies indicated that multifactorial mechanisms, such as altered host angiotensin converting enzyme 2 (ACE2) receptor expression, direct viral attack, disruption of cholangiocyte function, systemic inflammatory reaction, drug-induced liver injury, hepatic ischemic and hypoxic injury, and MAFLD-related glucose and lipid metabolic disorders, might jointly contribute to both of the adverse hepatic and respiratory outcomes. In this review, we discussed the relationship between MAFLD and COVID-19 based on current available literature, and summarized the recommendations for clinical management of MAFLD patients during the pandemic of COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19/complications , Chemical and Drug Induced Liver Injury/complications , Hypoxia/complications , Liver/metabolism , Non-alcoholic Fatty Liver Disease/complications , SARS-CoV-2/pathogenicity , Age Factors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/drug therapy , COVID-19/pathology , COVID-19/virology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/virology , Cytokines/genetics , Cytokines/metabolism , Dipeptides/therapeutic use , Gene Expression Regulation , Glucose/metabolism , Glycyrrhizic Acid/therapeutic use , Humans , Hypoxia/drug therapy , Hypoxia/pathology , Hypoxia/virology , Liver/drug effects , Liver/pathology , Liver/virology , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung/virology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/virology , Receptors, Virus/genetics , Receptors, Virus/metabolism , Severity of Illness Index
3.
Hepatology ; 74(4): 1825-1844, 2021 10.
Article in English | MEDLINE | ID: covidwho-1372726

ABSTRACT

BACKGROUND AND AIMS: NASH will soon become the leading cause of liver transplantation in the United States and is also associated with increased COVID-19 mortality. Currently, there are no Food and Drug Administration-approved drugs available that slow NASH progression or address NASH liver involvement in COVID-19. Because animal models cannot fully recapitulate human NASH, we hypothesized that stem cells isolated directly from end-stage liver from patients with NASH may address current knowledge gaps in human NASH pathology. APPROACH AND RESULTS: We devised methods that allow the derivation, proliferation, hepatic differentiation, and extensive characterization of bipotent ductal organoids from irreversibly damaged liver from patients with NASH. The transcriptomes of organoids derived from NASH liver, but not healthy liver, show significant up-regulation of proinflammatory and cytochrome p450-related pathways, as well as of known liver fibrosis and tumor markers, with the degree of up-regulation being patient-specific. Functionally, NASH liver organoids exhibit reduced passaging/growth capacity and hallmarks of NASH liver, including decreased albumin production, increased free fatty acid-induced lipid accumulation, increased sensitivity to apoptotic stimuli, and increased cytochrome P450 metabolism. After hepatic differentiation, NASH liver organoids exhibit reduced ability to dedifferentiate back to the biliary state, consistent with the known reduced regenerative ability of NASH livers. Intriguingly, NASH liver organoids also show strongly increased permissiveness to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) vesicular stomatitis pseudovirus as well as up-regulation of ubiquitin D, a known inhibitor of the antiviral interferon host response. CONCLUSION: Expansion of primary liver stem cells/organoids derived directly from irreversibly damaged liver from patients with NASH opens up experimental avenues for personalized disease modeling and drug development that has the potential to slow human NASH progression and to counteract NASH-related SARS-CoV-2 effects.


Subject(s)
End Stage Liver Disease/pathology , Liver/pathology , Non-alcoholic Fatty Liver Disease/pathology , Organoids/metabolism , Adult , Aged , Biopsy , COVID-19/complications , COVID-19/virology , Cell Differentiation/immunology , End Stage Liver Disease/immunology , Female , Gene Expression Profiling , Healthy Volunteers , Hepatocytes/immunology , Hepatocytes/metabolism , Humans , Induced Pluripotent Stem Cells/immunology , Induced Pluripotent Stem Cells/metabolism , Liver/cytology , Liver/immunology , Liver Regeneration , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/virology , Organoids/immunology , SARS-CoV-2/immunology , Up-Regulation/immunology
4.
J Clin Lab Anal ; 35(8): e23880, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1293190

ABSTRACT

BACKGROUND: There is still little knowledge about the association of liver fibrosis with the clinical outcomes of COVID-19 patients with non-alcoholic fatty liver disease (NAFLD). The aim of the study was to determine the association of NAFLD fibrosis score (NFS)-determined liver fibrosis with clinical outcomes of COVID-19 patients with NAFLD. METHODS: The NAFLD was diagnosed by the Hepatic Steatosis Index (HSI) in the absence of other causes of chronic liver diseases. NFS was used to evaluate the severity of liver fibrosis. RESULTS: A total of 86 COVID-19 patients with NAFLD were included. The median age was 43.5 years, and 58.1% of patients were male. Thirty-eight (44.2%) patients had advanced liver fibrosis according to the NFS. Multivariate analysis indicated that concurrent diabetes (odds ratio [OR] 8.264, 95% confidence interval [CI] 1.202-56.830, p = 0.032) and advanced liver fibrosis (OR 11.057, 95% CI 1.193-102.439, p = 0.034) were independent risk factors of severe illness in COVID-19 patients with NAFLD. CONCLUSION: NAFLD patients with NFS-determined advanced liver fibrosis are at higher risk of severe COVID-19.


Subject(s)
COVID-19/etiology , Liver Cirrhosis/pathology , Non-alcoholic Fatty Liver Disease/complications , Adult , Female , Hospitalization , Humans , Liver Cirrhosis/virology , Logistic Models , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/virology , Retrospective Studies , Risk Factors , Severity of Illness Index
5.
Arch Toxicol ; 95(7): 2235-2253, 2021 07.
Article in English | MEDLINE | ID: covidwho-1239455

ABSTRACT

Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease that affects about a quarter of the world population. MAFLD encompasses different disease stadia ranging from isolated liver steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocellular carcinoma. Although MAFLD is considered as the hepatic manifestation of the metabolic syndrome, multiple concomitant disease-potentiating factors can accelerate disease progression. Among these risk factors are diet, lifestyle, genetic traits, intake of steatogenic drugs, male gender and particular infections. Although infections often outweigh the development of fatty liver disease, pre-existing MAFLD could be triggered to progress towards more severe disease stadia. These combined disease cases might be underreported because of the high prevalence of both MAFLD and infectious diseases that can promote or exacerbate fatty liver disease development. In this review, we portray the molecular and cellular mechanisms by which the most relevant viral, bacterial and parasitic infections influence the progression of fatty liver disease and steatohepatitis. We focus in particular on how infectious diseases, including coronavirus disease-19, hepatitis C, acquired immunodeficiency syndrome, peptic ulcer and periodontitis, exacerbate MAFLD. We specifically underscore the synergistic effects of these infections with other MAFLD-promoting factors.


Subject(s)
Bacterial Infections/complications , Non-alcoholic Fatty Liver Disease/complications , Parasitic Diseases/complications , Symptom Flare Up , Virus Diseases/complications , Acquired Immunodeficiency Syndrome/complications , Bacterial Infections/microbiology , COVID-19/complications , Hepatitis, Viral, Human/complications , Humans , Liver/physiopathology , Metabolic Syndrome , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/parasitology , Non-alcoholic Fatty Liver Disease/virology , Parasitic Diseases/parasitology , Peptic Ulcer , Periodontitis , Risk Factors , Virus Diseases/virology
6.
Biomed Pharmacother ; 133: 111064, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1059802

ABSTRACT

COVID-19 is a pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Early reported symptoms include fever, cough, and respiratory symptoms. There were few reports of digestive symptoms. However, with COVID-19 spreading worldwide, symptoms such as vomiting, diarrhoea, and abdominal pain have gained increasing attention. Research has found that angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 receptor, is strongly expressed in the gastrointestinal tract and liver. Whether theoretically or clinically, many studies have suggested a close connection between COVID-19 and the digestive system. In this review, we summarize the digestive symptoms reported in existing research, discuss the impact of SARS-CoV-2 on the gastrointestinal tract and liver, and determine the possible mechanisms and aetiology, such as cytokine storm. In-depth exploration of the relationship between COVID-19 and the digestive system is urgently needed.


Subject(s)
COVID-19/complications , Gastrointestinal Diseases/etiology , Liver Diseases/etiology , Pandemics , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/metabolism , Anorexia/etiology , Antiviral Agents/adverse effects , Bile Ducts/metabolism , Bile Ducts/virology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/pathology , Chemical and Drug Induced Liver Injury/etiology , Comorbidity , Cytokine Release Syndrome/etiology , Cytopathogenic Effect, Viral , Gastrointestinal Diseases/epidemiology , Gastrointestinal Microbiome , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/pathology , Gastrointestinal Tract/virology , Humans , Immunosuppressive Agents/adverse effects , Liver/metabolism , Liver/pathology , Liver/virology , Liver Diseases/epidemiology , Liver Transplantation , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/virology , Postoperative Complications , Receptors, Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL