Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add filters

Document Type
Year range
1.
Nat Immunol ; 23(1): 23-32, 2022 01.
Article in English | MEDLINE | ID: covidwho-1585822

ABSTRACT

Systemic immune cell dynamics during coronavirus disease 2019 (COVID-19) are extensively documented, but these are less well studied in the (upper) respiratory tract, where severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates1-6. Here, we characterized nasal and systemic immune cells in individuals with COVID-19 who were hospitalized or convalescent and compared the immune cells to those seen in healthy donors. We observed increased nasal granulocytes, monocytes, CD11c+ natural killer (NK) cells and CD4+ T effector cells during acute COVID-19. The mucosal proinflammatory populations positively associated with peripheral blood human leukocyte antigen (HLA)-DRlow monocytes, CD38+PD1+CD4+ T effector (Teff) cells and plasmablasts. However, there was no general lymphopenia in nasal mucosa, unlike in peripheral blood. Moreover, nasal neutrophils negatively associated with oxygen saturation levels in blood. Following convalescence, nasal immune cells mostly normalized, except for CD127+ granulocytes and CD38+CD8+ tissue-resident memory T cells (TRM). SARS-CoV-2-specific CD8+ T cells persisted at least 2 months after viral clearance in the nasal mucosa, indicating that COVID-19 has both transient and long-term effects on upper respiratory tract immune responses.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Nasopharynx/immunology , Nose/cytology , Respiratory Mucosa/immunology , SARS-CoV-2/immunology , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/pathology , Granulocytes/immunology , HLA-DR Antigens/metabolism , Humans , Killer Cells, Natural/immunology , Monocytes/immunology , Nasopharynx/cytology , Nasopharynx/virology , Neutrophils/immunology , Nose/immunology , Nose/virology , Prospective Studies , Respiratory Mucosa/cytology , Respiratory Mucosa/virology
2.
Nat Commun ; 12(1): 5877, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1462003

ABSTRACT

Several COVID-19 vaccines have recently gained authorization for emergency use. Limited knowledge on duration of immunity and efficacy of these vaccines is currently available. Data on other coronaviruses after natural infection suggest that immunity to SARS-CoV-2 might be short-lived, and preliminary evidence indicates waning antibody titers following SARS-CoV-2 infection. In this work, we model the relationship between immunogenicity and protective efficacy of a series of Ad26 vectors encoding stabilized variants of the SARS-CoV-2 Spike protein in rhesus macaques and validate the analyses by challenging macaques 6 months after immunization with the Ad26.COV2.S vaccine candidate that has been selected for clinical development. We show that Ad26.COV2.S confers durable protection against replication of SARS-CoV-2 in the lungs that is predicted by the levels of Spike-binding and neutralizing antibodies, indicating that Ad26.COV2.S could confer durable protection in humans and immunological correlates of protection may enable the prediction of durability of protection.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Animals , Female , HEK293 Cells , Humans , Immunity, Humoral , Logistic Models , Lung/immunology , Lung/pathology , Lung/virology , Macaca mulatta , Male , Nose/immunology , Nose/virology , SARS-CoV-2/physiology , Virus Replication/physiology
4.
Front Immunol ; 12: 729837, 2021.
Article in English | MEDLINE | ID: covidwho-1450810

ABSTRACT

We have developed a dual-antigen COVID-19 vaccine incorporating genes for a modified SARS-CoV-2 spike protein (S-Fusion) and the viral nucleocapsid (N) protein with an Enhanced T-cell Stimulation Domain (N-ETSD) to increase the potential for MHC class II responses. The vaccine antigens are delivered by a human adenovirus serotype 5 platform, hAd5 [E1-, E2b-, E3-], previously demonstrated to be effective in the presence of Ad immunity. Vaccination of rhesus macaques with the hAd5 S-Fusion + N-ETSD vaccine by subcutaneous prime injection followed by two oral boosts elicited neutralizing anti-S IgG and T helper cell 1-biased T-cell responses to both S and N that protected the upper and lower respiratory tracts from high titer (1 x 106 TCID50) SARS-CoV-2 challenge. Notably, viral replication was inhibited within 24 hours of challenge in both lung and nasal passages, becoming undetectable within 7 days post-challenge.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adenoviruses, Human/genetics , Adenoviruses, Human/immunology , Adenoviruses, Human/metabolism , Administration, Oral , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , Cytokines/blood , Immunization, Secondary/methods , Immunoglobulin G/blood , Lung/virology , Macaca mulatta , Nose/virology , Phosphoproteins/immunology , Protein Domains/immunology , T-Lymphocytes, Helper-Inducer/immunology , Vaccination , Virus Replication/immunology
5.
Int J Mol Sci ; 22(19)2021 Sep 30.
Article in English | MEDLINE | ID: covidwho-1444232

ABSTRACT

Natural or experimental infection of domestic cats and virus transmission from humans to captive predatory cats suggest that felids are highly susceptible to SARS-CoV-2 infection. However, it is unclear which cells and compartments of the respiratory tract are infected. To address this question, primary cell cultures derived from the nose, trachea, and lungs of cat and lion were inoculated with SARS-CoV-2. Strong viral replication was observed for nasal mucosa explants and tracheal air-liquid interface cultures, whereas replication in lung slices was less efficient. Infection was mainly restricted to epithelial cells and did not cause major pathological changes. Detection of high ACE2 levels in the nose and trachea but not lung further suggests that susceptibility of feline tissues to SARS-CoV-2 correlates with ACE2 expression. Collectively, this study demonstrates that SARS-CoV-2 can efficiently replicate in the feline upper respiratory tract ex vivo and thus highlights the risk of SARS-CoV-2 spillover from humans to felids.


Subject(s)
COVID-19/veterinary , Cats/virology , Lions/virology , Angiotensin-Converting Enzyme 2/analysis , Animals , COVID-19/transmission , COVID-19/virology , Cat Diseases/transmission , Cat Diseases/virology , Cells, Cultured , Disease Susceptibility , Humans , Lung/cytology , Lung/virology , Nose/cytology , Nose/virology , SARS-CoV-2/isolation & purification , Trachea/cytology , Trachea/virology
6.
PLoS One ; 16(9): e0257350, 2021.
Article in English | MEDLINE | ID: covidwho-1435609

ABSTRACT

SARS-CoV-2 has spread worldwide and has become a global health problem. As a result, the demand for inputs for diagnostic tests rose dramatically, as did the cost. Countries with inadequate infrastructure experience difficulties in expanding their qPCR testing capacity. Therefore, the development of sensitive and specific alternative methods is essential. This study aimed to develop, standardize, optimize, and validate conventional RT-PCR targeting the N gene of SARS-CoV-2 in naso-oropharyngeal swab samples compared to qPCR. Using bioinformatics tools, specific primers were determined, with a product expected to be 519 bp. The reaction conditions were optimized using a commercial positive control, and the detection limit was determined to be 100 fragments. To validate conventional RT-PCR, we determined a representative sampling of 346 samples from patients with suspected infection whose diagnosis was made in parallel with qPCR. A sensitivity of 92.1% and specificity of 100% were verified, with an accuracy of 95.66% and correlation coefficient of 0.913. Under current Brazilian conditions, this method generates approximately 60% savings compared to qPCR costs. Conventional RT-PCR, validated herein, showed sufficient results for the detection of SARS-CoV-2 and can be used as an alternative for epidemiological studies and interspecies correlations.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Nose/virology , Nucleocapsid Proteins/genetics , Oropharynx/virology , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Adolescent , Brazil , COVID-19/virology , DNA Primers/genetics , Female , Humans , Male , Molecular Diagnostic Techniques/methods , RNA, Viral/genetics , Reference Standards , Sensitivity and Specificity , Specimen Handling/methods
7.
J Med Microbiol ; 70(9)2021 Sep.
Article in English | MEDLINE | ID: covidwho-1393561

ABSTRACT

Introduction. Non-invasive sample collection and viral sterilizing buffers have independently enabled workflows for more widespread COVID-19 testing by reverse-transcriptase polymerase chain reaction (RT-PCR).Gap statement. The combined use of sterilizing buffers across non-invasive sample types to optimize sensitive, accessible, and biosafe sampling methods has not been directly and systematically compared.Aim. We aimed to evaluate diagnostic yield across different non-invasive samples with standard viral transport media (VTM) versus a sterilizing buffer eNAT- (Copan diagnostics Murrieta, CA) in a point-of-care diagnostic assay system.Methods. We prospectively collected 84 sets of nasal swabs, oral swabs, and saliva, from 52 COVID-19 RT-PCR-confirmed patients, and nasopharyngeal (NP) swabs from 37 patients. Nasal swabs, oral swabs, and saliva were placed in either VTM or eNAT, prior to testing with the Xpert Xpress SARS-CoV-2 (Xpert). The sensitivity of each sampling strategy was compared using a composite positive standard.Results. Swab specimens collected in eNAT showed an overall superior sensitivity compared to swabs in VTM (70 % vs 57 %, P=0.0022). Direct saliva 90.5 %, (95 % CI: 82 %, 95 %), followed by NP swabs in VTM and saliva in eNAT, was significantly more sensitive than nasal swabs in VTM (50 %, P<0.001) or eNAT (67.8 %, P=0.0012) and oral swabs in VTM (50 %, P<0.0001) or eNAT (58 %, P<0.0001). Saliva and use of eNAT buffer each increased detection of SARS-CoV-2 with the Xpert; however, no single sample matrix identified all positive cases.Conclusion. Saliva and eNAT sterilizing buffer can enhance safe and sensitive detection of COVID-19 using point-of-care GeneXpert instruments.


Subject(s)
COVID-19 Nucleic Acid Testing , Specimen Handling/methods , Adult , Aged , COVID-19/diagnosis , Containment of Biohazards , Culture Media , Female , Humans , Male , Middle Aged , Mouth/virology , Nasopharynx/virology , Nose/virology , Point-of-Care Testing , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Saliva/virology , Sensitivity and Specificity , Specimen Handling/standards
10.
Biosensors (Basel) ; 11(9)2021 Aug 28.
Article in English | MEDLINE | ID: covidwho-1374295

ABSTRACT

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease-19 (COVID-19), has severely influenced public health and economics. For the detection of SARS-CoV-2, clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein (Cas)-based assays have been emerged because of their simplicity, sensitivity, specificity, and wide applicability. Herein, we have developed a CRISPR-Cas12-based assay for the detection of SARS-CoV-2. In the assay, the target amplicons are produced by isothermal reverse transcription recombinase polymerase amplification (RT-RPA) and recognized by a CRISPR-Cas12a/guide RNA (gRNA) complex that is coupled with the collateral cleavage activity of fluorophore-tagged probes, allowing either a fluorescent measurement or naked-eye detection on a lateral flow paper strip. This assay enables the sensitive detection of SARS-CoV-2 at a low concentration of 10 copies per sample. Moreover, the reliability of the method is verified by using nasal swabs and sputum of COVID-19 patients. We also proved that the current assay can be applied to other viruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV), with no major changes to the basic scheme of testing. It is anticipated that the CRISPR-Cas12-based assay has the potential to serve as a point-of-care testing (POCT) tool for a wide range of infectious viruses.


Subject(s)
Bacterial Proteins/metabolism , CRISPR-Associated Proteins/metabolism , Endodeoxyribonucleases/metabolism , Middle East Respiratory Syndrome Coronavirus/isolation & purification , SARS Virus/isolation & purification , SARS-CoV-2/isolation & purification , Virus Diseases/diagnosis , CRISPR-Cas Systems , Fluorescent Dyes/chemistry , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Nose/virology , Point-of-Care Testing , RNA, Guide/chemistry , RNA, Guide/genetics , Reverse Transcriptase Polymerase Chain Reaction , SARS Virus/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity , Sputum/virology
12.
Life Sci Alliance ; 4(10)2021 10.
Article in English | MEDLINE | ID: covidwho-1342114

ABSTRACT

The duration of viral shedding is determined by a balance between de novo infection and removal of infected cells. That is, if infection is completely blocked with antiviral drugs (100% inhibition), the duration of viral shedding is minimal and is determined by the length of virus production. However, some mathematical models predict that if infected individuals are treated with antiviral drugs with efficacy below 100%, viral shedding may last longer than without treatment because further de novo infections are driven by entry of the virus into partially protected, uninfected cells at a slower rate. Using a simple mathematical model, we quantified SARS-CoV-2 infection dynamics in non-human primates and characterized the kinetics of viral shedding. We counterintuitively found that treatments initiated early, such as 0.5 d after virus inoculation, with intermediate to relatively high efficacy (30-70% inhibition of virus replication) yield a prolonged duration of viral shedding (by about 6.0 d) compared with no treatment.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/virology , Virus Shedding/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Lung/virology , Macaca mulatta , Models, Theoretical , Nose/virology , Pharynx/virology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Time Factors , Viral Load/drug effects , Virus Replication/drug effects
13.
J Infect Dev Ctries ; 15(7): 904-909, 2021 07 31.
Article in English | MEDLINE | ID: covidwho-1339632

ABSTRACT

INTRODUCTION: As regard to all pandemics, the current COVID-19 pandemic, could also have been better managed with prudent use of preventive measures coupled with rapid diagnostic tools such as rapid antigen tests, but their efficacy is under question because of projected lower sensitivity as compared to Real Time Reverse Transcriptase Polymerase Chain Reaction, which although considered gold standard has its own limitations. METHODOLOGY: A prospective, single centre study was carried out to evaluate the performance of Standard Q COVID-19 Ag, a rapid immuno-chromatographic assay for antigen detection, against TrueNat, a chip-based, point-of-care, portable, Real-Time PCR analyzer for diagnosis of COVID-19; on 467 nasal swab samples from suspected subjects at a fever clinic in North India in month of July 2020. RESULTS: Of the 467 specimens tested, TrueNat showed positive result in 29 (6.2%), majority of whom were asymptomatic (72.4%) while 4/29 (13.9%) had influenza like illness and 2/29 (6.8%) presented with severe acute respiratory illness. Compared to TrueNat, Rapid antigen test gave concordance for 26 samples, while for 2 samples the result was false positive; giving an overall sensitivity of 89.7% (95% CI = 72.6- 97.8) and a specificity of 99.5%, indicating strong agreement between two methods. CONCLUSION: Community prevalence plays an important role is choosing the laboratory test and result interpretation. Rapid antigen detection tests definitely have a big role to play, especially in resource limited setting, for early diagnosis as well as for source control to halt the spread.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19 Serological Testing/standards , COVID-19/diagnosis , Immunoassay/methods , Immunoassay/standards , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antigens, Viral , Asymptomatic Infections , COVID-19/blood , COVID-19 Nucleic Acid Testing/standards , COVID-19 Nucleic Acid Testing/statistics & numerical data , Child , Child, Preschool , Female , Humans , India , Male , Middle Aged , Nose/virology , Prospective Studies , SARS-CoV-2/chemistry , Sensitivity and Specificity , Young Adult
14.
Viruses ; 13(8)2021 07 30.
Article in English | MEDLINE | ID: covidwho-1335232

ABSTRACT

Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the susceptibility of animals and their potential to act as reservoirs or intermediate hosts for the virus has been of significant interest. Pigs are susceptible to multiple coronaviruses and have been used as an animal model for other human infectious diseases. Research groups have experimentally challenged swine with human SARS-CoV-2 isolates with results suggesting limited to no viral replication. For this study, a SARS-CoV-2 isolate obtained from a tiger which is identical to human SARS-CoV-2 isolates detected in New York City and contains the D614G S mutation was utilized for inoculation. Pigs were challenged via intravenous, intratracheal, or intranasal routes of inoculation (n = 4/route). No pigs developed clinical signs, but at least one pig in each group had one or more PCR positive nasal/oral swabs or rectal swabs after inoculation. All pigs in the intravenous group developed a transient neutralizing antibody titer, but only three other challenged pigs developed titers greater than 1:8. No gross or histologic changes were observed in tissue samples collected at necropsy. In addition, no PCR positive samples were positive by virus isolation. Inoculated animals were unable to transmit virus to naïve contact animals. The data from this experiment as well as from other laboratories supports that swine are not likely to play a role in the epidemiology and spread of SARS-CoV-2.


Subject(s)
COVID-19/virology , SARS-CoV-2/physiology , Administration, Intranasal , Administration, Intravenous , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/immunology , Disease Models, Animal , Humans , Mouth/virology , Nose/virology , SARS-CoV-2/genetics , Swine , Trachea/virology , Virus Replication
16.
Nature ; 596(7872): 423-427, 2021 08.
Article in English | MEDLINE | ID: covidwho-1279884

ABSTRACT

The emergence of SARS-CoV-2 variants that partially evade neutralizing antibodies poses a threat to the efficacy of current COVID-19 vaccines1,2. The Ad26.COV2.S vaccine expresses a stabilized spike protein from the WA1/2020 strain of SARS-CoV-2, and has recently demonstrated protective efficacy against symptomatic COVID-19 in humans in several geographical regions-including in South Africa, where 95% of sequenced viruses in cases of COVID-19 were the B.1.351 variant3. Here we show that Ad26.COV2.S elicits humoral and cellular immune responses that cross-react with the B.1.351 variant and protects against B.1.351 challenge in rhesus macaques. Ad26.COV2.S induced lower binding and neutralizing antibodies against B.1.351 as compared to WA1/2020, but elicited comparable CD8 and CD4 T cell responses against the WA1/2020, B.1.351, B.1.1.7, P.1 and CAL.20C variants. B.1.351 infection of control rhesus macaques resulted in higher levels of virus replication in bronchoalveolar lavage and nasal swabs than did WA1/2020 infection. Ad26.COV2.S provided robust protection against both WA1/2020 and B.1.351, although we observed higher levels of virus in vaccinated macaques after B.1.351 challenge. These data demonstrate that Ad26.COV2.S provided robust protection against B.1.351 challenge in rhesus macaques. Our findings have important implications for vaccine control of SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , COVID-19/virology , Immunity, Cellular , Immunity, Humoral , Macaca mulatta/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Bronchoalveolar Lavage Fluid/virology , COVID-19/immunology , COVID-19/pathology , Female , Macaca mulatta/virology , Male , Nose/virology , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , T-Lymphocytes/immunology , Virus Replication
17.
J Virol Methods ; 295: 114215, 2021 09.
Article in English | MEDLINE | ID: covidwho-1275556

ABSTRACT

BACKGROUND: This study aimed to evaluate the impact of four different reverse transcription quantitative PCR (RT-qPCR) master mixes on the performance of SARS-CoV-2 diagnostic PCRs using three primer/probe assays targeting the N gene (A, B and C). The dynamic range and lowest detected quantity was determined using a SARS-CoV-2 partial N gene RNA transcript dilution series (100,000-1 copy/µl) and verified using 72 nose and throat swabs, 29 of which tested positive for SARS-CoV-2 RNA. RESULTS: Assay C consistently detected the lowest quantity of partial N gene RNA transcript with all mastermixes. The Takara One Step PrimeScript™ III RT-PCR Kit mastermix enabled all primer pairs to detect the entire dynamic range evaluated, with the Qiagen Quantifast and Thermofisher TaqPath 1-Step kits also performing well. Sequences from all three primer/probe sets tested in this study (assay A, B and C) have 100 % homology to ≥97 % of the of SARS-CoV-2 sequences available up to 31st December 2020 (n = 291,483 sequences). CONCLUSIONS: This work demonstrates that specific assays (in this case assay C) can perform well in terms of dynamic range and lowest detected quantity regardless of the mastermix used. However we also show that, by choosing the most appropriate mastermix, poorer performing primer pairs are also able to detect all of the template dilutions investigated. This work increases the potential options when choosing assays for SARS-CoV-2 diagnosis and provides solutions to enable them to work with optimal analytical sensitivity.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , Coronavirus Nucleocapsid Proteins/genetics , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing/instrumentation , DNA Primers/genetics , Humans , Nose/virology , Pharynx/virology , Phosphoproteins/genetics , RNA, Viral/genetics , Reagent Kits, Diagnostic , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity , Sequence Homology, Nucleic Acid
18.
J Virol ; 95(13): e0223220, 2021 06 10.
Article in English | MEDLINE | ID: covidwho-1263906

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has initiated a global pandemic, and several vaccines have now received emergency use authorization. Using the reference strain SARS-CoV-2 USA-WA1/2020, we evaluated modes of transmission and the ability of prior infection or vaccine-induced immunity to protect against infection in ferrets. Ferrets were semipermissive to infection with the USA-WA1/2020 isolate. When transmission was assessed via the detection of viral RNA (vRNA) at multiple time points, direct contact transmission was efficient to 3/3 and 3/4 contact animals in 2 respective studies, while respiratory droplet transmission was poor to only 1/4 contact animals. To determine if previously infected ferrets were protected against reinfection, ferrets were rechallenged 28 or 56 days postinfection. Following viral challenge, no infectious virus was recovered in nasal wash samples. In addition, levels of vRNA in the nasal wash were several orders of magnitude lower than during primary infection, and vRNA was rapidly cleared. To determine if intramuscular vaccination protected ferrets, ferrets were vaccinated using a prime-boost strategy with the S protein receptor-binding domain formulated with an oil-in-water adjuvant. Upon viral challenge, none of the mock or vaccinated animals were protected against infection, and there were no significant differences in vRNA or infectious virus titers in the nasal wash. Combined, these studies demonstrate direct contact is the predominant mode of transmission of the USA-WA1/2020 isolate in ferrets and that immunity to SARS-CoV-2 is maintained for at least 56 days. Our studies also indicate protection of the upper respiratory tract against SARS-CoV-2 will require vaccine strategies that mimic natural infection or induce site-specific immunity. IMPORTANCE The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) USA-WA1/2020 strain is a CDC reference strain used by multiple research laboratories. Here, we show that the predominant mode of transmission of this isolate in ferrets is by direct contact. We further demonstrate ferrets are protected against reinfection for at least 56 days even when levels of neutralizing antibodies are low or undetectable. Last, we show that when ferrets were vaccinated by the intramuscular route to induce antibodies against SARS-CoV-2, ferrets remain susceptible to infection of the upper respiratory tract. Collectively, these studies suggest that protection of the upper respiratory tract will require vaccine approaches that mimic natural infection.


Subject(s)
COVID-19/transmission , Disease Models, Animal , Reinfection/prevention & control , SARS-CoV-2/physiology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Ferrets , Injections, Intramuscular , Nose/virology , Reinfection/immunology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/administration & dosage , Viral Load
19.
Diagn Microbiol Infect Dis ; 101(2): 115441, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1252665

ABSTRACT

To meet the testing demands and overcome supply chain issues during the SARS-CoV-2 pandemic, many clinical laboratories validated multiple SARS-CoV-2 molecular testing platforms. Here, we compare three different molecular assays for SARS-CoV-2 that received emergency use authorization (EUA) from the U.S. Food and Drug Administration. In order to determine the agreement among Roche cobas® SARS-CoV-2 Test (Cobas), Abbott RealTime SARS-CoV-2 assay (ART), and Mayo Clinic Laboratory SARS-CoV-2 Molecular Detection Assay (Mayo LDT), 100 each of anterior nares (AN), nasopharyngeal (NP), oropharyngeal (OP), and NP+OP swabs were tested on each platform. The consensus result was defined as agreement by 2 or more methods. Furthermore, 30 positive NP swabs from each molecular platform (n = 90 total) were tested on the three platforms to determine the PPA among positive samples. ART platform called more specimens positive than the other two platforms. All three assays performed with greater than 90% agreement for NP specimens throughout the study.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , SARS-CoV-2/isolation & purification , Humans , Nasopharynx/virology , Nose/virology , Pandemics , Polymerase Chain Reaction , Respiratory System/virology , Sensitivity and Specificity , Specimen Handling/methods
20.
Elife ; 102021 04 20.
Article in English | MEDLINE | ID: covidwho-1234904

ABSTRACT

Diagnosis of SARS-CoV-2 (COVID-19) requires confirmation by reverse transcription-polymerase chain reaction (RT-PCR). Abbott ID NOW provides fast results but has been criticized for low sensitivity. Here we determine the sensitivity of ID NOW in an ambulatory population presented for testing. The study enrolled 785 symptomatic patients, of whom 21 were positive by both ID NOW and RT-PCR, and 2 only by RT-PCR. All 189 asymptomatic patients tested negative. The positive percent agreement between the ID NOW assay and the RT-PCR assay was 91.3%, and negative percent agreement was 100%. The results from the current study were included into a larger systematic review of literature where at least 20 subjects were simultaneously tested using ID NOW and RT-PCR. The overall sensitivity for ID NOW assay was calculated at 84% (95% confidence interval 55-96%) and had the highest correlation to RT-PCR at viral loads most likely to be associated with transmissible infections.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , Adult , Female , Genome, Viral , Humans , Male , Middle Aged , Nose/virology , Nucleic Acid Amplification Techniques/methods , Point-of-Care Systems , SARS-CoV-2/genetics , Sensitivity and Specificity , Specimen Handling , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...