Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Sci Rep ; 12(1): 11085, 2022 06 30.
Article in English | MEDLINE | ID: covidwho-1908294

ABSTRACT

Severe COVID-19-related acute respiratory distress syndrome (C-ARDS) requires mechanical ventilation. While this intervention is often performed in the prone position to improve oxygenation, the underlying mechanisms responsible for the improvement in respiratory function during invasive ventilation and awake prone positioning in C-ARDS have not yet been elucidated. In this prospective observational trial, we evaluated the respiratory function of C-ARDS patients while in the supine and prone positions during invasive (n = 13) or non-invasive ventilation (n = 15). The primary endpoint was the positional change in lung regional aeration, assessed with electrical impedance tomography. Secondary endpoints included parameters of ventilation and oxygenation, volumetric capnography, respiratory system mechanics and intrapulmonary shunt fraction. In comparison to the supine position, the prone position significantly increased ventilation distribution in dorsal lung zones for patients under invasive ventilation (53.3 ± 18.3% vs. 43.8 ± 12.3%, percentage of dorsal lung aeration ± standard deviation in prone and supine positions, respectively; p = 0.014); whereas, regional aeration in both positions did not change during non-invasive ventilation (36.4 ± 11.4% vs. 33.7 ± 10.1%; p = 0.43). Prone positioning significantly improved the oxygenation both during invasive and non-invasive ventilation. For invasively ventilated patients reduced intrapulmonary shunt fraction, ventilation dead space and respiratory resistance were observed in the prone position. Oxygenation is improved during non-invasive and invasive ventilation with prone positioning in patients with C-ARDS. Different mechanisms may underly this benefit during these two ventilation modalities, driven by improved distribution of lung regional aeration, intrapulmonary shunt fraction and ventilation-perfusion matching. However, the differences in the severity of C-ARDS may have biased the sensitivity of electrical impedance tomography when comparing positional changes between the protocol groups.Trial registration: ClinicalTrials.gov (NCT04359407) and Registered 24 April 2020, https://clinicaltrials.gov/ct2/show/NCT04359407 .


Subject(s)
COVID-19/therapy , Noninvasive Ventilation , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy , COVID-19/complications , Capnography/methods , Humans , Lung/diagnostic imaging , Noninvasive Ventilation/standards , Prone Position , Prospective Studies , Respiration, Artificial/standards , Respiratory Distress Syndrome/virology , Supine Position
2.
Respir Physiol Neurobiol ; 298: 103842, 2022 04.
Article in English | MEDLINE | ID: covidwho-1655093

ABSTRACT

BACKGROUND: Noninvasive ventilation (NIV) and High-flow nasal cannula (HFNC) are the main forms of treatment for acute respiratory failure. This study aimed to evaluate the effect, safety, and applicability of the NIV and HFNC in patients with acute hypoxemic respiratory failure (AHRF) caused by COVID-19. METHODS: In this retrospective study, we monitored the effect of NIV and HFNC on the SpO2 and respiratory rate before, during, and after treatment, length of stay, rates of endotracheal intubation, and mortality in patients with AHRF caused by COVID-19. Additionally, data regarding RT-PCR from physiotherapists who were directly involved in assisting COVID-19 patients and non-COVID-19. RESULTS: 62.2 % of patients were treated with HFNC. ROX index increased during and after NIV and HFNC treatment (P < 0.05). SpO2 increased during NIV treatment (P < 0.05), but was not maintained after treatment (P = 0.17). In addition, there was no difference in the respiratory rate during or after the NIV (P = 0.95) or HFNC (P = 0.60) treatment. The mortality rate was 35.7 % for NIV vs 21.4 % for HFNC (P = 0.45), while the total endotracheal intubation rate was 57.1 % for NIV vs 69.6 % for HFNC (P = 0.49). Two adverse events occurred during treatment with NIV and eight occurred during treatment with HFNC. There was no difference in the physiotherapists who tested positive for SARS-COV-2 directly involved in assisting COVID-19 patients and non-COVID-19 ones (P = 0.81). CONCLUSION: The application of NIV and HFNC in the critical care unit is feasible and associated with favorable outcomes. In addition, there was no increase in the infection of physiotherapists with SARS-CoV-2.


Subject(s)
COVID-19/therapy , Cannula , Intubation, Intratracheal , Noninvasive Ventilation , Outcome and Process Assessment, Health Care , Oxygen/administration & dosage , Positive-Pressure Respiration , Respiratory Insufficiency/therapy , Respiratory Rate/drug effects , Acute Disease , Administration, Inhalation , Adult , Aged , Aged, 80 and over , Brazil , COVID-19/complications , COVID-19/mortality , Cannula/adverse effects , Cannula/standards , Cannula/statistics & numerical data , Feasibility Studies , Female , Humans , Intensive Care Units , Intubation, Intratracheal/statistics & numerical data , Length of Stay/statistics & numerical data , Male , Middle Aged , Noninvasive Ventilation/adverse effects , Noninvasive Ventilation/methods , Noninvasive Ventilation/standards , Noninvasive Ventilation/statistics & numerical data , Outcome and Process Assessment, Health Care/statistics & numerical data , Physical Therapists , Positive-Pressure Respiration/adverse effects , Positive-Pressure Respiration/standards , Positive-Pressure Respiration/statistics & numerical data , Respiratory Insufficiency/etiology , Respiratory Insufficiency/mortality , Retrospective Studies
3.
Intern Emerg Med ; 16(5): 1183-1190, 2021 08.
Article in English | MEDLINE | ID: covidwho-938609

ABSTRACT

The role of noninvasive positive pressure ventilation (NIPPV) in COVID-19 patients with acute hypoxemic respiratory failure (AHRF) is uncertain, as no direct evidence exists to support NIPPV use in such patients. We retrospectively assessed the effectiveness and safety of NIPPV in a cohort of COVID-19 patients consecutively admitted to the COVID-19 general wards of a medium-size Italian hospital, from March 6 to May 7, 2020. Healthcare workers (HCWs) caring for COVID-19 patients were monitored, undergoing nasopharyngeal swab for SARS-CoV-2 in case of onset of COVID-19 symptoms, and periodic SARS-CoV-2 screening serology. Overall, 50 patients (mean age 74.6 years) received NIPPV, of which 22 (44%) were successfully weaned, avoiding endotracheal intubation (ETI) and AHRF-related death. Due to limited life expectancy, 25 (50%) of 50 NIPPV-treated patients received a "do not intubate" (DNI) order. Among these, only 6 (24%) were weaned from NIPPV. Of the remaining 25 NIPPV-treated patients without treatment limitations, 16 (64%) were successfully weaned, 9 (36%) underwent delayed ETI and, of these, 3 (33.3%) died. NIPPV success was predicted by the use of corticosteroids (OR 15.4, CI 1.79-132.57, p 0.013) and the increase in the PaO2/FiO2 ratio measured 24-48 h after NIPPV initiation (OR 1.02, CI 1-1.03, p 0.015), while it was inversely correlated with the presence of a DNI order (OR 0.03, CI 0.001-0.57, p 0.020). During the study period, 2 of 124 (1.6%) HCWs caring for COVID-19 patients were diagnosed with SARS-CoV-2 infection. Apart from patients with limited life expectancy, NIPPV was effective in a substantially high percentage of patients with COVID-19-associated AHRF. The risk of SARS-CoV-2 infection among HCWs was low.


Subject(s)
COVID-19/complications , Noninvasive Ventilation/standards , Positive-Pressure Respiration/standards , Respiratory Insufficiency/etiology , Aged , Aged, 80 and over , COVID-19/therapy , Chi-Square Distribution , Female , Humans , Infection Control/instrumentation , Infection Control/methods , Infection Control/statistics & numerical data , Male , Middle Aged , Multivariate Analysis , Noninvasive Ventilation/methods , Noninvasive Ventilation/statistics & numerical data , Organ Dysfunction Scores , Positive-Pressure Respiration/methods , Positive-Pressure Respiration/statistics & numerical data , Respiratory Insufficiency/therapy , Respiratory Mechanics/drug effects , Respiratory Mechanics/physiology , Retrospective Studies
5.
Pediatr Res ; 89(5): 1094-1100, 2021 04.
Article in English | MEDLINE | ID: covidwho-635338

ABSTRACT

BACKGROUND: The 2020 novel coronavirus (SARS-Cov-2) pandemic necessitates tailored recommendations addressing specific procedures for neonatal and paediatric transport of suspected or positive COVID-19 patients. The aim of this consensus statement is to define guidelines for safe clinical care for children needing inter-facility transport while making sure that the clinical teams involved are sufficiently protected from SARS-CoV-2. METHODS: A taskforce, composed of members of the European Society of Paediatric and Neonatal Intensive Care (ESPNIC) Transport section and the European Society for Paediatric Research (ESPR), reviewed the published literature and used a rapid, two-step modified Delphi process to formulate recommendations regarding safety and clinical management during transport of COVID-19 patients. RESULTS: The joint taskforce consisted of a panel of 12 experts who reached an agreement on a set of 17 recommendations specifying pertinent aspects on neonatal and paediatric COVID-19 patient transport. These included: case definition, personal protective equipment, airway management, equipment and strategies for invasive and non-invasive ventilation, special considerations for incubator and open stretcher transports, parents on transport and decontamination of transport vehicles. CONCLUSIONS: Our consensus recommendations aim to define current best-practice and should help guide transport teams dealing with infants and children with COVID-19 to work safely and effectively. IMPACT: We present European consensus recommendations on pertinent measures for transporting infants and children in times of the coronavirus (SARS-Cov-2 /COVID-19) pandemic. A panel of experts reviewed the evidence around transporting infants and children with proven or suspected COVID-19. Specific guidance on aspects of personal protective equipment, airway management and considerations for incubator and open stretcher transports is presented. Based on scant evidence, best-practice recommendations for neonatal and paediatric transport teams are presented, aiming for the protection of teams and patients. We highlight gaps in knowledge and areas of future research.


Subject(s)
COVID-19/prevention & control , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Transportation of Patients/standards , Adolescent , Airway Management/methods , Airway Management/standards , COVID-19/diagnosis , COVID-19/transmission , Cardiopulmonary Resuscitation/methods , Child , Child, Preschool , Disinfection/methods , Disinfection/standards , Equipment Contamination/prevention & control , Europe , Humans , Incubators, Infant , Infant , Infant, Newborn , Noninvasive Ventilation/methods , Noninvasive Ventilation/standards , Parents , Patient Safety/standards , Personal Protective Equipment , Respiration, Artificial/methods , Respiration, Artificial/standards , Societies, Scientific , Symptom Assessment
7.
Monaldi Arch Chest Dis ; 90(1)2020 Mar 26.
Article in English | MEDLINE | ID: covidwho-33646

ABSTRACT

Respiratory physiotherapy in patients with COVID-19 infection in acute setting: a Position Paper of the Italian Association of Respiratory Physiotherapists (ARIR) On February 2020, Italy, especially the northern regions, was hit by an epidemic of the new SARS-Cov-2 coronavirus that spread from China between December 2019 and January 2020. The entire healthcare system had to respond promptly in a very short time to an exponential growth of the number of subjects affected by COVID-19 (Coronavirus disease 2019) with the need of semi-intensive and intensive care units.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Infection Control/methods , Noninvasive Ventilation/methods , Physical Therapy Modalities , Pneumonia, Viral/etiology , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy , Respiratory Insufficiency/therapy , Respiratory Therapy/methods , COVID-19 , Coronavirus Infections/rehabilitation , Critical Care , Dyspnea/etiology , Humans , Hypoxia/complications , Hypoxia/etiology , Infection Control/standards , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Italy , Noninvasive Ventilation/standards , Pandemics , Pneumonia, Viral/rehabilitation , Pneumonia, Viral/therapy , Pronation , Respiration, Artificial/standards , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/rehabilitation , Respiratory Insufficiency/etiology , Respiratory Insufficiency/rehabilitation , Respiratory Protective Devices , Respiratory Therapy/standards , SARS-CoV-2
8.
Med Intensiva (Engl Ed) ; 44(7): 429-438, 2020 Oct.
Article in English, Spanish | MEDLINE | ID: covidwho-19657

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a respiratory tract infection caused by a newly emergent coronavirus, that was first recognized in Wuhan, China, in December 2019. Currently, the World Health Organization (WHO) has defined the infection as a global pandemic and there is a health and social emergency for the management of this new infection. While most people with COVID-19 develop only mild or uncomplicated illness, approximately 14% develop severe disease that requires hospitalization and oxygen support, and 5% require admission to an intensive care unit. In severe cases, COVID-19 can be complicated by the acute respiratory distress syndrome (ARDS), sepsis and septic shock, and multiorgan failure. This consensus document has been prepared on evidence-informed guidelines developed by a multidisciplinary panel of health care providers from four Spanish scientific societies (Spanish Society of Intensive Care Medicine [SEMICYUC], Spanish Society of Pulmonologists [SEPAR], Spanish Society of Emergency [SEMES], Spanish Society of Anesthesiology, Reanimation, and Pain [SEDAR]) with experience in the clinical management of patients with COVID-19 and other viral infections, including SARS, as well as sepsis and ARDS. The document provides clinical recommendations for the noninvasive respiratory support (noninvasive ventilation, high flow oxygen therapy with nasal cannula) in any patient with suspected or confirmed presentation of COVID-19 with acute respiratory failure. This consensus guidance should serve as a foundation for optimized supportive care to ensure the best possible chance for survival and to allow for reliable comparison of investigational therapeutic interventions as part of randomized controlled trials.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Noninvasive Ventilation/methods , Pandemics , Pneumonia, Viral/complications , Respiratory Insufficiency/therapy , Acute Disease , Adult , Aerosols , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Cross Infection/prevention & control , Disease Management , Equipment Contamination , Equipment Design , Humans , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Infectious Disease Transmission, Professional-to-Patient/prevention & control , Noninvasive Ventilation/instrumentation , Noninvasive Ventilation/standards , Oxygen Inhalation Therapy/instrumentation , Oxygen Inhalation Therapy/methods , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Respiratory Insufficiency/etiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL